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Abstract
Let g be a semi-simple complex Lie algebra with enveloping algebra E/(g). I t is

shown that the Krull dimension of t/(g) is bounded above by dimg — r, where r is
half the minimal dimension of a non-trivial G orbit in g* (G is the adjoint group of g).

1. Introduction
1-1. Let g be a finite-dimensional semi-simple Lie algebra over the field k = C.

Let U = C/(g) denote the enveloping algebra of g. This paper is motivated by the
problem of determining the Krull dimension (in the sense of Rentschler and Gabriel (16))
of U. The problem is not solved but progress is made. Obvious lower and upper bounds
for the Krull dimension are dim b (b is a Borel sub-algebra of g) and dim g; it is con-
jectured (in (15) and (20)) that the correct value for K - dim E/(g) is dim b. The problem
is to obtain a better upper bound. We are able to obtain an upper bound on the Krull
dimension of any factor ring of U which improves on the previously known bound.
For example, we establish an upper bound of 6 for K — dim U(sl(3)) compared with
the previous bound of 8.

1-2. The adjoint group G of g acts on the dual space g*. For a;eg* let dimOx
denote the dimension of the orbit G • x; put r = \ inf (dim G-x\xs g\{0}}. That is, 2r
is the minimal dimension of a non-trivial G-orbit in g*.

1-3. The techniques employed depend on finding the relationship between the
Gelfand-Kirillov dimension (denoted GK — dim or GK) and the Krull dimension of
certain [/-modules. Specifically, we prove that

(a) If V is an irreducible representation of g then either V is finite-dimensional
(that is, GK(V) = 0) or GK(V) 2 r;

(6) If V is a finitely generated non-artinian [/-module (that is, K — dim V ^ 1)
then GK(V) Ssr+1.

The result (6) enables us to show that, if R is an infinite-dimensional (i-vector space)
factor ring of U, then K-dimR < GK(R) — r. In particular K-dim U < dimg — r.

1-4. The results 1-3 (a) and (b) are similar to Bernstein's theorem (1), that a simple
module over the nth Weyl algebra An has GK-dim at least n. From this fact it is
possible to determine the Krull dimension of An ((9) or (18)). The same idea is used in
this paper to get from results about CrZ-dimension to results about Krull dimension.
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1-5. In an earlier paper (18) it was established that K — dim U(sl(2)) = 2. Subse-

quently, Levasseur (15), answering a question in the author's thesis (20), established
that, when g is a sum of n copies of sl(2) the Krull dimension of U(&) is 2n. These are
the only semi-simple Lie algebras for which the Krull dimension of the enveloping
algebra is known.

The result that K dim ?7(g) ^ dim g — r appeared in the author's thesis, and has
been obtained independently by Levasseur (14) using different techniques to those
employed here. Gabber (6) has also pointed out that this upper bound follows from (5).

1-6. When g is simple, the integer r defined in § 1-2 has another interpretation
which will be more useful to us; r is the largest integer such that g contains a Heisenberg
subalgebra of dimension 2r — 1, and as such its values have been tabulated by Joseph
(10). He uses the notation &(g) for r. If g = gx ® ... © gn is a decomposition of g into
simple components then r(g) = mint(gi). So that the reader can easily read off the
upper bound which we obtain, we give for each simple Lie algebra the values of r.
This table (Table 1) is taken from (10), with the two corrections noted in (11).

Table 1

Cartan label
An
Bn

cnDn
Et
E1

Eg
Ft

» 2

dim g
(n+ I)2— 1

2n8 + «
2n8+n
2n2 — n

78
133
248

52
14

dim b
ln(n + 3)

n(n+l)
nz

42
70

128
28
8

r
n

2n-2
n

2n-3
11
17
29

8
3

dim g — r
n' + n

2 « 8 - M + 2
2na

2wJ-3n + 3
67

116
219

44
11

1-7. The author is grateful to his supervisor, J. C. McConnell, for bringing these
questions to his attention, and more especially for the patience and insight he has
shown in the course of many helpful conversations.

