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MAPS BETWEEN NON-COMMUTATIVE SPACES

S. PAUL SMITH

Abstract. Let J be a graded ideal in a not necessarily commutative graded
k-algebra A = A0⊕A1⊕· · · in which dimk Ai <∞ for all i. We show that the
map A→ A/J induces a closed immersion i : Projnc A/J → Projnc A between
the non-commutative projective spaces with homogeneous coordinate rings A
and A/J . We also examine two other kinds of maps between non-commutative
spaces. First, a homomorphism φ : A → B between not necessarily commu-
tative N-graded rings induces an affine map Projnc B ⊃ U → Projnc A from
a non-empty open subspace U ⊂ Projnc B. Second, if A is a right noetherian

connected graded algebra (not necessarily generated in degree one), and A(n)

is a Veronese subalgebra of A, there is a map Projnc A → Projnc A
(n); we

identify open subspaces on which this map is an isomorphism. Applying these
general results when A is (a quotient of) a weighted polynomial ring produces
a non-commutative resolution of (a closed subscheme of) a weighted projective
space.

1. Introduction

This paper concerns maps between non-commutative projective spaces of the
form ProjncA. Before summarizing our main results we define the relevant terms.

Following Rosenberg [8, p. 278] and Van den Bergh [13], a non-commutative
space X is a Grothendieck category ModX . A map g : Y → X between two spaces
is an adjoint pair of functors (g∗, g∗) with g∗ : ModY → ModX and g∗ left adjoint
to g∗. The map g is affine [8, page 278] if g∗ is faithful and has a right adjoint.
For example, a ring homomorphism ϕ : R → S induces an affine map g : Y → X
between the affine spaces defined by ModY := ModS and ModX := ModR.

Let k be a field. An N-graded k-algebra A is locally finite if dimk Ai <∞ for all
i. The non-commutative projective space X with homogeneous coordinate ring A
is defined by

ModX := GrModA/FdimA

(see Section 2), and

ProjncA := (ModX,OX),

where OX is the image of A in ModX . Thus ProjncA is an enriched quasi-scheme
in the language of [13]. Let Y be another non-commutative projective space with
homogeneous coordinate ring B. A map f : ProjncB → ProjncA is a map f : Y →
X such that f∗OX ∼= OY .
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When A is a commutative N-graded k-algebra we write ProjA for the usual
projective scheme. We will always view a quasi-separated, quasi-compact scheme
X as a non-commutative space by associating to it the enriched space (QcohX,OX).
The rule X 7→ (QcohX,OX) is a faithful functor.

Summary of results. The main results in this paper are Theorems 3.2, 3.3, 4.1,
and Proposition 4.8.

A map g : Y → X is a closed immersion if it is affine and the essential image of
ModY in ModX under g∗ is closed under submodules and quotients. Theorem 3.2
shows that a surjective homomorphism A→ A/J of graded rings induces a closed
immersion i : ProjncA/J → ProjncA. The functors i∗ and i∗ are the obvious ones
(see the proof of 3.2). It seems to be a folklore result that i∗ is left adjoint to i∗, but
we could not find a proof in the literature so we provide one here. Several people
have been aware for some time that this is the appropriate intuitive picture, but,
as far as I know, no formal definition of a closed immersion has been given and so
no explicit proof has been given.

If A is a graded subalgebra of B, commutative results suggest there should be
a closed subspace Z of Y = ProjncB and an affine map g : Y \Z → ProjncA.
Theorem 3.3 establishes such a result under reasonable hypotheses on A and B. In
fact, that result is set in a more general context, namely a homomorphism φ : A→
B of graded rings. Corollary 3.4 then says that if φ : A → B and B is a finitely
presented left A-module, then there is an affine map g : ProjncB → ProjncA. This
is a (special case of a) non-commutative analogue of the commutative result that a
finite morphism is affine.

If A is a quotient of a commutative polynomial ring, and A(n) is the graded
subring with components (A(n))i = Ani, then there is an isomorphism of schemes
ProjA ∼= ProjA(n). Verevkin [12] proved that ProjncA ∼= ProjncA(n) when A is
no longer commutative, but is connected and generated in degree one. Theorem
4.1 shows that when A is not required to be generated in degree one, there is still
a map ProjncA → ProjncA(n), and Proposition 4.8 describes open subspaces on
which this map is an isomorphism.

The results here are modelled on the commutative case, and none is a surprise.
In large part the point of this paper is to make the appropriate definitions so
that results from commutative algebraic geometry carry over verbatim to the non-
commutative setting. Thus we formalize and make precise some of the terminology
and intuition in papers like [2] and [7].

In Example 4.9 we show how our results apply to a quotient of a weighted poly-
nomial ring to obtain a birational isomorphism g : ProjncA→ X = ProjA, where
X is a commutative subscheme of a weighted projective space. It can happen that
X is singular whereas ProjncA is smooth. Thus we can view ProjncA→ ProjA as
something like a non-commutative resolution of singularities. Furthermore, in this
situation g∗g∗ ∼= id.

We freely use basic notions and terminology for non-commutative spaces from
the papers [9], [10], and [13].

2. Definitions and preliminaries

Throughout this paper we assume that A is a locally finite N-graded algebra over a
field k. Thus A = A0⊕A1⊕· · · , and dimk Ai <∞ for all i. The augmentation ideal
m of A is A1⊕A2⊕· · · . If A0 is finite dimensional and A is right noetherian, then it
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follows that dimk Ai <∞ for all i because A≥i/A≥i+1 is a noetherian A/m-module.
We write GrModA for the category of Z-graded right A-modules, and define

TailsA := GrModA/FdimA,

where FdimA is the full subcategory consisting of direct limits of finite dimensional
A-modules. Equivalently, FdimA consists of those modules in which every element
is annihilated by a suitably large power of m. We write π for the quotient functor
GrModA→ TailsA and ω for its right adjoint.

The projective space with homogeneous coordinate ring A is the space X defined
by ModX := TailsA. We write ProjncA = (ModX,OX), where OX denotes the
image of A in TailsA.

