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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
VoluMC 90, Number 1, Januarv 1984 

GELFAND-KIRILLOV DIMENSION OF RINGS 
OF FORMAL DIFFERENTIAL OPERATORS 

ON AFFINE VARIETIES 

S. P. SMITH 

ABSTRACT. Let A be the coordinate ring of a smooth affine algebraic variety defined 
over a field k. Let D be the module of k-linear derivations on A and form A [ D ], the 
ring of differential operators on A, as follows: consider A and D as subspaces of 

End, A (A acting by left multiplication on itself), and define A[D] to be the 
subalgebra generated by A and D. Let rk D denote the torsion-free rank of D (that 
is, rk D = dimFF OA D where F is the quotient field of A). The ring A[D] is a 
finitely generated k-algebra so its Gelfand-Kirillov dimension GK(A[D]) may be 
defined. The following is proved. 

THEOREM. GK(A[D]) = trdeg, A + rk D = 2trdegA A. 
Actually we work in a more general setting than that just described, and although 

a more general result is obtained, this is the most natural and important application 
of the main theorem. 

1. Introduction. Let A be a finitely generated commutative algebra over the field k. 
In the terminology of [9] let D be a (k, A)-Lie algebra. We recall the definition. 

(i) D is a Lie algebra over k, with the Lie product denoted [,]; 
(ii) D is an A-module; 
(iii) there is an A-module homomorphism, 0: D - Der A (the module of k-linear 

derivations on A); we denote 0(d)(a) by d(a) for d E D, a E A; 
(iv) these structures are related by the requirement that [dl, ad2] = a[dl, d2] + 

d,(a)d2 for d,, d2 E D anda E A. 
The most natural examples of (k, A)-Lie algebras are simply submodules D of 

Der A, which are closed under the Lie bracket on Der A. 
Given a (k, A)-Lie algebra D we form the ring of formal differential operators, 

AKD), as follows: it is the factor ring, TA(D)/J, of the tensor algebra of the 
A-module D, by the ideal J generated by the relations da - ad = d(a) for all a E A, 
d E D and dld2 - d2d, = [dl, d2] (for all dl, d2 E D). When D is an abelian Lie 
algebra and a finitely generated free A-module the ring A K D) has been studied by a 
number of authors [1], [3-5]. 

We shall always assume D is a finitely generated A -module, in which case A ( D), 
being a factor of TA(D), is a finitely generated k-algebra. Thus the Gelfand-Kirillov 
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2 S. P. SMITH 

dimension of A < D ) may be defined to be 

GK( A ( D)) lim sup (log dim W"/log n) 
11-xC 

where W is a finite-dimensional subspace of A K D ) generating A K D ) as a k-algebra. 
We adopt the convention that any subspace generating a k-algebra actually contains 
the field k; W" denotes the linear span of all words w1 ... w, with each w, E W. 

For any integral domain C with quotient field F, and any finitely generated 
C-module M, define the rank of M by rk M = dimFF Fc M. 

The problem is to determine GK(A KD)) in terms of other invariants of A and D. 
We prove 

THEOREM A. If D is a projective A-module and k is of characteristic 0, then 

GK(A (D)) = max{trdeg,(A/P) + rkA/p(D/PD)IP is a minimalprime ofA} 

= trdeg& SA(D), 

where SA(D) is the svmmetric algebra of D. 

The statement of the theorem simplifies when A is a domain or D is free: if A is a 
domain the assumption on the characteristic of k is unnecessary and GK(AKD)) = 
trdeg A + rk D; if D is free then GK(AKD)) = trdeg A + rk D. When D is free 
and the image of the generators of D in Der A span a finite dimensional solvable Lie 
algebra it follows easily from [8] that GK(A KD)) = tr deg A + rk D. 

An earlier version of this paper benefitted from the referee's criticism and we 
would like to express our thanks. 