2. Preliminaries and notation
2-1. For a Cartan sub-algebra h of g, fix a root system <1>, with O+ the set of positive

roots; let S be the half-sum of positive roots. For each root a let Xa denote the element
of the Chevalley basis for g of weight a. For A eh*, M(\) is the Verma module of
highest weight A — S, L(\) is the unique simple factor module of M(\), X\ is the central
character of M(A). The Casimir central element of C/(g) is denoted by Q. The set of
strongly dominant weights is denoted by A++.

2-2. We require a number of results on Gelfand-Kirillov dimension for factor rings
of enveloping algebras. We briefly list some of those we require; for details we refer
the reader to (18), (19) and (20).

If R is a factor ring of an enveloping algebra and M is a finitely generated .R-module,
then q(M) denotes the Hilbert polynomial, d(M) the Gelfand-Kirillov dimension and
e(M) = d(M)! x (leading coefficient of q(M)). When we want to be careful about the
ring over which the module is defined we shall use the suffix R, viz. qR, dR, eR. Denote
the annihilator of an .R-module by ann M.
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LEMMA 2.2.1 Suppose that every finitely generated R-module M' with K — dim if'

= a. satisfies d(M') ^ a + r(a,reN). Let M be a finitely generated R-module with K-
dimilf ^ a. Thend(M) > K - dim M + r.

LEMMA 2.2.2 If M is a finitely generated R-module with d(M) = d, and M = Mo z>
M1^ ...is a chain of submodules satisfying d(Mi/Mi+x) = d, then the chain has at most
e(M) terms.

LEMMA 2.2.3 Let R have a subring S which is also a factor of an enveloping algebra.
Let V and W be finite-dimensional generating subspaces of R and S respectively such that
W <=• V1 and the filtrations generated by the powers of W and V give commutative asso-
ciated graded algebras. Let M be a finitely generated R-module and N a finitely generated
S-submodule of M. Then

(i) d^(JV) <S dR{M).
(ii) Ifd = ds(N) = dR(M) then es{N) < tdeR(M).

LEMMA 2.2.4 ((19), %%• I). Let R be a domain and a factor ofthe enveloping algebra oja
finite-dimensional Lie algebra over k. Let E denote the centre of R, K the quotient field of
E, and RE the localisation of R at E. Suppose that RE ~ Am(K), the rath Weyl algebra
over K. If M is an R-module satisfying d(M) < m + tr • degfc K then E n aim M 4= 0.

2-3. The reader is referred to (7) for basic results on Krull dimension. We remind
those unfamiliar with Krull dimension that a 1-critical module is a non-artinian
module, every proper factor of which is artinian.

3. Simple Lie algebras
3-1. Throughout this section g will denote a simple Lie algebra. We will establish

the main results of the paper for g simple in this section, and in Section 4 deal with
g semi-simple.

The starting-point is to note that, given a long root /?, then there is a Heisenberg
sub-algebra a of g such that dim a = 2r— 1 and the centre of a is generated by X^
((11), corollary 2-3).

3-2. LEMMA. Let I be a left ideal of U, and let ft be a long root.
(1) Ifd(U/I) < r then I n k[Xfl] * 0.
(2) Ifd(U/I) < r then I n h[Xp, Cl] * 0.
Proof. Pick a Heisenberg sub-algebra a of g as in §31.
(1) Put R = U(a) a U. R may be localized at its central sub-algebra k[Xfi], the

localization being isomorphic to the Weyl algebra Ar_x(lc(Xp)). Looking at U/I as an
.R-module it has a submodule isomorphic to R/J where J = R(\I. As d(U/I) < r, so
too is dB(R/J) < r. Hence by Lemma 2-2-4 a,nnR(R/J) n k[Xfi] =# 0; it follows that
/ n k[Xfi] * 0.

(2) Put R = t7(a)[Q]; R may be localized at its central sub-algebra k[Xp, ii]
(which is of transcendence degree 2), the localized ring being isomorphic to
^4r_i(^(^/j, O)). Now apply the same analysis as used for the first part of the lemma.