A closed subspace Z of a space X is a full subcategory ModZ of ModX that is
closed under submodules and quotient modules in ModX and such that the inclusion
functor i∗ : ModZ → ModX has both a left adjoint i∗ and a right adjoint i!.

Two spaces are isomorphic if their module categories are equivalent. Hence a
map Y → X is a closed immersion if and only if it is an isomorphism from Y to a
closed subspace of X .

The complement X\Z to a closed subspace Z is defined by

ModX\Z := ModX/T,

the quotient category of ModX by the localizing subcategory T consisting of those
X-modules M that are the direct limit of modules N with the property that N has
a finite filtration N = Nn ⊃ Nn−1 ⊃ · · · ⊃ N1 ⊃ N0 = 0 such that each Ni/Ni−1

is in ModZ. Because T is a localizing category, there is an exact quotient functor
j∗ : ModX → ModX\Z, and its right adjoint j∗ : ModX\Z → ModX . The pair
(j∗, j∗) defines a map j : X\Z → X . We call it an open immersion.

We sometimes write ModZX for the category T and call it the category of X-
modules supported on Z.

Let f : Y → X be a map. If f∗ is faithful, then the counit idY → f !f∗ is monic
and the unit f∗f∗ → idY is epic.

Watt’s Theorem for graded modules. Let A and B be Z-graded k-algebras.
We recall the analogue of Watt’s Theorem proved by Del Rio [3, Proposition 3]
that describes the k-linear functors GrModA→ GrModB that have a right adjoint.

A bigraded A-B-bimodule is an A-B-bimodule

M =
⊕

(p,q)∈Z2

pMq

such that Ai.pMq.Bj ⊂ i+pMq+j for all i, j, p, q ∈ Z. Write ⊗ for ⊗k. If L is a
graded right A-module, we define

L ⊗̄AM :=
⊕
q∈Z

(L ⊗̄AM)q,

where (L ⊗̄AM)q is the image of
⊕

p(L−p⊗pMq) under the canonical map L⊗M →
L ⊗AM . This gives L ⊗̄AM the structure of a graded right B-module; it is a B-
module direct summand of the usual tensor product L⊗AM .

If N is a graded right B-module, we define

Hom
B

(M,N) := {f ∈ HomGrB(M,N) | f(pM∗) = 0 for almost all p}.
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This is made into a graded rightA-module by declaring that deg f = p if f(iM∗) = 0
for all i 6= −p. Hence Hom

B
(M,N)p is naturally isomorphic to HomGrB(−pM∗, N),

and there is a natural isomorphism

Hom
B

(M,N) =
⊕
p

HomGrB(−pM∗, N).

The usual adjoint isomorphism between Hom and ⊗ then induces an isomorphism

HomGrB(L ⊗̄AM,N) ∼= HomGrA(L,Hom
B

(M,N)),(2-1)

showing that −⊗̄AM : GrModA→ GrModB is left adjoint to Hom
B

(M,−).

Theorem 2.1 (Del Rio [3]). Let A and B be graded k-algebras, and F : GrModA→
GrModB a k-linear functor having a right adjoint. Then F ∼= −⊗̄AM , where M
is the bigraded A-B-bimodule

M =
⊕
p∈Z

F (A(p))

with homogeneous components pMq = F (A(p))q.
If F also commutes with the twists by degree, then F is given by tensoring with

a graded A-B-bimodule, say V =
⊕

n Vn. The corresponding M in this case is
M =

⊕
V (p) with pMq = V (p)q.

The left A-action on M is given by declaring that x ∈ Ai acts on pM∗ as F (λx),
where λx : A(p)→ A(p+ i) denotes left multiplication by x.

3. Maps induced by graded ring homomorphisms

Throughout this section we assume that A and B are locally finite N-graded
algebras over a field k.

We consider the problem of when a homomorphism φ : A → B of graded rings
induces a map g : ProjncB → ProjncA and, if it does, how the properties of g are
determined by the properties of φ.

Associated to φ is an adjoint triple (f∗, f∗, f !) of functors between the categories
of graded modules. Explicitly, f∗ = −⊗AB, f∗ = −⊗B BA is the restriction map,
and f ! =

⊕
p∈ZHomGrB(B(−p),−). We wish to establish conditions on φ which

imply that these functors factor through the quotient categories in the following
diagrams:

GrModB
f∗−−−−→ GrModA

π′
y yπ

TailsB TailsA

GrModB
f∗, f !

←−−−− GrModA

π′
y yπ

TailsB TailsA

Lemma 3.1. Let A and B be Grothendieck categories with localizing subcategories
S ⊂ A and T ⊂ B. Let π : A→ A/S and π′ : B→ B/T be the quotient functors, and
let ω and ω′ be their right adjoints. Consider the following diagram of functors:

A
F−−−−→ B

π

y yπ′
A/S B/T.
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Suppose that F (S) ⊂ T.

(1) There is a unique functor G : A/S→ B/T such that π′F = Gπ.
(2) If H : B→ A is a right adjoint to F , then πHω′ is a right adjoint to G.
(3) If H is a right adjoint to F and G′ is a right adjoint to G, then H(T) ⊂ S

if and only if G′π′ ∼= πH.

Proof. (1) The existence and uniqueness of G is due to Gabriel [6, Corollaire 2, p.
368].

(2) To show that G has a right adjoint it suffices to show that it is right exact
and commutes with direct sums. If Mλ is a collection of objects in A/S, then each
is of the formMλ = πMλ for some object Mλ in A. Both π′ and F commute with
direct sums because they have right adjoints, so Gπ commutes with direct sums; π
also commutes with direct sums. Therefore

G
(⊕

Mλ

)
= G

(⊕
πMλ

)
∼= Gπ

(⊕
Mλ

)
∼=
⊕

GπMλ =
⊕

GMλ.

Thus G commutes with direct sums.
To see that G is right exact, consider an exact sequence

0→ L →M→N → 0(3-1)

in A/S. By Gabriel [6, Corollaire 1, p. 368], (3-1) is obtained by applying π to an
exact sequence 0→ L→M → N → 0 in A. Both π′ and F are right exact because
they have right adjoints, so π′FL→ π′FM → π′FN → 0 is exact. In other words,
GL → GM→ GN → 0 is exact.