2. Generalities concerning A K D ). The natural map A EEl D - A K D ) is an embed- 
ding and we identify A and D with their images in AKD). The ring AKD) is 
endowed with a natural filtration by the subspaces R, = (A + D)" = A + D + D2 
+ -*- . +D". Using the Lie bracket on D it is easy to check that if x E R,, and 
y E R,,I then xy - yx E From this it follows that the associated graded 
algebra gr A K D ) = RR,I/R, - is commutative. Furthermore, gr A K D ) is gener- 
ated as an algebra over A by the finitely generated A-module RI/R0 _ D, so there is 
a canonical surjection SA(D) - gr A KD), where SA(D) is the symmetric algebra of 
the A-module D. 

PROPOSITION 2.1 [9, THEOREM 3.1]. If D is projective, the canonical map S (D) 
gr A (D) is an isomorphism. 

PROOF. Just observe that A (D) coincides with the ring V(A., D) of [9] (or the ring 
VA of [7]). 

Recall the definition [6] of the ring DX of differential operators on an affine 
algebraic variety X. 

PROPOSITION 2.2 [11]. Let X be a smo)oth affine algebraic variety with coordinate 
ring A. Then DerA is a projective A-module and DX coincides with A<DerA). 
Furthermore, the filtration on D, given by the order of the differential operators 
coincides with the filtration on A (Der A ) given by the powers of the subspace 
A + DerA. 
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PROOF. By [11, Theorem 18.2], as X is smooth, Dx is the subalgebra of End, A 
generated by A and Der, A, so there is a natural surjection 4: A (Der A) Dx and 4 
preserves the filtration. Hence, 4 induces a map gr 4: gr A (Der A) - gr Dx. But by 
Proposition 2.1, grA<DerA>_ SA(DerA) and by [11,Theorem 18.2], grDx- 
SA(DerA) also. Hence gr 4 is an isomorphism. The commutativity of the diagram 

A(DerA) DX 

grA (DerA) grDDx 

(where the vertical maps are the gradings) ensures that 4 is injective and hence an 
somorphism. 

COROLLARY 2.3. If X is a smooth affine algebraic variety then GK( Dx) = 2 dim X. 

PROOF. Just apply Theorem A, together with the standard fact that tr deg, A = 
rk Der A - dim X. 

In [2, Chapter 2, ?6] Bjork considers a noncommutative ring R equipped with a 
filtration such that the associated graded algebra is commutative and noetherian. An 
integer d(R) is defined in terms of the properties of the associated graded algebra. 
The ring A K D) fits into this context and once Theorem A has been established it is 
easy to obtain the following 

COROLLARY 2.4. If D is projective, finitely generated and char k 0 O, then 
GK(A<D)) = d(AKD)). 

PROOF. The definition of d ensures that d(AKD)) equals the classical Krull 
dimension of grA<D). But grA(D>_ SA(D) by Proposition 2.1 and hence 
d(A <D)) = tr deg SA(D) = GK(A <D)) by Theorem A. 

We do not know if d( M) and GK( M) coincide for an arbitrary finitely generated 
A (D )-module M. In the special case when A K D) is a Weyl algebra, Bjork 
[2, Chapter 3, ?A.2.5] show that d( M) = GK( M) for all finitely generated M. 

3. Two lemmas concerning polynomials. The following is useful in the context of 
Hilbert polynomials. 

LEMMA 3.1. Let f E Q[x]. Then f is a polynomial of degree d if and only if the 
polynomial f, defined by f(x) = f(x + 1) - f(x), is a polynomial of degree d - 1. 

We will need another lemma concerning polynomials. 

LEMMA 3.2. Let p, q E Q[x] be polynomials of degree r, t, respectively, and suppose 
c E N is fixed. Define a function f on N by f(n) = p(O)q(n) + p(l)q(n- 1) 
+ +p(n - c)q(c). Then f is a polynomial of degree r + t + 1. 

