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1. INTRODUCTION 

Let U denote the enveloping algebra of the simple Lie algebra ~42, C). In 
this paper it is shown that the Krull dimension of U (denoted ] U]) is two. 

If U(g) is the enveloping algebra of a finite-dimensional solvable Lie 
algebra g then it is straightforward to show that ) U(g)] = dim g [5, 3.8.111. 
The problem as to the Krull dimension of U was first mentioned by Gabriel 
and Nouazt [9] - they show that CJ has a chain of prime ideals of length 
two, and none of length greater than two. From this they conclude that the 
Krull dimension of U is two, although the correct conclusion is only that 
] Uj > 2. Subsequent to [9], both Arnal and Pinczon [l] and Roos [lo] 
established that if R were a non-artinian simple primitive factor ring of U 
then ] R I= 1. More recently the author [ 111 proved that if R were a non- 
artinian primitive factor ring of U which was not simple then again IR ) = 1. 
The result in the present paper implies those in [ 1, 10, 111. 

The fundamental tool in the proof that (Ul = 2 is Gelfand-Kirillov 
dimension (GK-dimension). The proof is in two parts. In Section 2 a number 
of preliminary results (already known) concerning GK-dimension are 
recalled. In particular, Lemma 2.3 provides the basic connection between 
GK-dimension and Krull dimension. The more detailed analysis of U is 
carried out in Section 3. The crucial result is that any finitely generated U 
module of Krull dimension 1 has GK-dimension 2 - the result then quickly 
follows from Lemma 2.3. 

The author would like to thank J. C. McConnell both for bringing this 
problem to his attention, and for many helpful conversations. 
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2. GELFAND-KIRILLOV DIMENSION 

For the basic definitions and properties concerning GK-dimension the 
reader is referred to [3, 81. We present here only those properties which are 
essential for our purposes. For the rest of Section 2 let R denote a factor ring 
of the enveloping algebra of a finite dimensional Lie algebra. 

As in [8], given a finitely generated R-module M (all modules will be left 
modules), we can associate a polynomial q(M) (the Hilbert-Samuel 
polynomial) with M such that the degree of q is precisely the GK-dimension 
of it4 (denoted by GK(M)). Set e(M) to be GK(M)! x (leading coefficient of 
q(M)). Recall that e(M) is a positive integer. 

LEMMA 2.1 [8, Lemma 2.21. Let 0 -+ M, + M+ M, + 0 be an exact 
sequence offinitely generated R-modules. Then one of the following holds: 

(i) GK(M,) < GK(M) and GK(M,) = GK(M) and e(M,) = e(M); 
(ii) GK(M,) = GK(M) = GK(M,) and e(M) = e(M,) + e(M,); 
(iii) GK(M,) < GK(M) and GK(M,) = GK(M) and e(M,) = e(M). 

COROLLARY 2.2. (i) For any submodule N of a finitely generated R- 
module, M, GK(M) = max{GK(M/N), GK(N)}. (ii) If M is an R-module 
with GK(M) = d, and M = M, 3 M, 2 M, 2 . . . is a chain of submodules 
satisfying GK(Mi/Mi+ ,) = d, then the chain has at most e(M) terms. 

Proof (i) follows immediately from the lemma. By (i) and induction, 
GK(M,) = d for each i. Then (ii) follows by repeatedly applying (ii) of the 
lemma. 

The following lemma is implicit in [7, 2.21 but does not appear to have 
been stated explicitly anywhere. 

LEMMA 2.3. Suppose that for all finitely generated R-modules M’ with 
IM’ I= a that GK(M’) > a + r ( a, r E IN). Let M be a finitely generated R- 
module with 1 MI > a. Then GK(M) > IMJ + r. 

Proof: By induction on /MI. It is true by the hypothesis when /MI = a. 
Suppose the result is true for modules with Krull dimension strictly less than 
/3, and let [MI = p. Then there exists a chain M = M, 2 M, I> M, .. . of 
submodules such that IM,/M,+ I I = p - 1 for i = 0, 1, 2,... . By the induction 
hypothesis, GK(M,/M,+ i) > j? - 1 + r. It follows from Corollary 2.2 that 
GK(M) > B - 1 + r; that is GK(M) >/3 + r. 

Two interesting consequences of this lemma are worth mentioning: 
(1) [7, 2.21. B ernstein [2] has shown for the Weyl algebra A, that any 

simple An-module has GK-dimension at least n. So applying the lemma with 
a = 0, r = n it follows in particular that IA n ] < n (because GK(A J = 2n). 
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(2) If R is a simple non-artinian factor ring of an enveloping algebra 
with GK(R) = 2, then ]R ] = 1. To see this let M be a simple R-module. Then 
M is not finite dimensional (otherwise R itself is finite dimensional and then 
GK(R) = 0), so GK(M) > 1. Hence the lemma implies, with a = 0, r = 1, 
(R ] < 1. In particular this argument gives a brief proof of the fact that the 
simple primitive factor rings of U which are not artinian have Krull 
dimension 1 - see [1, lo]. 

An unpublished result of the author actually shows that such a ring R 
(i.e., a factor of an enveloping algebra), if it is primitive, cannot have GK- 
dimension 1. 

Finally we give a particularly easy lemma which we will need. 

LEMMA 2.4. Let I be a left ideal of R, and let S be a subring of R such 
that S is a finitely generated algebra over Cc, and such that In S = 0. Then 
GK(R/I) > GK(S). 

Proof. Let V 2 Cc be a finite-dimensional generating subspace of S, and 
let WZ V be a finite-dimensional generating subspace of R. Then 

GK(R/I) = liy+s,“p 
log dim((1+ W”)/I) 

log n 

> lim sup log dim(P + VW 
/ n--r03 log n 

but as V” g S and In S = 0, dim((1 + V”)/I) = dim V”. So 

GK(R/I) > liy sop 
log dim V” 

log n 
= GK(S). 

