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In 1982 Sklyanin (Funct. Anal. Appl. 16 (1982), 27-34) defined a family of graded
algebras A(E, 1), depending on an elliptic curve E and a point 7€ £ which is not
4-torsion. Basic properties of these algebras were established in Smith and Stafford
(Compositio Math. 83 (1992), 259-289) and a study of their representation theory
was begun in Levasseur and Smith (Bull. Soc. Math. France 121 (1993), 35-90). The
present paper classifies the finite dimensional simple 4-modules when t is a point
of infinite order. Sklyanin (Funct. Anal. Appl. 17 (1983), 273-284) defines for each
ke N a representation of A4 in a certain k-dimensional subspace of theta functions
of order 2(k — 1). We prove that these are irreducible representations, and that any
other simple module is obtained by twisting one of these by an automorphism of 4.
The automorphism group of A is explicitly computed. The method of proof relies
on results in Levasseur and Smith. In particular, it is proved that every finite
dimensional simple module is a quotient of a line module. An important part of the
analysis is a determination of the I-critical 4-modules, and the fact that such a
module is (equivalent to) a quotient of a line module by a shifted line module.
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INTRODUCTION

Fix ne C with Im(n)> 0, and write 4 =Z ® Zn. Let 8y, 0y, 8,4, 0,, be
Jacobi’s four theta functions associated to A, as defined in Weber’s book
[17, p. 71]. Fix te C such that t is not of order 4 in E=C/4. Whenever
{ab, ij, ki} = {00, 01, 10}, define

911(7)6[1[;(7)]2
6,-}»(1')0,(,(1') ’
and set a, =%y, A>r=0g, %3=0,. We remark that o, +a,+o;+

o, %23 =0. The 4-dimensional Sklyanin algebra is the graded algebra
A=C[x,, x;, X5, x4] defined by the six relations

a,,,,=<—1)“+b[

XX, — X;Xg = 0;(X; Xg + X, X) XoX;+ X, X0 = X; Xp — X4 X

where (i, j, k) is a cyclic permutation of (1, 2, 3).
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This two parameter family of algebras was defined and first studied
by E. K. Sklyanin in 1982 [13]. In that paper Sklyanin constructs a
2-dimensional and also a 3-dimensional simple 4-module and poses the
problem of finding all the simple A-modules. The only obvious finite
dimensional simple A-module is the rivial module A/A*, where
A* =@ ,.qA, is the augmentation ideal of A. In a subsequent paper [14]
Sklyanin defined for each ke N U {0}, an 4-module V, =03 * of dimen-
sion k + | consisting of certain theta functions (see Section 3 for the precise
definition of this module), and asked if these were all the finite dimensional
irreducible representations. The present paper shows that when 1 is of
infinite order, then each V, is irreducible, and all the finite dimensional
irreducible representations can be constructed from the V', as follows.

The automorphism group of A acts on the space of 4-modules: if V
is an A-module, and @€ Aut(4) we write V¥ for V twisted by ¢ (see
Section 2 for the definition). Our main theorem is that every non-trivial
finite dimensional simple A-module is of the form V{. Furthermore, a
precise description of Aut(A) is given: if |r| = o0, then there is an exact
sequence 1 > C* — Aut(4) » E, — | where E, denotes the points in E
with a-torsion. If AeC™, we write V* for the corresponding twisted
module; if e E, we define (in Section 2) a representative @(&) e Aut(A4),
and write V(2&+kt)= V{9 for the corresponding twisted module. Our
main result may be stated as follows (other notation will be defined later
in the introduction).

MaIN THEOREM. Suppose that |t|=oc. For each we E, and for each
ke N {0} there is a (k + 1)-dimensional simple module V(w + kt). The set
of all the non-trivial finite dimensional simple A-modules is precisely the
set of all the twisted modules V(w +kt)* where LeC>™. There are no
isomorphisms between these modules for distinct triples (w, k, A). Further-
more, each V(w+kt)* is a quotient of the line module M(p, q) for all
D, g€ E such that p+qg=w+kt.

The paper is organized as follows. Section 1 introduces notation, and
gives a brief account of the main results from [7, 16] which are required
in this paper. In particular, an embedding of E in P? is described, and basic
results on point modules and line modules are recalled. We also make use
of the main result in [5], and this is recalled. Section 2 describes all the
graded algebra automorphisms of 4. There is (with one exception} an exact
sequence | - C* — Aut(A4) — E, — 1 where C* is the “trivial” subgroup of
automorphisms, namely 2e C* acts on A4, as scalar multiplication by A"
There is a closely related linear action of E, on P? which restricts
to automorphisms of F in such a way that £ € E, acts as translation by &,
The action of Aut(A) on point modules and line modules is also described.
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Section 3 proves that each V, is a quotient of a line module (in fact ¥, is
a quotient of the line module M(p, g) whenever p+ g =kt), and that V, is
simple. Section 3 also proves that the stabiliser for the Aut(A4) action on V,
is a normal subgroup which is isomorphic to E,. Section 4 proves that
every finite dimensional simple A-module is a quotient of a line moduie,
and describes all the line modules which can possibly have such a quotient.
When 7 is of infinite order, the only line modules which can have a non-
trivial finmite dimensional simple quotient are the line modules M(p, q)
where p, g€ E satisfy p+ ¢ =w + kt with we E, and ke N U {0}. Further-
more, if p+q=w+ kt with we E, then M(p, g) has a l-parameter family
of (k+ 1)-dimensional non-trivial simple quotients, namely the twists
V(w + kt)* for e C*. The results in Section 4 give information about the
“fat points” for A. Section 5 proves that every non-trivial finite dimensional
simple A-module is of the form V. It follows that the non-trivial finite
dimensional simples are in bijection with the points of Nt up to the action
of Aut(A4). This last formulation illustrates a certain similarity to the
representation theory of gl(2, C), which is satisfying because Sklyanin’s
original paper emphasises that 4 should be viewed as a deformation/quan-
tization of the enveloping algebra U(gl(2, C)). Section 5 also classifies the
primitive ideals in 4, showing that the primitive spectrum is analogous to
that of U(gl(2, C)).

The 4-dumensional Sklyanin algebra and higher dimensional analogues
are also studied by Odesskii and Feigin in [11, 12].

1. PRELIMINARIES

Let ¥ be a 4-dimensional vector space with basis x4, x{, x,, x3. Define
A=T(V)/I to be the quotient of the tensor algebra 7(V') with defining
relations as in the Introduction. Thus 7 is generated by its six dimensional
subspace I, < V® V. The algebraic properties of A4 are intimately related
to certain subvarieties of P(V*) and P(V*)x P(F*). To define these
subvarieties, we first embed C/A in P(V'*).

Define holomorphic functions g,, on C for each abe {00, 01, 10, 11} as

follows:
=1 ab=00,11

8ul) =T 0u(1) 0(22)  where 3, ={¥ T 7 b

Define E=/(C/A) where j,: C/A— P(V*)=P’ is given by

J(2)=(£11(2), g00(2), £01(2), £10(2))
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with respect to the homogeneous coordinates x,, x,, x,, x3. Sometimes it
will be convenient to label the basis for V as X, = x4, Xgo =X, Xo1 = X3,
X o= x;. Now, we define

e():(lsos O’ O)’ el :(O, l’ Oa O)a e2=(0’ 07 19 0)’ 6’3:(0, O’ 0’ 1)
& ={e;|0<i<3}
d,={(e;,e)]0<i<3}

4.={(p,p+1)[peE}
I=4,04..

Thus 7" is the graph of the automorphism ¢ of Eu & given by a(p)=p+71
for pe E, and o(e;})=¢, for i=0, 1, 2, 3. By [16, Sects. 2, 3] the subvariety
of P(V*)xP(V*) defined by I, is ¥ (I,)=1, and by [7,1.2], I, is
precisely the subspace of V® V consisting of those forms which vanish
on /[l

It is convenient to label the points of E, as wy=0, @, =1+ in, w,=1in,
w;=1%. It is proved in [7, Sect. 3] that if p, g€ E, then the secant line /,,
passes through e; if and only if p+g=w,.

Most A-modules we consider will be finitely generated Z-graded
A-modules. f M= @ ,, M, is such an 4-module and p € Z, then the shifted
module M[ p] is defined by setting M[p],,:=M,, .. When not otherwise
specified a map : M — N between graded modules will be a graded map
of degree zero; that is y(M,,)< N, for all m.

If M is an A-module, we write E/(M)=Ext/(M, A). We define the
J-number of M to be the least j such that E/(M) #0; it is denoted by j(M).
We say that M is a Cohen-Macaulay module if E‘(M)=0 whenever
i#j(M).

If M is a finitely generated graded 4-module then the Hilbert series of
M is the formal series H,,(1)=3_, (dim M) ¢". This series is always of the
form q,,(1)(1 —1) "¢ where q,(t)eZ[t,1 "], qu(1)#0 and d€ {0, 1, 2, 3,4}.
Writing H,(t) in this form allows us to define the Gelfand-Kirillov
dimension of M to be d(M)=4d, and to define the multiplicity of M to be
e(M)=q(1). If d(M)=d, and d(M/N) < d for all non-zero submodules N,
then M is said to be d-critical.

We shall adopt the notation used in [7, 16]. Although we assume that
the reader is already familiar with those papers, we will recall those results
from [7, 16] which are relevant to the present paper.