PROOF. By induction on the degree of q. If deg q = 0 then q is a constant; say 
q(n) = Q. Thus, we have f(n) - Q(p(O) + . +p(n - c)) and f(n + 1) -f(n) = 
Qp( n + 1 - c). This is a polynomial of degree r, so by Lemma 3. 1, f is a polynomial 
of degreer+ 1. 
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Suppose now that the result is true for polynomials of degree t - 1 and that 
deg q = t. Then 

n-c 

f(n + 1) -f(n) = p(i)[q(n + 1-i)-q(n-i)] + p(n + 1-c)q(c). 
l =0 

The polynomial q(n + 1 - i) - q(n - i) is of degree t - 1, so the induction hy- 
pothesis applied to the function g(n) =72"p(i)[q(n + I-i)-q(n - i)] ensures 
that g is of degree r + t. As p(n + 1- c)q(c) is of degree r, f(n + 1) - f(n) is a 
polynomial of degree r + t. Another application of Lemma 3.1 shows f(n) is of 
degree r + t + 1. 

4. Normal form of elements in AK D). Let C be a finite-dimensional generating 
subspace of D with basis d1,. . . 5dr* Choose a finite-dimensional generating subspace 
V of A with the property that [C, C] C VC and C(V) C V2. It is possible to find 
such a subspace: just pick any subspace U of A, generating A and satisfying 
[C, C] C UC; for some 1, C(U) C U', hence C(U') C U21, and putting V = Ul we 
have a subspace with the required properties. 

Notice that C(V") C El7-IVJC(V)V`J-1 C V`'' for all n. Another way of 
expressing this is that CV" C V'7C + V'7+ '; we shall make frequent use of this fact. 

Let C,, denote the k-linear span of {dI ... dl'ri1 + .+ir= n} with the conven- 
tion that CO = k; notice that C = C,. It is clear that R,7 = ACo + AC, + *+AC,; 
if an element of A D ) is written in the form 

ai, ...I'd ... dI r(where each a,., C A), 

we shall say that the element is expressed in normalform. 
Put W = V E C; W is a finite-dimensional generating subspace of A KD ). It is 

necessary to study dim W" and as a first step towards this we will show that 
W'7 E=7 oV"tCt (Theorem 4.4). This result may be thought of as a statement 
about the normal form of elements in Wn, or as a statement about the product of 
two elements in normal form. 

LEMMA 4.1. CPV C EyPVJ+ICP J. 

PROOF. It is true for p 1 by what has already been said. Suppose that the 
statement is true for p. We shall prove it true for p + 1: 

P P 
UP+IVC 7, CVj+lCp-j C (V+C +2P- 

,=0 J=O 

P p+1 
C E Vj+lCp-j+l + VJ+2CP-J C E VJ+ICPJ+l. 

1=0 J=O 

LEMMA 4.2. [C, C,, ] C EJ' VJ+ C"' J. 

PROOF. Because C,, C C"1 we have 

[C, Cj,] C [C, C"'] C E C'[C, C]Cn1-I. 
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Hence [C, C,, ] C Y"%'CiVCm-i and the result follows at once from Lemma 4.1 
applied to the term C'V. 

LEMMA 4.3. CP C 7'?.jVJCv;. 

PROOF. The result is true for p = 1. Suppose it is true for all integers less than or 
equal top. Then 

p-l p-I 

CP+ 1 c 2 CVjCp-j C ( Vic + vi+ ' )Cp_j. 
j=O j=O 

We claim that for m sp, CCm C Em OV'Cm+?ii. This is true for m 0, and we 
prove it by induction on m. Suppose it is true for m - 1. Let dj+ , be one of the basis 
elements of C, and pick d,' ... d',r E Cm. It is enough to show that 

x = dj+(d' . d',r) E I ViCm+lj. 
i=O 

Now 

dj+, (d, ...* drr ) = ( [dj+ I 9 d Xi, ... dj,I] -di, ...* dj'jdj+ I ) dij+j_ 11 ... d ir 
is an element of [C, CI]Cmt + Cm+i for some t, m > t > 1. By Lemma 4.2 we see 
that 