Hence G has a right adjoint, say G′. It follows that ωG′ is a right adjoint to
Gπ. But Gπ = π′F has Hω′ as a right adjoint, so ωG′ ∼= Hω′. Since πω ∼= idA/S,
G′ ∼= πHω′. Since a right adjoint is only determined up to natural equivalence,
πHω′ is a right adjoint to G.

(3) If H(T) ⊂ S, then πH vanishes on T so, by Gabriel [6, Corollaire 2, page
368], there is a functor V : B/T→ A/S such that V π′ = πH . Thus V ∼= πHω′, and
this is isomorphic to G′ by (2). Hence G′π′ ∼= πH . Conversely, if G′π′ ∼= πH , then
πH(T) = 0, so H(T) ⊂ S. �

Warning. The functor H in part (2) of Lemma 3.1 need not have the property
that H(T) is contained in S. An explicit example of this is provided by taking
B = A, F = H = idA, S = 0, and T = B.

Theorem 3.2. Let J be a graded ideal in an N-graded k-algebra A. Then the
homomorphism A→ A/J induces a closed immersion i : ProjncA/J → ProjncA.

Proof. Write X = ProjncA and Z = ProjncA/J . Write m = A1 ⊕ A2 ⊕ · · · .
Thus ModX = GrModA/FdimA. We write π : GrModA → ModX for the quotient
functor and ω for a right adjoint to it. Similarly, π′ : GrModA/J → ModZ is the
quotient functor, and ω′ is a right adjoint to it. See [12] and [1, Section 2] for more
information about this.

Let f∗ : GrModA/J → GrModA be the inclusion functor. It has a left adjoint
f∗ = −⊗AA/J , and a right adjoint f ! that sends a graded A-module to the largest
submodule of it that is annihilated by J .
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By [6, Corollaire 2, p. 368] (= part (1) of Lemma 3.1), there is a unique functor
i∗ such that

GrModA/J
f∗−−−−→ GrModA

π′
y yπ

ModZ −−−−→
i∗

ModX

commutes, and i∗ is exact because f∗ is [6, Corollaire 3, p. 369]. Thus i∗π′ = πf∗.
By Lemma 3.1(2), i∗ has a right adjoint, namely i! := π′f !ω. It is clear that f !

sends FdimA to FdimA/J , so π′f ! ∼= i!π by Lemma 3.1(3).
It is clear that f∗ sends FdimA to FdimA/J , so by [6, Corollaire 2, p. 368],

there is a functor i∗ : ModX → ModZ such that π′f∗ = i∗π. Since f∗ is right
adjoint to f∗, it follows from Lemma 3.1(2) that πf∗ω′ is a right adjoint to i∗. But
πf∗ω

′ = i∗π
′ω′ ∼= i∗. Hence i∗ is left adjoint to i∗.

We now show that i∗ is faithful. Since i∗ has a left and a right adjoint, it is
exact, so it suffices to show that if i∗M = 0, thenM = 0. Suppose that i∗π′M = 0
for some M ∈ GrModA/J . Then πf∗M = 0, and we conclude that M is in FdimA,
and hence in FdimA/J ; therefore π′M = 0. Hence i∗ is faithful.

We will show that i∗ is full after establishing the following fact.
Claim. ωπf∗ ∼= f∗ω

′π′.
Proof. Let M ∈ GrModA/J , let τM denote the largest submodule of M that

is in FdimA/J (equivalently, in FdimA), and set M̄ = M/τM . Then π′M = π′M̄
and πf∗M = πf∗M̄ , so the two functors take the same value on M if and only if
they take the same value on M̄ . Hence we can, and will, assume that M = M̄ ; i.e.,
τM = 0.

We must show that ωπM = ω′π′M . By definition ωπM is the largest essential
extension 0→M → ωπM → T → 0 such that T ∈ FdimA. The definition of ω′π′M
is analogous, although T is now required to belong to FdimA/J . It therefore suffices
to prove that ωπM is in GrModA/J . The top row in the diagram

M ⊗A J −−−−→ (ωπM)⊗A J −−−−→ T ⊗A J −−−−→ 0y y
MJ −−−−→ (ωπM)J

is exact, and the first vertical map is zero because M is an A/J-module, so there
is an induced map T ⊗A J −→ (ωπM)J . This map is surjective. However, T ⊗A
J belongs to FdimA because T does, so (ωπM)J ∈ FdimA. This implies that
M ∩ (ωπM)J ∈ FdimA. But τM = 0, so M ∩ (ωπM)J = 0, and it follows that
(ωπM)J = 0 because M is essential in ωπM . In other words, ωπM ∈ GrModA/J .
This completes the proof of the claim.

We have f∗f∗ ∼= idGrModA/J and π′ω′ ∼= idModZ , so

i∗i∗ ∼= (π′f∗ω)(πf∗ω′) ∼= π′f∗f∗ω
′π′ω′ ∼= idModZ .

It follows from this that i∗ is full.
To see that i∗ is a closed immersion, it remains to check that i∗(ModZ) is closed

under submodules and quotients in ModX . Let M ∈ ModZ and suppose that
0→ L → i∗M→N → 0 is an exact sequence in ModX . There is an exact sequence
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0 → ωL → ωi∗M→ ωN → R1ωL in GrModA. Let N denote the image of ωi∗M
in ωN . Then L ∼= πωL and N ∼= πN , because π is exact and R1ωL ∈ FdimA.
Now M = π′M for some M ∈ GrModA/J , so ωi∗M = ωi∗π

′M = ωπf∗M ∼=
f∗ω

′π′M , from which we conclude that ωi∗M is annihilated by J . Therefore ωL
is also annihilated by J , so is of the form f∗L for some L ∈ GrModA/J ; hence
L ∼= πωL ∼= πf∗L ∼= i∗π

′L ∈ i∗(ModZ). Since N is a quotient of ωi∗M it is also
annihilated by J , and a similar argument shows that N ∈ i∗(ModZ).