It was proved in [16] that A is a noetherian domain, and has the same
Hilbert series as the polynomial ring in 4 variables, namely (1 —z)~*
Furthermore, 4 is a Koszul algebra of global homological dimension 4,
and is regular in the sense of Artin and Schelter [2].
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The algebra A has other excellent homological properties; indeed in this
respect it is as well-behaved as the polynomial ring. It is proved in [6] that
A is Auslander-regular, which means that if M is a finitely generated
A-module, and i>=0, then j(N)=i for every submodule N of E{(M). It is
also proved in [6] that A4 satisfies the Cohen-Macaulay property which
means that d(M)+j(M)=4 for all finitely generated A-modules M. One
useful consequence (see [7, 2.1e]) of these good homological properties is
that the socle of a graded module M, which is the trace of 4/4" in M, is
zero if and only if E*(M)=0, or equivalently, if and only if the projective
dimension of M is strictly less than 4.

In [7] a study of graded 4-modules was begun. Attention was focused
on the point, line and plane modules, these being the cyclic modules with
Hilbert series (1 — )" where n=1, 2, 3 respectively. It was already proved
in [16] that the point modules are in bijection with the points of £u &.
If pe Eu %, we write M(p) for the corresponding point module. One of
the main results in [7] is that the line modules are in bijection with the set
of lines in P* which are secant lines of E. If p, g € E, the secant line through
p and g is denoted by /,,, and M(p, q) denotes the corresponding line
module. There is a short exact sequence 0> M(p+1,q—1t)[—1]—
M(p,q)—» M(p)—0.1f p+g¢ E,, then M(p) and M(q) are the only point
modules which are quotients of M(p, ¢). However, if p+ g = w, then there
is a short exact sequence 0 > M(p—1,q—1)[—1] - M(p, q) > M(e;) = 0.
Point, line and plane modules can also be characterized by their homologi-
cal properties. They are precisely the Cohen-Macaulay modules of multi-
plicity 1, and projective dimension 3, 2, 1 respectively.

In [13] Sklyanin found two central elements in A,, namely

I+ 1 —o,
Q= —xj+xi+x3+x; and .szxf+(1_a2>x§+<—l—+—a3 x3.

If |t|=ov then the center of A4 is the polynomial ring C[Q,, 2,] by
[7,6.12]. We write Z, for the two dimensional space spanned by Q, and
Q,. There is a surjective map Q: E— P(Z,) with fibers {z, —z—2t},
having the property that Q(p+ g) annihilates M(p, ¢). Furthermore, if
|T] = oc then Ann M(p, g)=<Q(p+q)>.

Define B:=A/{Z,>=A/AQ + AQ,. We may write B= T(V)/J where J
is an ideal generated by its degree 2 component, namely J,. It is proved in
(167 that ¥ (J,)=4, and in [7] that J, is precisely the set of bilinear
functions vanishing on 4,. In [16] it is proved that if p € E, then the point
module M(p) is annihilated by Z,, so is a B-module. It is easy to see that
the point modules M(e;) for e,e & are not B-modules.

The algebra B has a very explicit description in terms of £ and 7. Let
& =j¥(C (1)) be the invertible ¢ ;-module of degree 4 on E determined
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by the embedding j,. In [3] it i1s explained how to construct a
graded algebra B(E, 0, Z)=C®B,®B,® ---, which for o=Idg
is the homogeneous coordinate ring of the projective embedding
EcP(HYE, £)*). By [16, Sect. 3] B= B(E, g, #). It follows from this
that B is a domain.

Algebras such as B(E, o, &) are studied in [5]. A corollary of their main
result is that the 1-critical B-modules are precisely the point modules for B;
of course these are just the M(p) with pe E.

2. AUTOMORPHISMS OF THE SKLYANIN ALGEBRA

By an automorphism of A we always mean a C-linear algebra
automorphism which preserves the grading on 4. Thus Aut{A4) identifies
with the subgroup of GL(A4,)= GL(V) consisting of those ¢ such that
(o ® @)(I,) = I,. There is an obvious normal subgroup of Aut(4), namely
the subgroup of scalar matrices, which we denote by C*. If Ae C*, then
the corresponding automorphism will be denoted by ¢,; that is
@;(x}=A"x for all xe A4,. Since /, may be characterised as those forms in
V® V which vanish on I'=4,04,, Aut(4)/C> may be characterized as
the subgroup of PGL(V) such that the induced action on P(V*)x P(V*)
leaves /" stable. Warning: we shall adopt the convention that ¢ € GL(V)
acts on ¥V from the right, and on V* from the left, so that {¢(x),p) =
{x, @(p)>, for xe V and p e V*. This convention “defines” an isomorphism
PGL(V)— PGL(V*)=Aut P(V*) which we will use to identify these
groups.

There is a natural action of Aut(A) on the category of A-modules. Let
M be a left A-module, and let ¢ & Aut(4). Define M? to be the A-module
which is M as a C-vector space, and with 4-action given by x * m = @(x)m
for all xe A and for all me M. We say that M is obtained by twisting M
by ¢, and we refer to M? as a twist of M. It is clear that twisting by ¢ is
an exact functor on the category of A-modules. If 2 & C*, we shall write M*
for the twist of M by ¢,. If M is a graded module, then M*=> M for all
AeC™, so it is the action of Aut(A4)/C>* on the graded 4-modules which
is important.

Our first goal is to show that (with one exception) there is an exact
sequence

l->C*—Aut(A)—»E,— L.

The group of group automorphisms of E is denoted by Aut (E),

whereas the automorphisms of the variety E is denoted Aut,, (F).

group
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ProposiTION 2.1.  Suppose that ¢ belongs to the subgroup of PGL(V*)
such that (o x o(I') = I". Then ¢ € Aut,,(E), and ¢(E,) = E,. Furthermore,
the restriction of ¢ to E is transilation by a point of E, unless ExC/Z ® Zp
and te { £ }(1+2p)+ A} where p =e*™>. In this exceptional case it is also
possible for ¢ 1o be of the form @(p)=p-p+¢& or @(p)=p>-p+ ¢ where
(e E,.

Proof. Tt follows from the definition of I" that p(F)c= E and ¢(&) < .
Fix pe E,. By [7,3.6] the tangent line to E at p passes through some
e;€%. Hence the tangent line to E at ¢(p) passes through ¢(e;)e ¥. By
[7, 3.6] it follows that ¢(p)e€ E,.

By [9, Corollary 1, p. 43] there exists £ € E and a group automorphism
h: E— E such that @(p)=h(p)+¢& for all pe E. Since @(E,)<E,, it
follows that h(E,)+ (< E,. But h(E,)=E,, so (e€E,. If peE then
o(p+1)=0(p)+1since (px o) p, p+1)el. It follows that h(t)=1.

For most elliptic curves Aut,,,,(E)={+1}. If A=1 then ¢(p)=p+¢
as required. On the other hand, if A= —1 then ¢(27)=0 whence 2t =0;
however, this possibility is excluded by our underlying hypothesis that
1¢ E,. Thus h# —1, so the result is true if Aut,,,(E)={+1}. Since E is
a complex curve, if Aut,,,,(E)# {+1} then either ExC/Z@Zi or
Ex=C/Z® Zp where p =¥,

Suppose that E=C/Z@® Zi. Then Aut,,,,(E)=7Z/4Z, and is generated
by multiplication by i If 4 is not the identity, then a simple calculation
shows that A(t) =1 implies that 2t =0. Since this possibility is excluded,
the Proposition holds in this case.

Suppose that ExC/Z® Zp. Then Aut,,, (E)=7/6Z, and is generated
by multiplication by — p. If 4 is not the identity, then a simple calculation
shows that the only possibilities are that 4 is multiplication by p or p? and
1= +4(1 +2p)(mod 4). §

Remark. The exceptional case in Proposition 2.1 can only occur when
37 =0. In particular, it does not occur when t is of infinite order. These
special cases arise when o, =o, =a3= +./—3, in which case there exists
@ € Aut(A) such that ¢(xo) =Xy, @(x;)=x;, @(x;)= —Xx3, p(x3)= —x.

We now define a map @: E,— Aut(4) such that the composition
E,— Aut(A)/C™ is an injective group homomorphism. Recall our alter-
native notation for the generators of the algebra, namely X, =x,,
Xoo=Xx1, Xo1 = X5, X,0=Xx5. Let (i, j, k} be a cyclic permutation of (1, 2, 3).
As stated in [14, Proposition 6] a map of the form @(xy) = 40x;, @(x;) =
A; xg, @(x;) =4, x;, ©(x,)= A, X, extends to an algebra automorphism of 4
if and only if
Aot
7 i FI VA IS

Jods

%pee

AN 160 LS
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In particular, each of the following ®(£)e GL(V) extends to an
automorphism of A:

(D(O)(an X007X011 XIO)
=(X“,X00, Xou XlO)a

1
P (—) (X10s Xoo, Xots X10)

2
=(XH! _XO(]’ ‘—XOi’XIO)i
o
1 1
‘D('2‘+§'1 (X115 Xoo» Xor» Xi0)

1
& -
€

'7) (X115 Xoo» Xors X10)

B3|

= (Xn, _XOOa Xon _XIO)’

=(X11,Xoo’ ‘Xma —Xlo)a

SN

(Xll’ X()(), XO]’ XJO)

_ . 0,,(7) . 001(1) 0o,(7) 0,6(1)
= (1L X 2 Yo " gt au(r)X“>’
1

ds(zn)(Xll’XOO’XOhXIO)
_{.0ul() Boo(17) _.901(T) _610(1)
_(1901(” 01’910(7) 102 lgll(T)X“, Hoo(T)XOO)

1 1
¢(Z+Z’7) (X1, Xog, Xo1, Xio)

=(911(T) Xoo, l.goo(f) X, Bo1(1) X 010(1) Y )
Ooo(7)

0" 0,0 T 0pul) )
We define @ on the other elements of E, by requiring that @(¢ +w)=
@(&)o @(w) for each £ e E, and each we E,. Notice that @ is not a group
homomorphism. However, it is easily checked that the restriction of @ to
E, is a group homomorphism and the composition @: E, —» Aut(4)/C* is
a group homomorphism.