3-3. Put A = U(sl(2, k)) and take as a basis for sl(2, k) the elements e, / , h subject to
the relations [e,/] = h, [h,e] = 2e, [h,f] = — 2/.Put^ = 4e/+ h2 -2htheCasimir central
element of A. Let / be a left ideal of A such that / n k[e] 4= 0 and / n K[f] 4= 0. It is
implicit in ((17), corollaire 1) that, if/ contains the ideal (q — A) for some scalar \ek,
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then Afl is finite-dimensional. This result holds for any field k and is easiest to see by
passing to the associated graded algebra of A/{q — X)> which is isomorphic to the
commutative ring k[X, Y, Z]/(±X Y-Z*); the hypothesis on / forces (gr/) n k[X] 4= 0
and (gr/) n k[Y] 4= 0 (where gr/ is the associated graded ideal of If(q — X)) and so
grA/gc I is finite-dimensional, hence so is A/I.

Our immediate goal is to prove the following strengthening of Roos' result.
LEMMA. Let I be a left ideal of A such that I n k[e] 4= 0 and I n k[f] 4= 0. Then A/I

is finite-dimensional.

Proof. It can be seen by passing to the associated graded algebra, gr.4, that
d(grA/grI) < 1, hence d(A/I) < 1. By ((18), lemma 3-2), A/I is artinian. We shall
prove by induction on the length of Afl that every composition factor of A/I is
finite-dimensional. If A/I is simple then (j} — A) c / for some scalar A (because q is
central, q acts on A/I as an A -module endomorphism, and so, by Quillen's Lemma,
as a scalar). It follows from the comments prior to the Lemma that A /I is finite-dimen-
sional in this case. Suppose now that A /I is not simple, and let J be a left ideal contain-
ing / such that J/I is simple. The induction hypothesis implies that A/J is finite-
dimensional. Pick ftek such that (q—/i)jczl, and let 6 denote the A -module endo-
morphism of A/I induced by multiplication by q—/i. Thus J/I is in the kernel of d,
and so the image of d is a homomorphic image of A/J (certainly finite-dimensional).
If 6(A/I) = 0 then q—/iel and A/I is finite-dimensional by Roos. If 6{A/I) 4= 0
then there is a left ideal J' properly containing / such that J'/I is finite-dimensional
(J'/I = 6(A/I)). The induction hypothesis applied to A/J' shows that A/J' is finite-
dimensional. Hence A/I is finite-dimensional.

3-4. THEOREM. Let V be an irreducible representation of g. Then either V is finite-
dimensional or d(V) ~& r.

Proof. Let / be a left ideal of U with V = U/I and d(UfI) < r. We show that V
is finite-dimensional. By Lemma 3-2, it follows that / n k[Xp] 4= 0 for every long root
/?. In particular, if fi is long then / n k[Xp] 4= 0 and / n k[X_p] 4= 0, so by Lemma 3-3
applied to the sub-algebra of g spanned by Xp, X_p, Up it follows that / n k[Hp] 4= 0.
As the set {Hp \ fl is long} spans h it follows that / n k[H] 4= 0 for every non-zero
Heh.

However, the Cartan sub-algebra h was arbitrary, and so the same argument shows
that if h' is another Cartan sub-algebra of g and 0 4= H' e h' then / n k[H'] + 0. In
particular, if a is any root and a denotes the automorphism exp (adXa) of g then
Ha - 2Xa e cr(h), and so / n k[Ha - 2XJ 4= 0. This, together with the fact that / n k[Ha]
4= 0, implies that/ n &[-£J 4= 0. Hence for every root a, / n &[#J 4= 0and/n &[-£J 4= 0.
Because g is spanned by the Ha and Xa (by passing to the associated graded algebra
of U) it follows that U/I is finite-dimensional.

Since establishing this theorem it has been brought to our attention that the result
has been established more generally by Gabber. He has proved that, for any algebraic
g and any finitely generated !7(g)-module M, d(M) ^ |d(C/(g)/annilf) (for a proof
see (13).) That his result implies ours is clear because any primitive factor ring of f7(g)
which is not finite-dimensional has Gelfand-Kirillov dimension at least 2r.