Since f∗A = A/J , i∗OX = OZ . �

We retain the notation of the theorem.
Because i∗ is fully faithful, we often view ModZ as a full subcategory of ModX

and speak of Z = ProjncA/J as a closed subspace of X = ProjncA and call it the
zero locus of J .

It is not the case that every closed subspace of ProjncA is the zero locus of a
two-sided ideal in A. For example, if A = kq[x, y] is the ring defined by the relation
yx = qxy where 0 6= q ∈ k, then ProjncA ∼= P1, but the closed points of P1 are
not cut out by two-sided ideals when q 6= 1: for example, (αx + βy)A is not a
two-sided ideal when q 6= 1 and αβ 6= 0. This is essentially due to the fact that the
auto-equivalence M→M(1) of ModX induced by the degree shift on A does not
generally send Z-modules to Z-modules.

A more difficult question is whether every closed subspace of ProjncA is the zero
locus of a two-sided ideal in some homogeneous coordinate ring of ProjncA. We
do not know the answer to this question.

Theorem 3.3. Suppose that φ : A → B is a map of locally finite N-graded k-
algebras. Write X = ProjncA and Y = ProjncB. Let m be the augmentation ideal
of A, and let I be the largest two-sided ideal of B contained in φ(m)B. Let Z ⊂ Y
be the zero locus of I. If Bφ(m)n ⊂ φ(m)B for some integer n, then φ induces an
affine map

g : Y \Z → X.

Proof. The category of modules over Y \Z is ModY/ModZY . This is equivalent to
the quotient category GrModB/T, where T consists of those modules M with the
property that every element of M is killed by some power of I. Let π′ : GrModB →
GrModB/T be the quotient functor. We have functors (f∗, f∗, f !) between the
graded module categories and a diagram

GrModB
f∗−−−−→ GrModA

π′
y yπ

ModY \Z ModX.

To check that f∗ sends FdimA to T, it suffices to check that f∗(A/m) ∈ T,
because f∗ commutes with direct limits and with the degree twist (1). However,
f∗(A/m) = B/φ(m)B is in T because I ⊂ φ(m)B. Hence there is a unique functor
g∗ : TailsA→ (GrModB)/T satisfying g∗π = π′f∗.

To check that f∗ sends T to FdimA, it suffices to check that f∗(B/I) is in FdimA.
However, (B/I).mn = Bφ(m)n + I/I; the hypothesis that Bφ(m)n ⊂ φ(m)B
ensures that Bφ(m)n ⊂ I, so (B/I).mn = 0. Hence there is an exact functor
g∗ : GrModB/T→ TailsA such that g∗π′ = πf∗.
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By Lemma 3.1(2), g∗ has a right adjoint g! = π′f !ω.
To show that g∗ is faithful we must show that if M is a graded B-module such

that g∗π′M = 0, then M ∈ T. Since πf∗M = 0, as an A-module M is a direct limit
lim−→Mλ where each Mλ is a finite dimensional A-module. There is an epimorphism

lim−→(Mλ ⊗A B) ∼= (lim−→Mλ)⊗A B ∼= M ⊗A B →M

of graded B-modules. Since Mλ⊗AB equals f∗Mλ, it is in T; but T is closed under
direct limits and quotients, so M is in T. Thus g∗ is faithful. �

The following consequence of the theorem slightly extends a result of Van den
Bergh [13, Proposition 3.9.11].

Corollary 3.4. Let φ : A → B be a homomorphism of graded rings such that B
becomes a finitely presented graded left A-module. Then φ induces an affine map
g : ProjncB → ProjncA.

Proof. If we apply A/m⊗A − to a finite presentation of B as a left A-module, we
see that B/φ(m)B has finite dimension. Thus, as a right A-module B/φ(m)B is
annihilated by mn for some n � 0. Equivalently, Bφ(m)n ⊂ φ(m)B. Thus the
hypotheses of the theorem are satisfied. It remains to show that Z is empty.

Let I denote the right annihilator in B of B/φ(m)B. We have already observed
that φ(m)n ⊂ I. Since A/mn is finite dimensional, so is A/mn ⊗A B ∼= B/φ(m)nB.
Thus B/I is finite dimensional. Hence the zero locus of I in ProjncB is empty. �

Remark. If, in Theorem 3.3, BA is finitely presented, then we have the useful
technical fact that g!π = π′f !. This follows from Lemma 3.1(3) once we show that
f ! sends FdimA to FdimB. Let M = lim−→Mλ be a direct limit of finite dimensional A-
modules. If B is a finitely presented right A-module, then HomGrA(B,−) commutes
with direct limits, so HomGrA(N, lim−→Mλ) = lim−→HomGrA(B,Mλ); this is a direct
limit of finite dimensional B-modules, because BA is finitely generated. Hence
f !(FdimA) ⊂ FdimB.

4. The Veronese mapping

Throughout this sectionA is a locally finite N-graded k-algebra and n is a positive
integer. The nth Veronese subalgebra A(n) is defined by

A
(n)
i := Ani.

It is a classical result in algebraic geometry that if A is a finitely generated commu-
tative connected graded k-algebra generated in degree one, then ProjA ∼= ProjA(n).
This isomorphism is implemented by the Veronese embedding.

Verevkin proved a non-commutative version of this result when A is noetherian
and generated in degree one [12, Theorem 4.4].

Theorem 4.1 and Proposition 4.8 show what happens when A need not be com-
mutative and need not be generated in degree one.

Theorem 4.1. Let A be a left noetherian locally finite N-graded k-algebra. Fix a
positive integer n. There is a map g : ProjncA→ ProjncA

(n). Furthermore, g∗ is
exact and g∗g∗ ∼= id. If A is also right noetherian, then g∗ has a right adjoint g!.

We will use the notation X := ProjncA
(n) and X ′ := ProjncA.
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We need two preliminary results before proving the theorem. First we explain
how the functors defining the map g : ProjncA → ProjncA(n) in the theorem are
induced by functors between the categories GrModA and GrModA(n).

If L is a graded A-module, we define the graded A(n)-module L(n) by

L
(n)
i := Lni.

The rule L 7→ L(n) extends to give an exact functor

f∗ : GrModA→ GrModA(n).