THEOREM 2.2. (a) The map &:E,— Aut(4)/C* defined above is a
group homomorphism.
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(b) If Ee E,, then the induced action of ®(&) on E is translation by &.
(c) Ser p=e*™" Suppose that ExC/Z@®Zp and 1= +1i(1+2p)
(mod A). Then Aut{A4)/C* =~ E, x(Z/3Z).
(d) If (E, 1) is not as in (c) then Aut(4)/C* = E,.
Proof. (a) This is a routine calculation.

(b) By the remarks at the beginning of this section, Aut(A4)/C*
identifies with {@ e PGL(V*}|(@ x @)(I")=I'}. It follows from (2.1) that
the induced action of @(£) on E is translation by some point of E,. In fact
&(¢) is translation by ¢ itself; since this is easy to check we only give the
details for & = 4. Consider a point ze C and j (z) € E. Then

1 AN 1

Js <: +Z> = (ieu(f) 011 <2Z+5>, ioo(1) Boo <2z +5),
! 1

bo1(7) by, (22 + 5>, B10(t) B0 (22 +§>>

= (10,,(1) 0,0(22), iBoo(7) 01(22), O01(7) 800(22), —O10(7) 8,,(22))

— .BII(T) ~ 99_(_)_(‘[_) . _.BOI(T) . .0]0('[) 3

(1 e g o)~ G Santa) 5 )
1y,

~o(3) Uit

where the last equality makes use of the convention that Aut(A4) acts on
the right of ¥, and on the left of V'*,

(c,d) Since E is not contained in a hyperplane any automorphism
of P(V*) is determined by its action on E. Therefore the remarks at the
beginning of this section, together with (2.1), imply that restriction gives
an injective map Aut(A4)/C* — Aut,, (F). Moreover (2.1) shows that the
image is contained in either E, acting on E by translations, or in
E,x(Z/3Z) in the “exceptional case”. The existence of & shows that
the image of Aut(4)/C™ in Aut,,(E) is at least as large as the group of
translations by E,, so this proves (d). To prove (c) first observe that
multiplication by p is of order 3. As in the remark after (3.1), there exists
¢ € Aut(A4) of order 3, with ¢ ¢ C*. Thus Aut(4)/C* contains a copy of
Ex(Z/37). However, by (2.1) it can be no larger than this. |

Since our interest is in the case when |1| = oc, the exceptional case (2.2c)
cannot occur. Hence there is an exact sequence 1 -C* —Aut(4)—E,— 1.

Twisting a graded module does not change its Hilbert series, so the twist
of a point module (or a line module) is again a point module (respectively,



66 SMITH AND STANISZKIS

a line module). Thus the action of Aut(4) on point modules induces an
action of Aut(4) on Eu ¥ (the variety which parametrises the point
modules), and an action on those lines in P(V*) which are secant lines
of E. As the result shows, it is easy to check that this coincides with the
restriction of the action of Aut(A4)/C* = PGL(V*) on P(V*).

ProposITION 2.3.  The action of Aut(4)/C* on P(V*) is such that if
@ € Aut(A) then

(a) forallpe EuS, M(p)?=M(e(p));

(b) for all p,qe E, M(p, 9)* = M(o(p), ¢(q));
(c) if @ € Aut(4), and ¢ = ®(&)mod C™>), then M(p,q)* =
M(p+¢,q+9)

Proof. Let M be either M(p) or M(p,q). The action of ae A4 on
me M*? is such that a* m=0<> ¢(a) -m=0. Hence if M = A/AU where U
is a subspace of 4,, then M?® = 4/A@(U). Furthermore, our convention
regarding the action of ¢ on V and V* is such that if Uc 4, then
¥ (o(U)) = (¥ (U)). The result follows. [

3. SKLYANIN’S REPRESENTATIONS

The first task in this section is to define Sklyanin’s finite dimensional
modules V,. We do this after recalling some preliminary results (3.1)-(3.3)
which appear in his paper [14]. The proofs of these results are fairly
straightforward calculations using the addition theorems for theta functions
in [17, Sect. 22]. Nevertheless, it seems to us that remarkable ingenuity
was required for Sklyanin to find the action on .#(C) described in (3.1).
Indeed, we do not understand the real reason for the existence of this
A-module. Nor do we fully understand the real reason for the existence of
the modules V.

Although our main interest here is when 1 is of infinite order, a number
of our results are also valid when 7 is of finite order, so we will often work
in that generality. If 7 is of finite order, we will denote by s the smallest
positive integer such that 2st=0. If 7 is of infinite order we declare that
§= 0.

Having defined the modules V., we will prove in (3.6) that V, is simple
whenever k <s (this includes the case where t is of infinite order). A
preliminary result is that ¥, is a quotient of a line module. The last part
of this section discusses the twists of the modules V,, and the action of the
center on them. Finally Theorem 3.10 gives a complete list of all the
modules obtained by twisting the various V', and proves that there are no
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isomorphisms between these twists. Of course, the main goal of the paper
is to prove that these are all the finite dimensional modules.

The space of meromorphic functions on C is denoted by .#(C). Recall
that 4, has basis Xy, Xo;, X190, Xy f X=30s 425X, then we consider
X as a function on C by defining X(z)=3Y ., A.»8(2), where the g, are
defined in Section 1.

THEOREM 3.1 [14]. For each ke Nu {0}, #(C) is an A-module with
the action of Xe A, on fe #(C) given by

X(z—(1/2) k1)
01,(2z)

X(—z—(1/2) k1)
01:(22)

(X-f)z)= flz+1)— flz—1).

The central elements £, and €2, act by scalar multiplication on this
module. Indeed .#(C) is annihilated by

900(1)2

- 2 T e (07
Q- 40,((k+ D)* - and Q=40 o

0,.((k+2)1)0,, (k).

Remark. Since 41 #0, it follows that .#(C) is not annihilated by both
Q, and ©,. In particular, .#(C) is not a B-module. In fact, .#(C) can not
have a non-zero subquotient which is a B-module.

DermNITION.  For each peN, and for each abe {00,01, 10,11} let &7,
denote the space of holomorphic functions on C satisfying

Jz+1)=(-1)f(z)
and

flz4+n)=e ™-rri2z+me(z)  forall zeC.

Such functions are called theta functions of weight p and characteristics ab.
It is convenient to define @3, to be C, the space of constant functions. The
subspace of &%, consisting of the even functions is denoted by &7, .

ProposiTion 3.2. (a) For each peN, dim ©5,=p and each non-zero
J€ 85, has exactly p zeroes (counted with multiplicities) in the fundamental
parallelogram.

(b) Given any p points in the fundamental parallelogram whose sum
is p/2—(p/2)n, there exists some 0+ fe @F, with zero locus precisely that
set of p points. Furthermore, [ is determined up to scalar multiples by the
location of its zeroes.
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(c) For any keNu {0}, dim @X* =k + 1, and for any 2k points
{+z,|0<j<k—1}, there exists some 0#feOF™* with zero locus
precisely that set.

PROPOSITION 3.3. For each ke N u {0}, the space OF ™ is stable under
the A-module action on #(C) defined in (3.1).

DerNITION.  For each keNwu {0}, define V, to be the 4-module
V,:= 0% with the A-action given in (3.1). Thus dim V, =k + 1.

Remark. In some of the later proofs £k =0 is a special case. The module
V, is just the space of constant functions, namely V= C. The A-action is
given by (3.1), namely X 1=X(2)/0,,(2z) — X(—z)/0,,(2z) for Xe A,.
Since x,, x,, x; are even functions, they all annihilate 1 € V,,. On the other
hand x,-1=2i0,,(r)#0. Thus ¥V, is a quotient of the point module
A/Ax, + Ax, + Ax,= M(e,) corresponding to e e . By [7,5.7] M(e,)
and hence V¥, is a quotient of every line module M(p, gq) such that p+¢=
w,=0. That is, V, is a quotient of M(p, —p) for every pe E. This proves
(3.4), (3.5) and (3.6) for V.

PROPOSITION 3.4. Fix ke N such that k<s. Suppose that p,qe E are
such that p+ q=kt, and p—q¢ Zv. Then V, has a basis { f;| 0<i<k} such
that the zero locus of f, is

ZF(f)={+(p+Gk—D1=20+/)1) ] 0< j<k—1}
={(g+Gk—D1+2(—j)1) | 0<j<k—1}.

Furthermore, if wu,,v,e A, satisfy ¥V (u,v)=1, 3,42 then u,-f,=
U,_.f',.:o.

Proof. The hypothesis on k ensures that this set of potential zeroes
consists on 2k distinct points. By (3.2¢) there is a (unique up to scalar
multiples) 0 # f; € V, with this set of zeroes. It remains to show that the f;
are linearly independent. Suppose that 3 ¢, <x Amfm=0.

Set r=p+(3k—1)1. Thus Z(f)={+(r—20+/)1)|0<j<k—1}.
Set Eo=r—2kt=r—2(m+(k-m))t. Clearly f,(&)=0 if 1<m<k.
However, if f4(£,) =0, then either £y =r— 2jt or ;= —r + 2j7 for some J,
with 0 < j <k — 1. The first possibility can not occur because & < 5, and the
second can not occur because 2r ¢ Z -2t. Hence f(&,) #0. By evaluating
So<mek AmSm at &g it follows that 4,=0.