3-5. We now proceed to establish the second of our main results in this section:
namely, if M is a finitely generated non-artinian [/-module, then d{M) ̂  r + 1. This
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result forms Theorem 3-9 and as explained there it is necessary to examine a 1-critical
cyclic [/-module, U/I say, with the property that every proper factor module of U/I
is finite-dimensional. So let / denote such a left ideal; the next few lemmas give some
information about U/I which will be required in the proof of Theorem 3-9.

3-6. LEMMA. Put A = {A e A++ | i(A + 8) is a factor of U/I}. The set A is infinite.

Proof. Because g is simple every proper factor of U/I, being finite-dimensional,
splits into a direct sum of simple modules. Suppose A were finite. Then given any
infinite chain of submodules U/I = MQ^=> Mx^> ... there exists A e A such that Mj/Mj+l
is isomorphic to £(A + 8) for infinitely many j . By using the semi-simplicity of the
proper factors of U/I, given any integer n there is a chain of submodules U/I = Mo =>
Mx... => Mn, such that MJM^ ~ L{\ + 8) for all j . But if P = a,nnL(\ + 8) then
P(M0/Mn) = 0 as M0/Mn is semi-simple, and it follows that dim MJMn ^ dim U/P
= (dim L(X + 8))2, as U/P is simple artinian with simple module L(A + 8). However, n
was arbitrary, so dim M0/Mn may be made arbitrarily large. This contradiction shows
that A must be infinite.

3-7. LEMMA. Let A c A++ be infinite and let Q be the Casimir central element of U.
Then {X\(&) | AeA} is infinite.

Proof. After ((8), p. 143) jfo(Q) = (A, A) + 2(A,S). Now (A, A) ^ 0 for any Xeh%
and it is easy to see that (A, 8) becomes arbitrarily large as A runs through the infinite
set A <= A++ (this is easiest to see by writing each A e A in terms of the fundamental
dominant weights). The result is immediate.

3-8. The reader will notice that the previous two lemmas together imply that
I n k[Q] = 0 (or, equivalently, that there are infinitely many non-isomorphic simple
factor modules of U/I).

LEMMA. Let A<=A++ be infinite. Then there exists a long root /?e<I>+ such that
{(A, yff) | A e A} is unbounded.

Proof. Given any integer N there certainly exists a e <!>+ and some A e A such that
{A, a) > 2N (this is clear when the elements of A are expressed as linear combinations
of the fundamental dominant weights). If a is short there exists ye<D+ such that
a + y = /ff is a long root. Now <A,/?> = ((A,a) + (A,y))/2(/?,/3) > $<\,a.) Ss N. So we
can certainly find a long root /JeO+ such that <A,/?> ^ N. Hence {<A,/?>|AeA,
fie 0+ is long} is unbounded. As O+ is a finite set the result follows.

3-9. THEOREM. Let M be a finitely generated U-module. If M is not artinian then
d{M) > r + 1 .

Proof. Suppose the result is false - that is, suppose d(M) < r.M has a factor module
which is 1-critical, and so it is enough to prove the result when M is 1-critical. Suppose
this is the case. If there exists an infinite chain M = Mo ^ Ml => ... of submodules of
M such that d^Mj/M^j) ^ r for ailj then it would follow that d(M) > r. Consequently
there is a non-zero submodule N of M such that every proper factor of N has GK-
dimension strictly less than r. Any proper factor of N is artinian, as N is 1-critical,
so by Theorem 3-4 is finite-dimensional. Furthermore, we may suppose that N is cyclic.
So M has a 1-critical submodule, U/I say, every proper factor of which is finite-
dimensional.
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Because d(U/I) < r, it follows from Lemma 3-2 that I (\k[Xfi, Q] 4= 0 for every
long root p. Set A = {AeA++ | L(A + 8) is a factor of U/I). By Lemma 3-6, A is an
infinite set, and after Lemma 3- 8 we may pick a long root /? e 4>+ such that {(A, /?> | A e A}
is unbounded. Pick 0 4= p+el n h\Xf, Q.] and 0 =j= p_sl 0 k[X_fi, fl], and put N =
max{degp+,degp_} where this degree is defined by looking at p+ and p_ as poly-
nomials in Xfl and X_fi respectively with coefficients in k[Q.]. Notice that p+ and p_
can lie in the ideals <Q —#A(Q)> for at most finitely many AeA. So by Lemma 3-7,
there is a set A' c: A such that if AeA' then p+$<.Q-Xx(&))> #_£<Q-#A(Q)> and
{<A,/?> | AeA'} is unbounded.