The functor f∗ is not faithful when n ≥ 2, because f∗((A/m)(1)) = 0.

Proposition 4.2. Let A be a locally finite N-graded k-algebra. Fix a positive integer
n. Let W and W ′ be the spaces with module categories

ModW = GrModA(n)

and

ModW ′ = GrModA.

Then there is a map f : W ′ → W with direct image functor given by f∗L = L(n).
Furthermore, f∗ has a right adjoint f !.

Proof. It is clear that f∗ is an exact functor commuting with direct sums. By the
graded version of Watt’s Theorem, f∗ ∼= −⊗̄AM , where

M :=
⊕
p∈Z

A(p)(n)

with components pMq = (A(p)(n))q = A(p)nq . The right action of A(n) on M is
given by right multiplication, and each A(p)(n) is a right A(n)-submodule. The left
action of A is given by left multiplication, whereby a ∈ Ai acts by sending A(p)nq
to A(p+ i)nq.

Define f∗ : GrModA(n) → GrModA by f∗N = N ⊗A(n) A with the usual right
action of A, and grading given by

(N ⊗A(n) A)s =
∑

ni+j=s

Ni ⊗Aj .

It is not hard to show that f∗ is a left adjoint to f∗. Therefore f∗ ∼= −⊗̄A(n) Q,
where

Q =
⊕
p∈Z

f∗(A(n)(p)) ∼=
⊕
p∈Z

A(np);

multiplication A(n)(p) ⊗A(n) A → A(np) gives an isomorphism of graded right A-
modules. Thus pQ∗ ∼= A(np) with its usual grading. One can verify directly that
f∗ ∼= Hom

A
(Q,−).

The right adjoint to f∗ is the functor f ! = Hom
A(n)(M,−). If N is a graded

right A(n)-module, then

(f !N)i = HomGrA(n)(−iM∗, N) = HomGrA(n)(A(−i)(n), N).

If N is a graded A(n)-module, then f∗f∗(N) = N , so f∗f∗ is naturally equivalent
to idW . �



2936 S. PAUL SMITH

Let π′ : GrModA → TailsA and π : GrModA(n) → TailsA(n) be the quotient
functors. To prove Theorem 4.1, we must find functors g∗, g∗, and g! making the
following diagrams commute:

GrModA
f∗−−−−→ GrModA(n)

π′
y yπ

TailsA −−−−→
g∗

TailsA(n).

GrModA
f∗,f !

←−−−− GrModA(n)

π′
y yπ

TailsA ←−−−−
g∗,g!

TailsA(n)

where f∗, f∗, and f !, are the functors in the previous proposition.
Since f∗ sends FdimA to FdimA(n), there is a functor g∗ : TailsA → TailsA(n)

such that g∗π′ = πf∗. Because f∗ is exact, g∗ is too [6].
To ensure that f∗ and f ! induce functors between the quotient categories, we

must impose a noetherian hypothesis. Although there is no noetherian hypothesis
in Proposition 4.2, in Theorem 4.1 it is assumed that A is right noetherian. This
hypothesis ensures that f∗ sends FdimA(n) to FdimA.

Recall that GrModA denotes the category of graded right A-modules.

Lemma 4.3. Let A be a locally finite N-graded k-algebra. Then:

(1) f∗ sends right noetherian A-modules to right noetherian A(n)-modules;
(2) if A is right noetherian so is A(n), and A is a finitely generated right A(n)-

module.
(3) if A is left noetherian, then f∗ sends FdimA(n) to FdimA;
(4) if A is left noetherian, then there is a functor g∗ : TailsA(n) → TailsA such

that g∗π = π′f∗;
(5) if A is right noetherian, then f ! sends FdimA(n) to FdimA;
(6) if A is right noetherian, then there is a functor g! : TailsA(n) → TailsA such

that g!π = π′f !;

Proof. (1) Let M be a right noetherian graded A-module. If N is a submodule of
M (n), then N = NA ∩M (n). Hence any proper ascending chain of submodules in
M (n) would give a proper ascending chain of submodules of M by multiplying by
A. Since M contains no such chain, neither does M (n).

(2) Applying (1) to M = A shows that A(n) is right noetherian.
Applying (1) to M := A⊕A(1)⊕· · ·⊕A(n−1) gives the result, because M (n) ∼= A

as a right A(n)-module.
(3) Because A is left noetherian, the left module version of (2) implies that A

is a finitely generated left A(n)-module. Hence if N is a finite dimensional right
A(n)-module, N ⊗A(n) A is a finite dimensional A-module. Thus f∗ sends finite
dimensional right A(n)-modules to finite dimensional right A-modules. Since f∗ is
a left adjoint, it commutes with direct limits. The result follows.

(4) Because A is left noetherian, we may invoke (3). The existence of such g∗

now exists by the universal property of the quotient functor π.
(5) First we show that it suffices to prove that f ! send finite dimensional A(n)-

modules to finite dimensional A-modules. To this end, let N ∈ FdimA(n) and
write N = lim−→Nλ as a direct limit of finite dimensional modules. Recall that
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f !N = Hom
A(n)(M,N), where

M =
⊕
p∈Z

A(p)(n).

By the noetherian hypothesis, A(p)(n) is a finitely generated, and hence finitely pre-
sented, right A(n)-module, so HomGrA(n)(A(p)(n),−) commutes with direct limits.
It follows that

f !(lim−→Nλ) =
⊕
p

HomGrA(n)(A(p)(n), lim−→Nλ)

=
⊕
p

lim−→HomGrA(n)(A(p)(n), Nλ)

= lim−→
⊕
p

HomGrA(n)(A(p)(n), Nλ)

= lim−→ f !(Nλ).

Hence, if each f !(Nλ) is finite dimensional, f !N is a direct limit of finite dimensional
modules.

Now we show that f !N is finite dimensional when N is a finite dimensional
graded right A(n)-module. It suffices to show that (f !N)−p, which is equal to
HomGrA(n)(A(p)(n), N), is zero for almost all p and is finite dimensional for all p.

By the noetherian hypothesis, A(p)(n) is a finitely generated right A(n)-module,
so HomGrA(n)(A(p)(n), N) has finite dimension.