Suppose that Ag=A,=---=4,_,=0. Thus ¥, c,.ck Amfm=0.If 0=k
then the proof is complete, so suppose that n<k. Set £, =r—2(k+n)t=
r—2(m+(k+n—m))t. Clearly f,(£,)=0 if n+ 1 <m<k and a similar
argument to the above shows that f,(£,)#0, from which it follows that
4, =0. Thus the f; form a basis for V,.
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To prove that f; is annihilated by u, and v, it is enough to do this when
i=0, since the general case is then obtained by replacing (p,q) by
(p—2it,q+2it). Set zg=p+ (5k—1)1=—q+(3k—1)1. Since Z(f,)=
{+(z0—27)|0<j<<k—1} it follows that fy(z+1) is =zero at
ze{zo—(Z+1)1), —z0+ (=11 |0<j<k—1} and fy(z—1) is zero
at ze{zo—(2j—1)1), =20+ (2j+ 1)1 | 0<j<k—1}. In particular, both
Solz+1) and fo(z—1) are zero at ze {z,— (2j—1)7), —zo+(2j—1)1|
1 <j<k—1}. Furthermore fy(z+71) is zero at ze { —zo—1, zo—(2k— 1)1}
and fo(z—1) is zero at ze {z,+ 1, —zo+ (2k — 1)1}

Suppose that Xe A, vanishes at {zo—( k—1)1, —zo+ 3k —1)} =
{p,q}. Then X(z—3kt) is zero at ze{zo+7t, —zo+(2k—1)t}, and
X(—z~—3%kt) is zero at ze{—zy—1,zo—(2k—1)r}. Tt follows that
both X(z—1kt)fo(z+1) and X(—z— k1) fo(z—1) are zero whenever
ze{+(za—(2j—1)7) | 0< i<k} Thus X -f, has 2k + 2 zeroes, so is iden-
tically zero. That is ug-fo=1v9-fo0=0. |}

Remark. Part of (3.4) holds under weaker hypotheses. Let ke N and
p, q be arbitrary, and suppose that p+ g=kt. Then there exist elements
f.e V, such that Z(f,) is as stated in (3.4) (possibly k > s now so the zeroes
must be counted with multiplicity), and wu,-f;=v;-f;=0 as before. In
particular

Hom(M(p’ 4), Vk) 5‘&0

for all p, g such that p+¢g=kr.

The proofs of (3.5) and (3.6) require a result from [7, Sect. 5] which we
briefly recall. Suppose that p, g€ E and that p—q ¢ Z - 2. Then M(p, g) has
a basis e, such that e;e M(p,q),,;, de;,=M(p+ (j—i)t, g+ (i—j)1),
and if Xe A, then X.-e,eCe, ., PCe,;,,. Furthermore, X .e;eCe,,, ;
if and only if X(g+(i—j)1)=0 and X-e,eCe,;,, if and only if
X(p+(j—Nr)=0.

THEOREM 3.5. If k<s and p+q=kt and p—q¢Z 21, then V, is a
quotient of M(p, q).

Proof. By the last part of (3.4) if u,ve 4, satisfy ¥ (u,v)=1/,, then
u-fo=v-fo=0. It follows from this that there is an A4-module map
¥: M(p, q) — V, such that ¥(ey) =f,. The surjectivity of ¥ will be proved
by showing that f, =a,, - f; for some a,€ A4,,, where {f, | 0<n<k} is the
basis for V, described in (3.4).

If 0<i<2k—1 then there exists Y, 4, such that Y,(¢+it)=0 and
Y, (p —it) # 0; notice that p — it # g + it by hypothesison p—q. f0<n<k
define a,=Y,, Y5 _»---Y,Yye A,,. We will show that g, -/, is non-zero
and has the same zeroes as f,, hence is a non-zero scalar multiple of f,,. To
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do this it suffices to prove for each i that Y,; ,Y,,_,-f;_, is non-zero and
has the same zeroes as f;.

Set r=p+(Zk—1)t so that Z(f, )={F(r—=20(+j—-11)|0<j<
k—1}. Now

_ Yy o(p—20—1)7)
0.,(2r—2(2i—3)1)

(Yoo fi 1 )r—(2i=3)7) Jialr=2(i=2)7).

But f,_(r—2(i—2)r) # 0 since 2p+kt ¢ Z -2t and k < s Also
Yool p—2(i—1)1) #0, so Y, _,-f;_, #0. Both f,_,(z+71) and
fi_(z—1) are zero for ze {+(r—-2(i+j)t+1)| 0<j<k—2}. Further-
more if z,=r—2(i+k—1)t+tthenf,_(zo+1)=0and ¥,,_,(—zo—1kt)=
Y, _»(g+2(i— 1)t)=0. Finally, since f;_,(—z,—1)=0 it follows that

XYy 2 fii)={2(r=20+j—-1)1+1)|0<j<k~1}.

By repeating the argument in this paragraph with Y,,_,-f;_, in place of
fi_,and r—1 in place of r it follows that Y,, _,-Y,;_,f;_;#0 and

Z(Yy Yy o fi )={20r=2+j-D1-20) | 0<j<k =1} =Z(/)

Hence Y, ,Y, ,-f,_, is a non-zero scalar multiple of f,. Thus ¥ is
surjective. ||

Remarks. 1. With the notation of (3.5) it is easy to see that 0#
Y;-e,0€Ce,, ¢ s0 it follows by induction that Y, _Y,,_,--- Y, Y- egis
a non-zero scalar multiple of e, o and hence that ¥(Ce,; )= Cf; for all i.

2. If (3.5) is combined with (2.3) the following result is obtained. If
peAut(4), and e E, is such that ¢=@(&)(mod C™), then V¢ is a
homomorphic image of M(p+ & kt—p+¢&) for all pe E such that
2p¢ E,+ Zt.

THEOREM 3.6. If k<s then V, is simple.

Proof. The result is obviously true for k=0 so we suppose that
k=1 Choose p,geE such that p—g¢Z-2t and p+qg=kr, and let
{f:10<i<k} be the basis for ¥, obtained in (3.4). Let ¥: M(p, q) — V,
be as in the proof of (3.5).

Suppose that 0#f=3 ;< 6,f,€ ¥V, and let m be maximal such that
0,,70. We must show that f generates V. If m=0 then (3.5) shows that
A-f=A-fy=V, so we may suppose that m > 1. By the previous remark f
is the image of an element e =3 o, ¢, €:€2.0 € M(p, g) with ¢, #0.
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For 0<i<m—1 choose 0+# Y,e A, such that its divisor of zeroes on
Eis
(Ydo=(g+it)+(p—(2m—i)t)+(p— (2m—i—2)7)
+(—p+(dm—-2-3i—k)1).

It follows from the location of the zeroes, and [7, 5.6] that

(l) Yi'ei+r,recei+r+l,rf0r all r>07
(ii) Y, -esp_,;_,€Clpp_,;_,. forall 0<r<i;

(iit) Y,-ey_,; ,,2€Ceyy ., ,3forall 0<r<i

Cam. Y, |- Y Yo CocicmEir0)=0.

Proof. Write e =3 (cicm-1 €20 Define a new degree function
on M(p,q) by defining deg(e;)=i—j, and write M, for the degree i
component of M(p, q). Thus e M ®M,---M,,,_,®M,, ,. Itis clear
that if Xe A, then X -M,cM,_ ,®M,,,. However, it follows from (i)
that ¥Y,-M,c M, , and from (ii) that Y, -M,,, ., M,,, _,_,, and from
(ii) that Y, M,,, _,,.<M,, _, 5. In particular, Y,,_,-M,, , =0 because
Y, (g+(m—1)1)=Y, (p—(m—1)1)=0. Thus

Yo AMq@ M, My, .®M,, »)
cM®M, M, _®M,, _,

Y, Yo (My®M,---M,, . ®M,,_,)
cM,®M, --M,, _¢®DM,,_,

Y, 2 Y Y- (Me@®M,--- M, ,OM,, )M, ,

Yoo 1 WYy (Mo®@M,---M,, ;®M,, ,)=0 1]

The hypothesis on p—¢q and the choice of k& ensures that
Y (g+ (2m—i)t)#0, and therefore 0# Y, e,,, ;€ Ce,, . by (ii) above.
Hence Y, _;---Y,Yy-€,,0 is a non-zero scalar multiple of e,,, ,. It
follows from this fact and the claim that e,,,, is in the submodule of
M(p, q) generated by the element e. Thus e,,, »,, is also in the submodule
generated by e, whence ¥(e,,, ) is in the submodule of V, generated by
Yle)=f.

Now let 2eCQ, ®CRQ, be such that Q- M(p, g) #0. Then 27" e, #0
since M(p, q) is critical. By the remark after [7, 5.6] 2> ey € Cey,py om-
Since V, is contained in .#(C) it follows that £ acts on V, by scalar multi-
plication; since ¥, is a quotient of M(p, q) it is killed by Q(p + q), but by
(3.1) V. is not killed by both 2, and Q,. Thus £ acts on V, as a non-zero
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scalar. Hence Q2".f, is a non-zero scalar multiple of fy. Therefore
P(€sm 2m) is @ non-zero scalar. It follows that f, is in the submodule of V',
generated by f. Since f, generates V,, so too does f, and it follows that V,
is simple. |

Remark. We have actually proved a somewhat stronger result than
(3.6): if k < s then V, is simple over the (Veronese) subalgebra of 4 given
by AP=C[A4,]=@,.¢ A2 To see this first observe that (3.5) proves that
fi€ Ay, -fo, 50 V, is generated by f, as an A‘¥-module. Secondly in (3.6) we
prove that e,,, ,, € A -e and since every component of e is of even degree,
in fact e, ,,€ A% -e. Hence (3.6) proves that fye A'?.f showing that
Vk =42 f

Notation. In the next proof we will write ¢®¢ in place of ®(¢)a)
whenever ae 4 and @(&) is one of the automorphisms in Section 2.