Let A G A' and suppose L(A + 8) ~ U/J, where J is a left ideal containing / . Let A
denote the enveloping algebra of the sl(2) sub-algebra of g generated by Xfi and X_^.
If v =t= 0 is a highest weight vector of L(A + 8), let V denote the A -submodule of L(A + 8)
generated by v. Then V is a simple A -module of dimension (A, /?> +1 (see, for example,
((2), chapter vm, 7-2)). If L is an A -submodule of U containing J such that V ~ U/L,
then it follows from the simplicity of V that V ~ A/A n L. Recall tha,tp+,p_eJ and
also (Q. — Xni&)) c J• The choice of A ensures that the elements of q+ and q_ denned
by q+ =p+(Xfi, X\{&)) *n(i 1- = P-(X-p>xAty) a r e non-zero elements of J (]k[Xfi]
and J n k[X_p] respectively. Hence q+,q_eA n L, and so there is a non-zero element
of V which is annihilated by both q+ and q_. The same argument as in ((18), lemma 3-2)
shows that deg q+ + deg q_ > (A, /?> + 1, and hence 2N ^ (A, /?> + 1. But N is fixed and
as A runs through A', <A,/?> becomes arbitrarily large - this contradiction completes
the proof.

3-10. Theorems 3-4 and 3-9 are both best possible in the sense that the bounds are
actually obtained. First, there does exist an irreducible representation, V, of g with
d(V) = r. To see this, begin with Joseph's result ((11), theorem 4-1) that there is a
primitive ideal P of U such that d(U/P) = 2r; by Duflo's theorem (4) there is a simple
module L(A) such that P = anniy(A); finally the result due to Joseph(12) that
d(L(A)) = \d(U/a,nxxL(A)) ensures that d(L{A)) = r. We explain in 3-13 why Theorem
3-9 is best possible.

3-11. COROLLARY. Let g 6e a simple Lie algebra. If R is a non-artinian factor ring
of U(&) then K - dim R < d(R) - r.

Proof. This is immediate from Theorem 3-9 and Lemma 2-2-1.

3-12. THEOREM. Let g be simple and let P be a primitive ideal of U = ?7(g), with
d( U/P) = 2r. Then K - dim (U/P) = r.

Proof. From the above Corollary, K- dim (U/P) ^ r. Let a be as in §3-1 with
centre spanned by Xp for some long root /?. If P n U(a) = 0 then we may consider C/(a)
as a sub-algebra of U/P, and, because U{a) has a commutative sub-algebra of tran-
scendence degree r, the generalization of Quillen's lemma (9) completes the proof.

Suppose then that P n U[a) 4= 0. By ((3), 4-4-1) P must have non-zero intersection
with k[Xfi], the centre of U(a). But if this is true for every long root /? then the argu-
ment of Theorem 3-4 will show that d(U/P) ~ 0. Hence the theorem.

3-13. To see that Theorem 3-9 is best possible let P be as in Theorem 312. Bearing
Lemma 2-2-1 in mind, it is clear that some non-artinian factor module M, of U/P,
satisfies d(M) ^ r + 1 (and hence d(M) = r +1).
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4. Semi-simple Lie algebras

4- 1. We now proceed to extend the results for g simple to the semi-simple case. This
is just a technicality and is essentially done in the following lemma.

We remark that for g semi-simple r = r(g) is just the minimum of r(g4) where
g = gx © .., © g^ is a decomposition of g as a direct sum of simple sub-algebras.

LEMMA. Let A and B be factor rings of enveloping algebras. Suppose that both A and
B satisfy (for some reH):

(1) If V is a simple module with d(V) < r, then V is finite-dimensional.
(2) If M is finitely generated non-artinian module, then d(M) ^ r+ 1.

Then the ring R = A ®kB has the same properties.