We now show that HomGrA(n)(A(p)(n), N) is zero if |p| is sufficiently large. Fix
p. For every integer j we have

A(p+ nj)(n) ∼= A(p)(n)(j),

so

HomGrA(n)(A(p+ nj)(n), N) ∼= HomGrA(n)(A(p)(n), N(−j)).

Since A(p)(n) is finitely generated andN is finite dimensional, when |j| is sufficiently
large HomGrA(n)(A(p)(n), N(−j)) is zero. Hence HomGrA(n)(A(p)(n), N) is zero for
|p| sufficiently large. This completes the proof that f ! sends finite dimensional
modules to finite dimensional modules.

(6) follows from (5) in the same way that (4) follows fom (3). �

Proof of Theorem 4.1. By Lemma 4.3 there are functors g∗ and g∗ between the
categories Mod ProjncA

(n) = TailsA(n) and Mod ProjncA = TailsA satisfying

g∗π = π′f∗, g∗π
′ = πf∗, g!π = π′f !.

Applying Lemma 3.1 to f∗, we see that g∗ has πf∗ω′ as a right adjoint. But
πf∗ω

′ = g∗π
′ω′ = g∗, so g∗ is a right adjoint to g∗. We have already remarked that

g∗ is exact because f∗ is. Furthermore,

id ∼= πω ∼= πf∗f
∗ω = g∗π

′f∗ω = g∗g
∗πω ∼= g∗g

∗.

Since f∗A(n) = A, g∗OProjnc A
(n) = OProjnc A.

Now suppose that A is also right noetherian. Then g∗ has a right adjoint g! by
Lemma 4.3 and g!π = π′f !. This completes the proof of Theorem 4.1. �
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In the next result ProjA is the usual commutative scheme viewed as a non-
commutative space with module category Qcoh(ProjA).

Corollary 4.4. If A is a finitely generated commutative connected graded k-algebra,
there is a map g : ProjncA→ ProjA. Furthermore, g∗ has a right adjoint g!.

Proof. For some sufficiently large n, A(n) is generated in degree one; so

TailsA(n) ∼= Qcoh ProjA(n) = Qcoh ProjA.

Hence ProjncA(n) ∼= ProjA. Therefore Theorem 4.1 gives the result. �
Remarks. 1. Suppose that A is both left and right noetherian, as in Theorem 4.1.
Since g∗ has both a left and a right adjoint, it is exact; its right adjoint g! therefore
preserves injectives. Hence there is a convergent spectral sequence

ExtpProjnc A
(M,Rqg!N)⇒ Extp+q

Projnc A
(n)(g∗M,N)

for M and N modules over ProjncA and ProjncA(n) respectively.

2. If J is a two-sided ideal of A, then the natural map A → A/J induces an
isomorphism A(n)/J (n) → (A/J)(n), so there is a commutative diagram

ProjncA/J
i−−−−→ ProjncAy yg

ProjncA(n)/J (n) −−−−→ ProjncA(n)

where the horizontal maps are the natural closed immersions.
If A is prime, right noetherian, we define

Fractgr A := {ab−1 | a, b ∈ A are homogeneous and b is regular}.
Proposition 4.5. Let A be a right noetherian, locally finite, N-graded k-algebra.
Suppose that A is prime and Fractgr A contains a copy of A(n) for all n ∈ Z. Then

(1) ProjncA and ProjncA
(n) are integral spaces in the sense of [10], and

(2) g : ProjncA→ ProjncA(n) is a birational isomorphism in the sense that it
induces an isomorphism between the function fields.

Proof. That ProjncA is an integral space is proved in [10, Th. 4.5]. It is also
shown there that the function field of ProjncA is isomorphic to (Fractgr A)0. It is
clear that (Fractgr A(n))0 ⊂ (Fractgr A)0, and the reverse inclusion follows from the
observation that ab−1 = abn−1b−n. �
Remarks. 1. If A is prime noetherian and has a regular element of degree d for all
d� 0, then Fractgr A contains a copy of A(n) for all n ∈ Z, so the previous result
applies.

2. If z is a normal regular element, then the complement in ProjncA to the zero
locus of z is the open subspace U := ProjncA[z−1]. Now ModU is equivalent to
GrModA[z−1]. If d is the smallest positive integer such that A[z−1] has a unit of
degree d, then U is an affine space with coordinate ring

R0 R1 · · · Rd−1

R−1 R0 · · · Rd−2

...
...

R−d+1 R−d+2 · · · R0

 ,
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where R = A[z−1]. The reason for this is that
⊕d−1

i=0 A[z−1](i) is a generator in
GrModA[z−1] and the tiled matrix ring is the endomorphism of this generator.

3. In the situation of Proposition 4.5, if s and t are homogeneous regular elements
of relatively prime degrees in A, and st is normal, meaning that stA = Ast, then
A[(st)−1] has a unit of degree one; so, if U is the open complement to the zero locus
of st in ProjncA, then U is the affine space with coordinate ring A[(st)−1]0. This
ring is equal to A(n)[(st)−n]0, so the open complement is isomorphic to the open
complement to the zero locus of (st)n in ProjncA(n).

4. If Fractgr A fails to contain a copy of every A(n), the map ProjncA →
ProjncA

(n) need not be a birational isomorphism. For example, take A = k[x] with
deg x = 2.

Example 4.6. If A is not generated in degree one, then g∗ need not be faithful.
Let A = k[x, z] be the polynomial ring with deg x = 1 and deg z = n ≥ 2.

The image under π of M = A/(x) is a simple module Op in ProjncA. We have
Op(1) 6= 0, but (M(1))(n) = 0, so g∗(Op(1)) = 0.

One might anticipate that g : ProjncA → ProjncA(n) is an isomorphism on
suitable open subspaces: in the previous example, g restricts to an isomorphism
from the complement to the zero locus of x in ProjncA to the complement to the
zero locus of x in ProjncA

(n). We prove a general result of this type in Proposition
4.8. First we need a lemma.

For each integer r, define

A(n)+r :=
∑
j∈Z

Anj+r .