PROPOSITION 3.7. If (€ E, then V¥ =V,.

Proof. Suppose that &=1/2+ (m/2)n where [, me {0,1}. Let XeA,.
The reader can verify the following three identitities:

XPE )= (1)t memtidztnx(z 4 )
8,,2z428)= (—1)+m e Mg (22)
X(—z— Ykt —&)=e " O (—z — kT +8).

These identities are not true for arbitrary /, m but only for those in {0, 1}.

The first identity is proved by using [17, (1), p. 69]; this could have been

used in Section 2 as the definition of @(&) for ¢ € E,. The second identity

follows from the very definition of 4,, viz. {17, (1), p. 69]. The third iden-

tity is a simple consequence of the useful fact that if Xe 4,, then X e @},.
Define a linear map ¢: V, — V, by

Y()z) = e (2 + &)

A calculation is required to check that the image really is in V. Having
checked this, it follows that y is a linear isomorphism. The proposition
follows from the fact that y is an A-module map from V, to V&Y.
This is proved by showing that Y(X -f)(z) = (X®“ . y(f))z), which is a
straightforward (although potentially error prone) calculation using the
identities in the first paragraph of the proof. ||

DEFINITION. Let we E,, and let ke N U {0}. Choose any ¢ e E, such
that 2¢ = w. Define V(w + kt) := V%) By (3.7) this is independent of the
choice of £.
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THEOREM 3.8. Suppose that |t| = . Let we E,, ke N U {0} and Ae C*.

(a) V(w+kt) is a simple A-module of dimension k + 1.
(b) If p,qe E satisfy p+q=w + kt, then V(w + kt)* is a quotient of
M(p. q).

Proof. Tt suffices to prove this when w=0 and A= 1.

(a) This is already proved in (3.6).

(b) Now let p, g€ E be such that p + g = kt. By the remark after (3.4)
there exists 0 # fe V, such that Af is a quotient of M(p, g). However, by

(a) 4f =V, 1

Our next goal is to show that for distinct triples (w, k, 4) the corre-
sponding modules are non-isomorphic (it is obvious that V(w+kt)* %
V(e +mrt) if k#m because the dimensions differ). This is achieved in
(3.10), but prior to that, we need to understand the action of the center on
these modules.

PrOPOSITION 3.9. Let o= (1—0)/2+ ((1—a)/2)n€ E, where abe {11, 00,
01, 10}. The central elements Q, and Q, act by scalar multiplication on
Viw + kt). More precisely V(w + kt) is annihilated by

600(7)2

J— 4 2 - 0.(0)0.-(27)
Qi — 40kt D)0 and Q=4 g

Oap((k +2)7) 04(kT).

Proof. Define &¢=(1-5)/4+((1—a)/4)y. The explicit form of
®(£) is given in Section 2. Before proving that Q,—48,((k+ 1)7)?
annihilates V(2¢ + kt) we make the useful observation that X®¢)(z)=
e (Whmibpmill —a)(2=+ 04y 7 4 £). This can be checked by using the formulae

in [17, (8), p. 731.
Let ije {00,01,10, 11}, and fe V= F(kt). Then

(X2)°4.f)(z)
_ <Xij(z +E—(k/2)t) Xy(z+ & —(k/2—-1)1)

e flz+ 21
0,,(22) 0,,(2z + 27) ) S )

_(X,-j(z+f— k2)Dy Xy (—z+E—(k/2+ 1)71)
8,(22) 8,,(2z + 21}
X(—z+E—(k/2)T) X;(z4+ & — (k/2 + l)r)) e© f(z)
0,,(2z) 8,,(2z - 27) N
+(X,;,-(—Z+i—(k/2)T)X.;,'(—2+5—(16/2— 1))
0,,(22) 6,,(2z — 21)

>e”" D f(z—21)
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where P(z)=mi(l —a)}dz+ /2 — (2(k+1)t)+ nib and @ = 7i(1 —a)(n/2 —
(2(k+ 1)t) + nib. Hence

(27 f)z) = (A(z) e (z + 21) — (B(2) + B(—z2)) e9f(2)
+ A(—z)eP (2 - 21))

where
2 05(0) 8,(=1) 0,22 + 22 —ke) 0, (22 + 2¢ — (k= 2)7)
A(z)—%;)’g 6,1(22) 0,,(22 + 21)
and
2 0,(1) 0,(—1) 0,22 + 28 k1) 0,(—22+2¢ — (k +2)1)
B(z)=) vy .

6,:1(2z) 8,,(2z + 21)

i

By [10, (R5), p. 20]

—20,(2z4+ 26— (k—1)1)0,,(—2z—2E+ (k—1)1) 8,,(0) ,,(27)
0,,(22)0,,(2z 4+ 27)

A(z) =

=0.
Again, by [10, (R5), p. 20] we have

B(z)= —20,,28 —(k+1)1) 0, (=28 + (k+1)1) 0,,(2z+21) 8,,(—22)
e 0,,(22) 0,,(2z + 27)
= —20,,(26 — (k+ 1)1)?
= B(—2z).

Thus

(B(Z)+B(—Z))€Q= —40“((k+ 1)1__26)2evnibeni(l—u)(n/2—(2(k+l)r)]
= —40,,((k+ 1))~

Thus, Q¢ acts on ¥V, as multiplication by 46,((k+1)t)>. Hence
Q,—40,,((k + 1)1)? annihilates V(2¢ + k).

Now we look at the action of 29 on V. We do this by writing Q3'¢
as a linear combination of @, and Q%'%), and using the first part of the
proof which shows that both these act on V, as explicitly determined
scalars. This method is not effective when ab=11, so we do that case
separately.
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It follows from the definition of @(¢) in Section 2 that

610(1')

th[i):_(_l)a-#waZ +(__1)b+]______X2
1 gab(r)Z ab Hav[,+1(r) ab+1
0 2 0 2
+(_l)a+b”%X2+lb+( 1)b+l OO(T) X5+1b+1

0a+1,b+1(1’)2

6a+1,b(T)

and

1)+t 010(27) 8,4(0) X g0(T)’ 2
000(27) 000(0) 6, . ((T)* " 27!
001(27) 80,(0) Boo (1) 2
900(2T)000(0)9a+1,h(1')2 atLb
9()0(1)2 2

Lh+1°
6u+l,b+l(r)2 at *

£
Q;’(s):(_

_+_(_1)a+b
+(_1)h+1

We now do the special case when ab = 11; that is, we describe the action
of 2, on V,. Combining the expression above for ¢=g#y/4, with
[17,(9), p. 77] we obtain

Q¢m,4.=9m(f)2< _ B00(0) 801(0) Boo(27) )
! 911(T)2 6’00(1')2 001(1')2 g

The description of the action of 2, and Q¥"* on ¥, in the first part of
the proof, together with a calculation using [17, (4), p. 77] shows that £,
acts on V¥, as scalar multiplication by 4(8y(7)%/800(0) 840(27)) 0, ((k + 2)7)
#,,(kt). Hence the Proposition is true when ab=11.

Now suppose that ab # 11. Then, we claim that

11(7)2 000('5)2

Q¢lf|
800(0) Oo(27) gah(o)

B.u(7)"
-1 a+th anlT Q(D(é))
(( e+t ()

This is proved by comparing coefficients of the various X7. It is clear that
the coefficient of X2, on both sides is zero. Comparing the coefficients of

X2, s, involves showing that

B00(0) Boo(27) Hah(0)2 =(- l)b 911(T)2 Ousi6+ 1(7)2 + Gah(f)z 000(7)2'

This is seen to be true by using the identities [17, (1), (9),(10), pp. 76-77]
at u=v=r1. Thus the coefficient of X2, , ., is the same on both sides of
(t). It is not necessary to compare any more coefficients because P(&)
preserves the center of A, so in particular it leaves CQ, @ CQ, stable.
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Hence both sides of (1) belong to this 2-dimensional space and it follows
that the claim is true.

It follows from (}), and the first part of the proof that 27 acts on ¥,
as scalar multiplication by

611(7)2 600(7)2
000(0) 000(27) 0,5

gab(r)z
911(1)2

By [17, (1)(3), pp. 76-77] this equals 4(8oo(1)*/040(0) Oo(27)) 8,,((k +2) 1)
8 . (kt) as required. |

G0 o+ o7 + G2 (ke e2).

Remark. 1If |t| = oo, then neither 2, nor £, can annihilate V(w + k1),
and hence cannot annihilate V{(w + k1)” for any A€ C*. We shall see later
that B actually has no finite dimensional simple modules, apart from the
trivial module. This also follows from (4.1) below, together with the main
theorem of [5] and [7,5.9].

THEOREM 3.10. Suppose that |t| = oc. There are no isomorphisms among
the modules V(w + kt)* for (w, k, A)e E;x (NU {0})x C *.