Proof. (1) Let Fbe a simple i?-module with dR{ V) <r. Any finitely generated A -sub-
module, N say, of F satisfies dA(N) < r (Lemma 2-3), so is finite-dimensional. Hence
F has a simple .4-submodule, 8 say. Because F is simple, F = (A ® B)S = (1 ® B)S,
and because the elements of 1 ® B commute with the elements of A ® 1, 1 ® B
acts on V as -4-endomorphisms. Hence F (as an A -module) is a sum of copies of S;
in fact F is a direct sum of copies of S. So if P = ann^ (S) then P ®B <= annK(F).
Similarly, V has a finite-dimensional simple .B-submodule, T say, and F is a direct
sum of copies of T; so if Q = annB(T) then A®QC annfi(F). Thus F becomes a
simple module over the ring R = R/(P ®B + A®Q)~ {A/P) ® (B/Q). But, A/P
and B/Q are finite-dimensional, hence so is .R and, in particular, F is finite-dimensional.

(2) It is enough to show that if M is a finitely generated 1-critical .R-module then
dR(M) ^ r + 1. So suppose that M is finitely generated, 1-critical and that dB(M) < r.
Any finitely generated .4-submodule, N, of M must have dA(N) < r, so is artinian by
the hypothesis on A. Hence M has a simple .4-submodule S. As M is 1-critical, RS
is 1-critical too. Replace M by the module RS; M still satisfies the same hypotheses,
but in addition is a direct sum of copies of 8 as an A -module (for the same reason as
in (1) above).

Suppose for the moment that S is not finite-dimensional. Then the only possibility
is that dA(8) = dR(M) = r. Now any finitely generated ^4-submodule, N, of i f is a
direct sum of copies of S and is artinian. The length of a composition series for N,
l(N), satisfies l(N) ^ eA(N) by Lemma 2-2-1. By Lemma 2-3, eA(N) is finite and we
conclude that M itself, as an A -module, has finite length. This cannot happen though,
as then M would be artinian as an i?-module. Consequently S must be finite-dimen-
sional.

A similar argument to that used above will show that M has a simple U-submodule,
T say, and replacing M = RS by RT (which is still a direct sum of copies of S), this
new M has the extra property that it is a direct sum of copies of T. Again we can
show that T is finite-dimensional. Now let P = ann^ (S), Q = annB (T), s o P ® £
+ A@Qcz anniJ(M) and M becomes a finitely generated module over the finite-
dimensional ring R/(P ®B + A®Q). This is absurd since K-dim M = 1.

4-2. THEOREM. Let g = g i© ... © g n be a decomposition of the semi-simple Lie
algebra &as a sum of simple Lie algebras.

(a) If V is an irreducible representation of g then either V is finite-dimensional or
V)>r;
(b) If M is a finitely generated non-artinian U(£)-module then d(M) > r + 1.
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Proof. This follows from the corresponding results for g simple (Theorem 3-4 and
3-9), and by repeatedly applying Lemma 4-1 to C/(g) = U^) ® ... ® U(&n).

4-3. COROLLARY (g semi-simple)
(1) If Bis a non-artinian factor ring of £7(g) then K-dim R < d(R)-r.
(2) If Pisa primitive ideal ofU = U(g) with d( U/P) = 2r then K-dim U/P = r.

Proof. Just as in 3-11 and 3-12 there is a primitive ideal P of U(g) with d(U/P)
= 2r. Let g = gx © ... © gn be a decomposition of g as a sum of simple subalgebras
with r = rfgi); pick Px a primitive ideal of J7(gx) with dfJJ^^/P^ = 2r (this we
can do by the comment in § 3-10), and for j > 1 let P} be the ideal of U(&j) generated
by g,; if P is the ideal of U(&) generated by PltPt, ...,Pn then U/P =: V(g1)/Pl ®
U(&2)/P2 ® - . ® U(£n)/Pn ~ U(^1)/P1 since CT(g,)/P, ~ ft forj > 1.

Both parts of Theorem 4-2 are best possible - the arguments are essentially the
same as for g simple (§§ 3-10 and 3-13) and the details are omitted.
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