Obviously A(n)+rA(n)+s ⊂ A(n)+r+s, so each A(n)+r is an A(n)-A(n)-bimodule, and
these bimodules depend only on r (modn). Define

Ir := A(n)+rA =
∑
j∈Z

Anj+rA

and

I :=
⋂
r∈Z

Ir = I1 ∩ I2 ∩ · · · ∩ In.

Although Ir is in general only a right ideal of A, I(n)
r is a two-sided ideal of A(n).

Since AqIr ⊂ Iq+r , I is a two-sided ideal of A.
Notice that A(n)+rA(n)−r = I

(n)
r .

Lemma 4.7. With the above notation, I2n ⊂ I(n)A.

Proof. From the containment

I2 ⊂ IrI = A(n)+rI ⊂ A(n)+rIn−r = A(n)+rA(n)+n−rA = I(n)
r A,

it follows that

I2n ⊂ I
(n)
1 I2n−2 ⊂ I

(n)
1 I

(n)
2 I2n−4 ⊂ · · · ⊂ I

(n)
1 · · · I(n)

n A.

But this last term is contained in(
I

(n)
1 ∩ · · · ∩ I(n)

n

)
A = I(n)A,

which completes the proof. �
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Proposition 4.8. With the hypotheses of Theorem 4.1, the map g restricts to an
isomorphism g : ProjncA\Z ′ → ProjncA(n)\Z, where Z ′ and Z are the zero loci of
I and I(n) respectively.

Proof. Write X ′ = ProjncA, X = ProjncA(n), U ′ = X ′\Z ′ and U = X\Z. Write
α : U → X and β : U ′ → X ′ for the inclusions. We will use Lemma 3.1 to show
that there is an isomorphism h : U ′ → U such that the diagram

U ′
β−−−−→ X ′ = ProjncA

h

y yg
U −−−−→

α
X = ProjncA

(n)

commutes.
Let T be the localizing subcategory of GrModA consisting of those modules L

such that every element of L is killed by a suitably large power of I. Let S be
the localizing subcategory of GrModA(n) consisting of those modules N such that
every element of N is killed by a suitably large power of I(n). These two localizing
subcategories contain all the finite dimensional modules. The spaces U and U ′ are
defined by

ModU := (GrModA(n))/S and ModU ′ := (GrModA)/T.

Let f∗ and f∗ be the functors defined in Proposition 4.2. We will show that
f∗(T) ⊂ S and f∗(S) ⊂ T. The first of these inclusions is obvious: if every element
of an A-module L is annihilated by a power of I, then every element of L(n) is
annihilated by a power of I(n). To show that f∗(S) ⊂ T, it suffices to show that
f∗(A(n)/I(n)) belongs to T. But f∗(A(n)/I(n)) ∼= A/I(n)A, and by Lemma 4.7,
A/I(n)A is annihilated by I2n so belongs to T.

We now use Lemma 3.1 in the context of the following diagram:

GrModA(n) f∗−−−−→ GrModA

α∗π

y yβ∗π′
ModU ModU ′.

Because f∗(S) ⊂ T, there exists a functor h∗ : ModU → ModU ′ such that h∗α∗π =
β∗π′f∗. Because f∗ is right adjoint to f∗, h∗ := α∗πf∗ω

′β∗ is right adjoint to h∗.
Thus, h∗ and h∗ define a map h : U ′ → U . Since g∗π′ = πf∗, a computation gives
α∗h∗ ∼= g∗β∗. Therefore αh = gβ.

It remains to show that h is an isomorphism.
The unit idGrModA(n) → f∗f

∗ is an isomorphism because the natural map L →
(L⊗A(n) A)(n) is an isomorphism for all L ∈ GrModA(n). Because f∗(T) ⊂ S, part
(3) of Lemma 3.1 gives h∗β∗π′ ∼= α∗πf∗. Therefore,

h∗h
∗ ∼= h∗h

∗α∗πωα∗ = h∗β
∗π′f∗ωα∗ ∼= α∗πf∗f

∗ωα∗ ∼= idU .

To show that the natural transformation h∗h∗ → idU ′ is an isomorphism, we
first consider the natural transformation f∗f∗ → idGrModA. For an A-module M
this is the multiplication map

f∗f∗M = M (n) ⊗A(n) A→M.

We claim that the kernel and cokernel of this map belong to T.
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Suppose that
∑
mi⊗ ai ∈M (n)⊗A(n) A is in the kernel. Then

∑
imiai = 0. By

taking homogeneous components we can reduce to the case where each ai belongs
to An−r +A2n−r+ · · · for some r ∈ {1, . . . , n}. Then, if b ∈ Anj+r for some j, then(∑

i

mi ⊗ ai
)
b =

∑
i

mi ⊗ aib =
∑
i

miaib⊗ 1 = 0.

Thus
(∑

imi⊗ai
)
Ir = 0. Hence the kernel is annihilated by I, so belongs to T. The

cokernel of f∗f∗M → M is M/M (n)A. If r ∈ {1, . . . , n}, then Mnj−rIr ⊂ M (n)A.
Hence I annihilates the cokernel.

Since the kernel and cokernel of f∗f∗ → id belong to T, there is an isomorphism
β∗π′f∗f∗ → β∗π′. Hence

h∗h∗ = h∗α∗πf∗ω
′β∗ ∼= β∗π′f∗f∗ω

′β∗ ∼= idU ′ .

�

In Example 4.6, I1 = (x) and I2 = A, so I = (x), whence Z ′ is the zero locus of
x. This explains why we need to remove the zero locus of x to get the isomorphism.

If A is generated in degree one, then Ir = A≥r for r ∈ {0, 1, . . . , n − 1}, so
A/Ir ∈ FdimA, whence A/I ∈ FdimA. It follows that Z and Z ′ are empty, and
therefore U = X and U ′ = X ′. We therefore recover Verevkin’s result X ∼= X ′

when A is generated in degree one over A0.

Example 4.9. Let A be a weighted polynomial ring. That is, A = k[x0, . . . , xn],
where deg xi = qi ≥ 1. Write Q = (q0, . . . , qn). Then PnQ := ProjA is called a
weighted projective space. It is isomorphic to the quotient variety Pn/µQ, where
µQ = µq0 × · · · × µqn . There is a sufficiently divisible integer d such that A(d) is
generated in degree one. Hence

PnQ = ProjA = ProjA(d) ∼= ProjncA
(d).