Proof. Suppose that V(w +kt)* =V, where = (1 —5)/2+ ((1 —a)/2)n
for some abe {00, 01, 10, 11}. It is sufficient to show that @ =0 and A=1.
These two modules have the same annihilators in the central subalgebra
C[,, Q2,], so it follows from (3.1) and (3.9) that

A20,((k + 1)1)> =0, ((k+ 1)1)?
and
;nguh((k +2)1) O0p(kt) = 0 ((k +2)7) 8, (k7).
In particular
0,((k + 1)7)2 0,6((k+2)1)0,4(kt)=0,((k+ I)T)2 0, ((k+2)t) 8, (kt).
By [17, (1)-(4), p. 76], this is equivalent to
0,.5((k + I)T)z 01, ((k + I)T)2 [(}uh('f)2 901(0)2 - 001(7)2 9:117(0)2]
:oll(f)z |:(_1)"+h+1 01, ((k + I)T)4 901(0)2
— 0, ((k+1)7) 04, ((k+ 1)1)% 0,,(0)7].

The next part of the proof shows that for each ab e {00, 01, 10} this implies
that 7 is of finite order. Since this is not the case, we conclude that ab=11.

Suppose that ab = 01. Then 0,,((k + 1)1)* — 0, ((k + 1)1)* = 0; by
[10, (A2), p. 227 04, (2(k + 1)1) =0 whence t is of finite order.
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Suppose that ab=10. By [10, (A10), p. 227 we have 8,4(1)* 0,,(0)°> —
001(t)? 0,5(0)* = —0,,(1)? O9(0)% Therefore

010((k +1)7)2 0,,((k + 1)7)? 860(0)*
= =01 ((k+1)7)* 0,(0)* + 0,0((k + 1)7)? 8oy ((k + 1)7)* 6,6(0)*.

By [10, (A10), p. 22] 6,,((k + 1)) 060(0)* = 65,((k + 1)7)* 8,5(0)*> —
010((k +1)7)? 0,,(0)2.  Therefore 8,o((k+ 1)t)*=86,,((k+1)1)*. Hence
0,6(2(k+1)7)=0 by [10, (A3), p. 22]. It follows that 7 is of finite order.

Suppose that ab=00. A similar argument, using [10, (A1), p. 22] and
the identity 6,,(x+u)6,,(x —u) 0,5(0)* = 84, (x)? Boo(1)* — Ooo(x)* B, ()
shows that 7 is of finite order.

Thus ab=11. It follows that i*=1, so it remains to show that
V.' % V.. Suppose to the contrary that : ¥V, — V' is an A-module
isomorphism.

If fe V, and ae A, then Y(a-f)=a*f= —a-f In particular, a-f=0<-
ax*f=0. Choose pe E such that 2p¢ Zt, and let B ={f,,..,fx} be the
basis for ¥, as in (3.4). Set g=kt—p and z,=p + (3k— 1)z. Choose u,,
v,€ 4, such that ¥ (u,, v,)=1, 5, 2. Since f; is the unique element (up
to scalar multiples) which is annihilated by u, and v,, it follows that
w(f)=r,f for some 0#£y,eC.

Let Xe A, be such that X(p—(2k+1)t)#0 and X(g+7)=0. Recall
that Z(f)={+(z0—2(i+j)1) | 0<j<k—1}. By choice of p, it follows
that (X -fu)(zq —2k1)#0 and f,(zo—2kt)=0 for all i=1, .., k. Hence if
X fo=2o<i<k 4ifi» then Ao #0. But Y(X-fo)=X*y(fo)=—X-7/o, sO
Docick Vitifi= =70 Xo<i<k 4ifi- Hence (y;+7,)4,=0 for alli In
particular, 2y,A,=0. This contradiction forces us to conclude that
Vo' Ve |l

Remark. The key step in (3.10) shows that V(w + kt)* and V(w' + k't)*
have different central characters if (w, k)# (0, k’). It follows that
Ext (Vo +kt)", V(o' +k'7)*)=0 if (w, k)+#(w’, k’). This is similar to
what occurs for the finite dimensional simple modules over gl(2, C).

4. FINiTE DIMENSIONAL SIMPLE MODULES AS QUOTIENTS OF LINE MODULES

This section completes the proof of the main theorem by showing that
there are no finite dimensional simple modules other then those found in
Section 3. The proof of this depends on some preliminary results which are
of independent interest.

The first goal of the preliminary results is to relate a finite dimensional
module which is not graded to a graded module. Thus (4.1) proves that a
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finite dimensional simple A-module is a quotient of a 1-critical graded
module, and (4.2) proves that we can find such a graded module which is
a quotient of a line module. A rather simple illustration of this phenomenon
occurs for the 1-dimensional A4-modules: a 1-dimensional A-module is
necessarily a quotient of one of the four point modules M(e;) where e, &.

Proposition 4.4 proves that only “special” line modules can possibly have
a l-critical quotient which is not a point module. Indeed if |t| = co then
M(p, q) can not have such a quotient unless p+ge E,+dr for some
de N u {0}. By using the modules V(w + kt)* we can show that all these
“special” line modules do have such a quotient, and hence have a non-
trivial finite-dimensional simple quotient. Such quotients exist because
there is an injective map M(p—drt, q—dt)[ —d]— M(p, q); in fact, up to
scalar multiples there is a unique such map of degree zero, and any finite
dimensional simple quotient of M(p, g) i1s actually a quotient of the
cokernel of this map.

The preliminary results in this section can be phrased in the language of
“fat” points, a notion introduced by Artin in [1].

Let M and N be graded A-modules. Then M and N are equivalent if they
contain submodules M’ and N’ of finite codimension such that M' =~ N’ via
a graded map of degree zero. If M and N are equivalent, we write M ~ N,
This is indeed an equivalent relation. The modules M and N are equivalent
if and only if they give isomorphic objects in the quotient category
Proj(4):= GrMod(A)/tors where GrMod(4) is the category of finitely
generated graded 4-modules and morphisms being the 4-module maps of
degree zero, and tors is the full subcategory consisting of those modules
which are finite dimensional. Equivalent modules have the same
GK-dimension, and if they are not finite dimensional, they also have the
same multiplicity.

A fat point is an equivalence class of I-critical modules of multiplicity
> 1. Thus the fat points are irreducible objects in Proj(A). In addition, the
point modules give irreducible objects of Proj(4).

If /,, is a secant line, and N is a l-critical A-module such that there
is a non-zero map M(p,q)— N of degree zero, then we say that the
corresponding fat point is contained in the line [,.

LEMMA 4.1. Let S be a finite dimensional simple A-module. Then S is a
quotient of some 1-critical graded module.

Proof. 1f S is the trivial module, then S is a quotient of every point
module, so the result is true. Henceforth, suppose that S is not trivial. It
is clear that S is a quotient of some graded module, namely A itself.

Suppose that S is a quotient of a graded module M of GK-dimension
<d. By [8,6.2.19] there is a filtration M=M">M'> ... S M*=0 by
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graded submodules such that each factor M/M'*! is critical; actually [8]
does this for non-graded modules, but the same proof will give the result
we require. Clearly S must be a quotient of one of these factors. Thus S is
a quotient of a critical module of GK-dimension <d.

Now choose de N minimal such that S is a quotient of a d-critical
graded module M, say. Write S= M/N. Such an M exists by the previous
paragraph. Suppose that 4> 2. Then dim(M,)— ¢ as n — oc0. However,
dim(S) < oo so there exists 0 # me N n M, for some n. Thus S is a quotient
of the graded module M/Am which is of GK-dimension <d. This
contradicts the minimality of d, so we conclude that d< 1. Since the only
O-critical module is the trivial module, it follows that d=1. Thus S is a
quotient of a 1-critical graded module.

Remarks. 1. We will make frequent use of the observation that if S is
a simple quotient of a 1-critical graded module N, then S is also a quotient
of every non-zero submodule of N.

2. One can be rather more explicit about the 1-critical graded
module N which maps onto S. Define a new 4-module §:=S®C[¢] with
acA, acting by a-(s®¢)=(a-s)®t'*". Thus § becomes a graded
A-module with degree n component S, =S® Ct". Since dim S< o0, § is
finitely generated. For each ieC*, S(t—4) is a submodule, and the
quotient is isomorphic to S* the twist of S by AeAut(4). We write
n:8— S for the map with ker n = S5(r —1).

S has the following universal property. If M is any graded A-module
such that M, =0 for n <0, and ¥ : M — S is an A-module map, then there
exists a unique degree 0 map : M — § such that = no . It follows that
if S'is a quotient of a 1-critical graded module N, then N[k] is isomorphic
to a submodule of § for some ke Z.

3. One can use an argument like that in (4.1) to show that if S
is a finite dimensional non-trivial simple A-module, then there exists
a homogeneous prime ideal P such that S is an A4/P-module and
d(A/P)=1. In fact, P is the annihilator of any 1-critical module which
maps onto S.

4. If |t} = 0, then B= A/{Q,, 2, has no non-trivial finite dimen-
sional simple modules. To see this, suppose that .S were such a module. By
(4.1) § is a quotient of a 1-critical B-module. However, by [5] such a
B-module is equivalent to a point module. By [7, 5.8] the only point
modules having a non-trivial simple quotient are the modules M(e;) where
e;€ &. However, none of these is a B-module.

THEOREM 4.2. Let N be a 1-critical graded A-module. Then N contains a
non-zero graded submodule which is a quotient of a line module.

4X1 160 1-6



80 SMITH AND STANISZKIS

Proof. Let P=Ann(N). Since N is critical, P is a prime ideal. If
O#meN then C[Q,, 2,]-m is of GK-dimension 1, so PN C[Q2,, 2,] #0.
This is a homogeneous prime ideal of C[Q,, 2,] so it must contain some
0£02eCQ,dCNR,=2Z,. Thus 2-N=0.