3. MAIN RESULT 

We begin with some notation and elementary facts about sl(2, Cc). More 
detail may be found in Dixmier [4]. We take as a basis for sl(2, C) the 
elements e, f, h subject to the relations 

[e, f I = k [h, e] = 2e, [h,f I = -W 

The element Q = 4ef + h* - 2h = 4fe + h* + 2h is central in U. Given n E N, 
U has a unique finite-dimensional simple module of dimension (n + 1). This 
module is annihilated by the central element Q - n(n + 2). 

Let n E IN. The simple module of dimension (n + 1) may be thought of as 

481/71/l-13 
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a C-vector space with basis 1, f, f ‘,..., f” where the action of sl(2, C) on 
these basis elements is given as follows: 

e . j-j =j(, -j + l)fj-1 with e. l=O; 
f .fj=fj+l with f.f”=O; 

h *p = (n - 2j)fj. 

This may be deduced from (for example) [5, 7.2.71. 

LEMMA 3.1. Let U/J be an artinian U-module such that each 
composition factor is isomorphic to the same jkite-dimensional simple 
module S, say. Then U/J is of length at most dim,S. 

Proof. Let P = arm(S). Then U/P is simple artinian with simple module 
S, so U/P is of length at most dim,S. Because ~42, C) is semi-simple and 
U/J is finite dimensional, U/J splits as a sum of simple modules each of 
which is isomorphic to S by hypothesis. Thus U/J z SC”) for some n E N, 
and consequently P 9 (U/J) = 0. That is, P c J, and the conclusion follows. 

LEMMA 3.2. Let M be a finitely generated U-module of Krull 
dimension 1. Then GK(M) > 2. 

Proof. By [6, Chap. 21 M has a l-critical factor module (i.e., a factor 
module of Krull dimension 1, any proper factor of which is artinian), and 
now by Corollary 2.2(i) it is enough to prove the result when A4 is l-critical. 
Suppose M is l-critical. If there exists an infinite chain M = M, 3 M, 2 ..a 
of non-zero submodules such that each Mi/Mi+ 1 is infinite dimensional (thus 
of GK-dimension at least 1) then GK(M) > 2 by Corollary 2.2(ii) and we are 
finished. Suppose this is not the case. Then there exists a non-zero 
submodule M’ of M such that every proper factor module of M’ is finite 
dimensional. Furthermore M’ may be chosen cyclic, and it is enough to 
prove that GK(M’) > 2 in order for the lemma to hold. This is what will be 
proved. Let Z be a left ideal such that U/Z is l-critical and every proper 
factor of U/Z is finite dimensional. 

We show first that U/Z has simple factor modules of arbitrarily large finite 
dimension. Suppose, to the contrary, that there is n E [N such that every 
simple module of U/Z has dimension < n. There are of course (up to 
isomorphism) only finitely many simple modules of dimension < n. Pick a 
chain U=Z,?Z,?Z,?... I> Z of left ideals such that each factor Z//Zj+ 1 is 
simple. It follows that for some sufficiently largej, the composition series for 
ulzj t 1 contains at least (n + 1) distinct copies of the same simple module, S, 
say. Now the fact that cCJ/Z~,~ is semi-simple (being finite dimensional) 
implies the existence of some left ideal J 1 Zj+ I such that U/J is of length at 
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least (n + 1) and each simple module appearing in the composition series for 
U/J is isomorphic to S. This contradicts Lemma 3.1 as dim, S & n. Thus, 
the claim holds. 

We will now show that either In C [e, Q] = 0 or In Cc [f, Q] = 0, whence 
the result will follow by Lemma 2.4. Suppose to the contrary that there are 
non-zero elements p1 =Pl(e, Q> E In% Ql and p2 =PA.L Q> E 
In C [f, Q]. Let n, denote the degree of p, as a polynomial in e, and let n2 
denote the degree ofp, as a polynomial inf. It is easy to see that there exists 
an integer m, such that if n EN and n > m then p,(e, n(n + 2)) and 
pz(f, n(n + 2)) have degree n, and nz, respectively. Let K be a maximal left 
ideal of U such that I G K and dim,(U/K) > m. Put n t 1 = dim&/K). 
Now, by the comments at the beginning of Section 3, Q - n(n t 2) 
annihilates the simple module U/K, and so Q - n(n + 2) E K. Because p,, 
p2 E I it follows that both q1 =pl(e, n(n $ 2)) and q2 =p,(f, n(n + 2)) are 
elements of K, and non-zero. Looking‘at U/K as C @ CfO .e. 0 Cf “, there 
is a non-zero element (I E U/K, a = a,fS + .a. + a,f’ with s < t, a, # 0, 
a, # 0 and K = arm(a). Consequently, q1 . a = q2 . a = 0. By considering the 
lowest degree term in q2 - u it is clear that s + deg q2 > n t 1. By considering 
the highest degree term in q1 . a it is clear that t < deg q,. Hence 

deg q, t deg q2 > t-s t (n t 1) > II t 1. 

But deg q1 t deg q2 = n 1 t n, , and so n, t n2 > n t 1. But n, and n, are 
fixed while II can be arbitrarily large - this contradiction completes the 
proof of the lemma. 

THEOREM 3.3. The Krull dimension of U(sZ(2)) is two. 

Proof. The result of Nouaze-Gabriel shows that ] UI > 2, and the reverse 
inequality is obtained from Lemma 2.3 and Lemma 3.2 (because 
GK(U) = 3). 
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