By Theorem 4.1, there is a map

g : ProjncA→ ProjncA
(d) ∼= PnQ.

This is an isomorphism on an open subspace by Proposition 4.8. Since A has
global homological dimension n+ 1, ProjncA has global homological dimension n.
We therefore think of ProjncA as a smooth space of dimension n and the map g as
a non-commutative resolution of PnQ. Let X ⊂ PnQ be the closed subscheme cut out
by an ideal J in A. Then there is a commutative diagram

ProjncA/J
i−−−−→ ProjncA

f

y yg
X −−−−→ PnQ

in which f is a birational isomorphism and i is a closed immersion. It can happen
that ProjncA/J is smooth even when X is singular. Thus ProjncA is a “non-
commutative resolution” of X . An interesting case to examine in some detail is
that where X is an orbifold of a Calabi-Yau three-fold.

If A = k[x] with deg x = 2, and n = 2, then ProjncA ∼= Spec k× k and ProjA ∼=
Spec k. Furthermore, Z ′ = X ′ and Z = X . This is a special case of the next result,
the truth of which was suggested by Darin Stephenson.
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Proposition 4.10. Let A be a locally finite N-graded k-algebra such that Ai = 0
whenever i 6≡ 0 (modn). Then ProjncA is isomorphic to the disjoint union of n
copies of ProjncA

(n).

Proof. Let pr : GrModA→ GrModA be the functor defined by

pr(M) =
⊕
i∈Z

Mr+in

on objects, and pr(θ) = θ|pr(M) whenever θ ∈ HomGrA(M,N). The hypothesis on
A ensures that each pr(M) is a graded A-submodule of M , so pr is indeed a functor
from GrModA to itself. It is clear that idGrModA = p0⊕ · · ·⊕ pn−1, where this direct
sum is taken in the abelian category of k-linear functors from GrModA to itself;
essentially, this is the observation that M = p0(M)⊕ · · · ⊕ pn−1(M), and that any
map θ : M → N of graded A-modules respects this decomposition. Furthermore,
each pr is idempotent and the prs are mutually orthogonal. It follows from this that
there is a decomposition of GrModA as a product of categories, each component
being the full subcategory on which pr is the identity.

It is clear that the shift functor (1) cyclicly permutes these subcategories, so
they are all equivalent to one another and (n) is an autoequivalence of each compo-
nent. However, any one of these categories together with its autoequivalence (n) is
equivalent to GrModA(n) with its autoequivalence (1). Thus GrModA is equivalent
to the product of n copies of GrModA(n).

Finally, this decomposition descends to the Tails categories. �

5. An Ore extension and an example

The morphism

p : Pn\{(0, . . . , 0, 1)} → Pn−1,

(α0, . . . , αn) 7→ (α0, . . . , αn−1),

is called the projection with center (0, . . . , 0, 1). This section examines a non-
commutative analogue of this basic operation.

Consider a connected graded k-algebra R and a connected graded Ore extension

S = R[t;σ, δ]

with respect to a graded automorphism σ and a graded σ-derivation δ of degree
n ≥ 1. Thus S =

⊕∞
n=0Rt

n and tr = rσt+ δ(r) for all r ∈ R. Since δ(Ri) ⊂ Ri+n
for all i, by setting deg t = n, S becomes a connected graded algebra.

One expects that the inclusion map R→ S induces a map Projnc S → ProjncR.
Indeed, the projection map above can be obtained as a special case of this.

Let m denote the augmentation ideal of R. Since δ(m) ⊂ m, mS is a two-sided
ideal of S. Furthermore, S/mS ∼= k[t] as graded rings.

Proposition 5.1. With the above notation, let Z denote the zero locus of mS in
Projnc S.

(1) Z ∼= Spec k×n.
(2) There is an affine map g : Projnc S\Z → ProjncR.

Proof. (2) The existence of g is a special case of Theorem 3.3. That theorem applies
because Sm ⊂ mS.
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(1) The quotient ring S/mS is isomorphic to the polynomial ring k[t] with deg t =
n, so this follows from Proposition 4.10. �

We think of Projnc S as a “cone over ProjncR with vertex Z”. It would be
interesting to describe the “fibers” of the map g.

When deg t > 1, the Ore extension S = R[t;σ, δ] is not generated by its elements
of degree one. This sometimes causes technical problems; however, if R is generated
in degree one, then the nth Veronese S(n) is generated in degree one. We can then
combine Theorems 3.3 and 4.1 to analyze the space with homogeneous coordinate
ring S as follows.

Proposition 5.2. The inclusion of the n-Veronese subalgebras of S and S/mS gives
a commutative diagram of rings and an induced commutative diagram of spaces as
in the following diagrams:

k[t](n) −−−−→ k[t] = S/Smx x
S(n) −−−−→ Sx x
R(n) −−−−→ R

Spec k ∼= v ←−−−− Z ′ ∼= Spec k×ny y
Projnc S

(n) g←−−−− Projnc Sx x
Projnc S

(n)\{v} ←−−−− Projnc S\Z ′

α

y yβ
ProjncR

(n) ←−−−− ProjncR

An application. In [11], a family of three-dimensional Artin-Schelter regular alge-
bras A is constructed and studied. Although the algebraic properties of A are quite
well understood, our understanding of the corresponding geometric object ProjncA
is rudimentary. The algebras are of the form A = R[t;σ, δ] with deg t = n and R
a two-dimensional Artin-Schelter regular algebra generated in degree one. It is
well-known that R and its Veronese subalgebras are (not necessarily commutative)
homogeneous coordinate rings of P1. By Proposition 5.2, there is a commutative
diagram of spaces and maps

v = Spec k ←−−−− Z ′ ∼= Spec k×ny y
ProjncA(n) g←−−−− ProjncAx x

ProjncA
(n)\{v} g←−−−− ProjncA\Z ′

α

y yβ
P1

∼=←−−−− P1.

(5-1)
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