Set e =e¢(N). There exists » such that dim(N,)=e for all k= n.

By [7,6.12] there is a line module, M say, such that Q- M =0. Let
Uc A, be the 2-dimensional subspace such that M=~A/AU. The
homogeneous polynomial function U — Hom (N, N, ;)= End(C®) e C
has a non-trivial zero so there exists 02ue U and 0#£me N, such that
u-m=0. But  -m=0 also, so there is a non-zero map ¢: A/Au+ AQ — N.
Consider the diagram

0> Lo A/Au+AQ - M -0

|

N

where the sequence is exact.

By [7,62] A4/(2) is a domain. Since 4 is a domain H, o,(1)=
(1= —0)"% and H 4., 40() = (1 = 1)(1 = ?)(1 — 1) =% Tt follows that
H,(t)=1t(1~1)"% But L is cyclic, so L is a shifted line module.

If L =ker(¢p), then there is an induced map @: M — N which is non-zero.
If L ¢ ker(¢), then ¢(L)+#0, so in either case N contains a non-zero sub-
module which is a quotient of a line module. |

CoroLLARY 4.3. If S is a finite dimensional simple A-module, then S is
a quotient of a 1-critical graded module which is a quotient of a line module.

Proof. By (4.1) and (4.2), S is a quotient of some l-critical graded
module N which contains a graded submodule N’ such that N’ is a
quotient of a line module. Since dim (N/N’) < oo all its composition factors
are isomorphic to the trivial module. But S must be a quotient of either
N/N'" or N' so we conclude that S is a quotient of N'. |}

ProPOSITION 4.4. If N is a l-critical graded quotient of M(p, q) of multi-
plicity d, then there is an exact sequence

0—- M) —-d]—>M(p,q)>N-0

where M(I'){ —d] is a shifted line module. Furthermore, either

(a) N is a point module (equivalently d=1), or

(b) d=2, and M{'Y=M(p—dt,q—dt) and either 2dt=0 or
p+q€E2+(d—1)T



REPRESENTATIONS OF THE SKLYANIN ALGEBRA 81

Proof. Apply Hom,(—, A) to the short exact sequence 0— K—
M(p, g) » N —0 and take cohomology. Since d(N)=1, we have E}(N)=
E*(N)=0. Since the socle of N is zero, E(N)=0 by [7,2.1e]. Since
M(p, q) is Cohen-Macaulay, E‘(M(p, q)) =0 for i #2. Thus E(K)=0 for
i#2, so K is also Cohen-Macaulay of GK-dimension 2. Furthermore,
e(K)=1 since e(M(p, q))=1, so [7, Theorem 2.27] implies that K is also a
shifted line module. If K is generated in degree k then Hy(7)=(1—1t¥)
(1—1) % and e(N)= k. However, ¢(N) = d by hypothesis so K is generated
in degree d, and K= M(!")[ —d]. Examination of the Hilbert series shows
that d=1 if and only if N is a point module.

Now let S=1, nE be the scheme theoretic intersection, and let M(S)
be the point module with values in S as defined in [3, Sect. 3]. In the
terminology of [5], M(S)=({*(0s)).,- In particular, M(S) is a
B-module. As in [4, 6.24] there is an A-module map y: M(p, g} = M(S)
which has finite dimensional cokernel. Consider the diagram:

0—M(IN[~dl=K—M(p,q)—>N—0

lw
M(S) - M(p)—0.

Suppose that Ker y « K. Then N is isomorphic to a subquotient of M(S)
so is a B-module. Since every 1-critical B-module is a point module [5],
this gives alternative (a).

Suppose that ker(yy) ¢ K Then M(p, g)/ker(y) + K is finite dimensional
since N is 1-critical. Thus (K) is of finite codimension in M(S). Shifting,
this gives a map M(!’) > M(S° ) with finite dimensional cokernel. Hence
by [4,6.23] I'nE=S5"" scheme theoretically. Since ¢~ ¥p)=p—dr, it
follows that /'=1{, , , .. Furthermore, since M(p—dr, q—dr) embeds
in M(p, q), it follows that Q(p+q)=Q(p+ g— 2dr). Hence by [6,6.9]
either 2dt=0 or (p+¢q)+ (p+q—2dr)= —21. This completes the proof
of (b). 1|

Remark. Since line modules are Cohen—-Macaulay modules, it follows
that the module N in (4.4) is Cohen—Macaulay. By (4.2) it follows that
every fat point has a representative which is a Cohen—Macaulay module.

The result in (4.4) allows us to give a more precise version of (4.3).

LEMMA 4.5. Suppose that |t| =o0. Let we€ E,, ke N U {0} and suppose
that p, qe E satisfy p+q=w+ k1. Let S be a non-trivial finite dimensional
simple quotient of M(p, q). Then S is a quotient of a 1-critical graded module
which is a quotient of M(p, q).
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Proof. Let N be a l-critical module mapping onto S. Set 2=Q(p+ q).
Thus 2 -5=0, and Q- N=0 by Remark (2) after (4.1). Let U< 4, be such
that M(p, g)= A/AU. The argument in the proof of (4.2) shows that for
some 0 ue U there is a diagram

0~»L—>A/Au+ AL —> M(p,q)—0

W

N

where the sequence is exact, and L is a line module.

We now determine which line module L is. Choose ve 4, such that
¥ (u,v)=1,,. Then L=A-0, so L= A/Aa+ Aa’ where a,a’ € A, are such
that av, ave A,u+CQ. By [7,42], ¥ (a,a)= where (u),=
ptq+p +q. Thus L=M(p'—1,q4' —1).

Suppose that Y(L)#0; thus (44) applies to L-—>y(L)—0. Since
(p =1} + (¢ —1)=w—(k+2)1, it follows from (4.4) that (L) is a point
module. Since S is a quotient of (L), it follows from [7,5.8d] that
W(L)= M(e,) for some e,e . This implies that (p'— 1)+ (¢ —T)=w, e E,.
This is impossible since k£ >0, so we conclude that (L) =0. Hence there
is an induced map M(p, g) — N, and S is a quotient of this image. ]

P —tq —1

LEmMa 4.6. Let L, and L, be submodules of M(p, q) which are shifted
modules. Then L, L, is also a shifted line module.

Proof. Consider the long exact sequence obtained by applying
Hom ,(—, A) to the sequence 0—->L,Nnl,—»L @®L,—»L +L,—-0.
Because d(L,nL,)=2, it follows that EXL,NL,)=EL,nL,)=0.
Because socle(L, n L,) =0, we have E*(L, n L,)=0. Similarly E*(L, + L,)
=0. Since both L, and L, are Cohen-Macaulay, so is L, ® L,. Hence
E¥L,®L,)=0. It follows that E*L,nL,)=0, whence L,nL, is
Cohen—Macaulay. But e(L,nL,;)=1, so by [7,2.2] L,~n L, is a shifted
line module. |J

ProrosITION 4.7. Suppose that |t| =o0. Let ke N, and let we E,. If
prg=w+(k—1)t then

(a) M(p, q) has a non-trivial finite dimensional simple quotient (this
also holds if |1| < w0);

(b) dim, Hom  (M(p —kt,g—kt)[—k], M(p, q))=1; we will write
K(p, q) for the unique submodule of M(p,q) which is isomorphic to
M(p—kt, g —kt)[—k];
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(c) M(p, q)/K(p, q) is a 1-critical module; it is a point module if and
only if k=1, in which case it is isomorphic to some M(e;),

(dY if S is any non-trivial finite dimensional simple quotient of
M(p, q), then S is a quotient of M(p, q)/K(p, q).

(e) M(p, q)/K(p, q) is not a B-module.
Proof. Write M= M(p, q).

(a) This is already proved in (3.8) for {7| = oo. If |1] < 0 then by the
remarks after (3.4) and (3.5), there exists 0 #fe V(w + (k— 1)t) such that
Af is a quotient of M. By (3.8) there exists 0£ Qe Z, and 0#veC such
that (2—v)-Af=0. Thus no simple quotient of 4f can be the trivial
module, so M has a non-trivial simple quotient, S say.

(b) By (4.5) Sis a quotient of a 1-critical graded module N which is
a quotient of M(p,q). If N is a point module, then N~ M(e;) and
p+q=w;, whence k=1 and Nz=M(p,q)/M(p—1,9—7)[—1] by
[7,57]. If N is not a point module, then (4.4) shows that
N=M(p, q)/M(p—dr,q—dr)[—d] and p+qgeE,+(d—1)1. It follows
that 2(d— 1)t =2(k— 1)z, whence d=k.

In either case there exists 0##deHom (M(p—kt,g—kt)[ —k],
M(p, g¢)) and any non-trivial finite dimensional simple quotient of M is
actually a quotient of M/Im(é$). Furthermore, it is implicit in the above
that M/Im(d) is l-critical, and is a point module only when & =1. This
proves (c) and (d), and we now complete the proof of (b).

Set L, =1Im(48). Suppose that L, is another submodule of M which is
isomorphic to M(p —kt, g— kt)[ —k]. Notice that H,,,, (t)= H,,, (t). By
(4.6) L, n L, is a shifted line module, and we may consider the inclusion
L,nL,cL, There are two consequences of the fact that M/L, is
1-critical. Firstly L,/L,n L, is l-critical, and secondly e(L,/L,nL,)=
e(M/L,). In particular, M/L, is a point module if and only if L,/L,n L,
is a point module.

Suppose that k=1. Then M/L, = M(e,) for some e, % by the earlier
part of the proof. Hence M/L, is also a point module. By [7, Sect. 5] there
are only three possibilities for M/L,, and since L,=M(p—1,g—1)[—1],
it follows that M/L,>~M(e;) and p+g=w, for somei Similarly
M/L, = M(e;). However, dim. Hom ,(M(p, q), M(e;))=1,s0 L, =L,.

Suppose that k> 1. Then L,/L,n L, is not a point module, so (4.4b)
applies to L,/L,~ L, as a quotient of L,. Therefore (p —kt)+(q—kr)e
E;+(d—1)7 for some deN. Since p+qge E,+ (k- 1)1, it follows that
2(d+ k)t =0. This is impossible, so we conclude that no such L, exists.

(e) By [5, Theorem 1.3] the only 1-critical B-modules are the point
modules M(p) where pe E. |
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The Proof of the Main Theorem. We must prove that the only finite
dimensional simple 4-modules are the trivial module, and the various
Viw+ kt)*.

Let S be a finite dimensional simple 4-module. By (4.3) and (4.4) there
exist p, ge E, we E,, and ke N U {0} such that S is a quotient of M(p, q)
and p+g=w+kt. By (4.7d) S is actually a quotient of M(p, ¢)/K(p, q).
Let 2 € Z, be such that Q- M(p, q) #0. Since S is simple, there exists ve C
such that (£2—v)-S=0. Hence S is a quotient of M(p, q)/K(p, q)+
(@ —v) M(p, ).

By (3.8) and (4.7d) V(w + kt)* is a quotient of M(p, q)/K(p, g) for all A.
Since Q(p+q)-V(w+kt)=0 and V(w + k1) is not a B-module, we have
Q- V(w+kt)#0. Hence (2 —p)- Viw+kt)=0for some 0#pueC. If i°=
vu~ ' then (2 —v)- V(w + kt)**=0. In particular, there exists 1€ C* such
that both V(w + kt)* and V(w + k) * are quotients of M(p, q)/K(p, q) +
(2—v)M(p,q).

Since M(p, q)/K(p, q) 1s a 1-critical module of multiplicity k£ + 1 which is
annihilated by Q, it follows that as a C[£2]-module it is free of rank
2(k+1) (since 2 € A,). Therefore dim(M(p, ¢)/K(p, q)+(2—v) M(p, q)) =
2(k +1). Since the non-isomorphic (k + 1)-dimensional simple modules
V(w+kt)* and V(w + k1)~ % are both quotients of this module, it follows
that M(p, q)/K(p,q) + (Q—-vM(p,g)=V(iw+kt)* @ Viw+kt) ™~
Thus § is isomorphic to either V(w4 kt)* or V(w +kt) % |

Remark. Fix weE, and ke N U {0}. Consider the lines {/,, |p+qg=
w + kt}. These lines all lie on a common quadric by [7, 3.11]. If £ =0 this
quadric has a unique singular point, and all these lines pass through
this point; if w =, then this singular point is ¢, ¥ and M(e;) has the
1-dimensional quotient modules ¥(w,)". In some sense the singularity is
being recognised by these finite dimensional simple modules (or vice versa).
Now suppose that k#0. Then the quadric is smooth, and the lines /,,
never intersect one another by [7,3.10c]. However, V(w+kt)* is a
quotient of all the line modules M(p,q). If N is a l-critical graded
A-module mapping onto V(w + k) then (by the proof of (4.5)) there is a
non-zero map M(p, g) — N. Thus, in the terminology of [ 1], the fat point
N is contained in all the lines /,,. Thus from the algebraic point of view
these lines behave as if they were on a singular quadric, with the singular
point being created by the existence of the simple module ¥V(w + k7). This
is reminiscent of the situation for semisimple Lie algebras where the finite
dimensional simple modules are associated to the singular point {0} of the
nilpotent cone.

The results in this section classify all the fat point for 4 when |1} = c0. They
are precisely the quotient M{(p, ¢)/K(p, q) given in (4.7c) where p+¢g=
w + k1 for some w € E, and k € N. This fat point has multiplicity k& + 1.
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5. CLASSIFICATION OF THE PRIMITIVE IDEALS

As a consequence of the main theorem we classify all the primitive ideals
in A.

Before doing this, recall that if |z| = oo, then the only finite dimensional
simple B-module is the trivial module. This follows from [5] and
Lemma 4.1 (see Remark 4 after (4.1)). It also follows from the Main
Theorem and the fact that none of the V7 is annihilated by both ©, and
Q, (3.9).

For each v,, v, e C define J(v,, v,)={Q2,—v,, Q, —v,).

THEOREM 5.1.  Suppose that |t| = ov. The primitive ideals in A consist of
the ideals J(v,,v,) where v,,v,eC, the annihilators of the modules
V(w + kt)?, and the augmentation ideal. The completely prime primitive
ideals are all the J(v,,v,), and also the annihilators of the 1-dimensional
modules, namely A(x,— p)+ Ax;+ Ax, + Ax, where {i,j,k,1} =10, 1,2, 3}
and ueC.

Proof. A primitive ideal of finite codimension in A4 is the annihilator of
a finite dimensional simple module, so is either the augmentation ideal or
is of the form Ann V(w + kt)’. Furthermore, the 1-dimensional simple
modules are the quotients of point modules M(e,). So it only remains to
prove that a primitive ideal of infinite codimension is one of the J(v,, v;),
and the quotient by this ideal is a domain. The latter is proved as follows.
If A is made into a filtered algebra by defining F'4 := P ,_, 4,, then 4 is
its own associated graded algebra, and the associated graded ideal of
J(v,, v,) is the ideal J(0, 0). Since A/J(0, 0)= B is a domain, A/J(v,, v,) is
also a domain by [8, 1.6.6].

Suppose that J is a primitive ideal of infinite codimension. Since 4 is a
noetherian algebra of countable dimension over an uncountable field, J
meets the center of 4 in a maximal ideal. Hence J contains some J(v,, v,).
Now A/J(v,, v,) is a domain of GK-dimension 2, so any proper factor is of
GK-dimension at most 1. However, as is well-known (see e.g. [15,3.2]) an
algebra such as 4 cannot have a primitive quotient of GK-dimension 1.
Therefore J=J(v,, v,).

It remains to show that each J(v,, v,) is a primitive ideal. Recall that
every prime ideal of 4 is an intersection of primitive ideals (see
[8, Sect. 17). Hence if J(v,, v,) is not primitive, then it must be contained
in infinitely many primitive ideals which are necessarily of finite codimen-
sion in 4. Thus J(v,, v,) annihilates infinitely many of the V(w + kt)* It is
an easy consequence of (3.9) that this is impossible. |i



86 SMITH AND STANISZKIS

14.

15.

16.

17.

ACKNOWLEDGMENT

The first author was supported by NSF Grant DMS-8901890.

REFERENCES

. M. ArTIN, Geometry of quantum planes, preprint, M.LT. (1991).

. M. ARTIN AND W. F. SCHELTER, Graded algebras of global dimension 3, Adv. Math. 66
(1987), 171-216.

. M. ARTIN, J. TATE, AND M. vaN DEN BERGH, Some algebras associated to automorphisms
of elliptic curves, in “The Grothendieck Festschrift” (P. Cartier er al., Eds.), Birkhiuser,
Boston, 1990.

. M. ARTIN, J. TATE, AND M. vaN DEN BERGH, Modules over regular algebras of dimension
3, Invent. Math. 106 (1991), 335-388.

. M. ARTIN AND M. vaN DEN BERGH, Twisted homogeneous coordinate rings, J. Algebra
133 (1990), 249-271.

. T. LEVASSEUR, Properties of non-commutative regular graded rings, Glasgow J. Math.
34 (1992), 277-300.

. T. LEVASSEUR AND S. P. SMiTH, Modules over the 4-dimensional Sklyanin algebra, Bull.
Soc. Math. France 121 (1993), 35-90.

. J. C. McConnNELL AND J. C. RoBsoN, “Non-commutative Noetherian Rings,” Wiley-
Interscience, Chichester, 1987.

. D. MUMFORD, “Abelian Varieties,” Oxford Univ. Press, London/New York, 1970.

. D. MuMFORD, “Tata Lectures on Theta, I,” Progress in Mathematics, Vol. 28, Birkhiuser,
Boston, 1984,

. A. V. Opessku AND B. L. FEIGIN, Sklyanin algebras associated with an elliptic curve,
preprint (1989). [in Russian]

. A. V. Opesskil axD B. L. FEiGN, Elliptic Sklyanin algebras, Funkt. Anal. Prilozh 23, No. 3
(1989), 45-54. [in Russian]

. E. K. SKLYaNIN, Some algebraic structures connected to the Yang-Baxter equation,

Funct. Anal. Appl. 16 (1982), 27-34.

E. K. SKLYANIN, Some algebraic structures connected to the Yang-Baxter equation.

Representations of quantum algebras, Funct. Anal. 17 (1983), 273-284.

S. P. SMITH, A class of algebras similar to the enveloping algebra of s/(2, C), Trans. Amer.

Math. Soc. 332 (1990), 285-314.

S. P. SmitH anp J. T. StarFoRD, Regularity of the four dimensional Sklyanin algebra,

Compositio Math. 83 (1992), 259-289.

H. M. WEeBer, “Elliptische Funktionen und Algebraische Zahlen. Lehrbuch der Algebra,

Band 3,” Vieweg, Braunschweig, 1908.