t-I t-l 

x E t V'C C__ + Cm +1 C Vi+ Cm + Cm+ 
i=O i=O 

rn-I 

c z Vi+lcm i + C+ 
i=O 

If we now apply the induction hypothesis of the lemma to Cm-i for each i 
(O s i < m - 1), we have that 

rn-I (mr-i-I 
X E z V z V Cm_il + Cm+, 

i=O j=O 

m-1 m-i-I 

= 2 V i+ 
Cm-ili + Cm+ 1- 

i=O j=O 

It is now clear that the claim is true for m. 
Returning to the lemma, and applying the claim we have established that 

P- p P- p Al7 

CP+' C ( Vi v 'viCp?+_i) + vi+Icp -i. 

j=o i=o j=o 

The truth of the lemma for p + 1 follows. 

THEOREM 4.4. W" = t.0V'C 

PROOF. We proceed by induction, the case n = 1 being true from the definition of 
W. It is clear that W" D En oVn- C, as C, C Wt, and Vn-t C Wn-t. We prove the 
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reverse inclusion. Suppose it is true for n. Then W"71 - 1t V 7+I-tct + 

Et=OCV'Ct. The first of these terms belongs to EI!+J Vt +1 -t, and it remains only 
to prove that the second also does. By Lemma 4.3, and the fact that CC, C C'+ we 
have 

E CV t-'c, c (Vn'-c + VI?-t+')C t=() t=O 

C E vi7-t E VJC,+1_J + V11+1-tct 
t=O 1=O t=O Z1+~~~~~~ 1= 

11+1 

C I V11+1-tc 
t=O 

5. Proof of the theorem. 

LEMMA 5.1. If grA(D)- SA(D) then GK(A(D)) > GK(SA(D)). 

PROOF. Pick V, C, Was in ?4, so that W" = V-'Ct. Now SA(D) is generated 
as a k-algebra by the subspace V + C, where C = C + RO/RO. So to evaluate 
GK(SA(D)) we must examine dim(V + C)t7. But 

dim(V + C dim 2 V (C) = dim 2 V (C, + R,_,/R,t1) 
1=0 t=0 

11 

=dim 7, (Vnl-tCt + RtIl/Rt-1) 
t=0 

< dim V"-'C, = dim W" 
t=0 

(by Theorem 4.4), and the lemma follows from the inequality dim(V + C)"7 

dim W". 
We shall first obtain GK(A<D)) under the assumption that A is a domain. The 

general case will be reduced to the domain case by considering A/P for the minimal 
primes P of A. 

LEMMA 5.2. If A is a domain and D a torsion-free A-module then 

GK(SA(D)) = tr degk A + rk D. 

PROOF. As remarked in [10], under the hypotheses of the lemma, SA(D) is a 
torsion-free A-module; in particular, regular elements of A remain regular as 
elements of SA( D). Hence, the natural map SA( D) -*F ?A SA( D) is an embedding 
and the latter may be considered as lying in the quotient field of SA(D). In a 
commutative ring the GK-dimension coincides with the transcendence degree, so 
GK(SA(D)) = tr degk(F ?A SA(D)). It is standard that F ?A SA(D) -SF(F ?A D); 
but F($A D is just a free F-module on r = rk D generators, so SF(F ?A D) _ 
F[X1,... ,Xr], the polynomial extension in r indeterminates. The transcendence 
degree of F[X,. . . ,Xr] is simply trdegk F + r; whence the result. 
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Combining these two lemmas gives half of Theorem A (at least for A a domain) 
as any projective module is certainly torsion free. 

PROPOSITION 5.3. If A is a domain and D torsion free, then 

GK(A (D)) s trdeg A + rk D. 

PROOF. Pick 0 # x E A such that, if B = A[x-'] then E =B B(A D is a free 
B-module of rank r = rk D. As D is torsion free, so too is SA(D), and hence A< D) 
itself is a torsion-free A-module. In particular, x is a regular element of A ( D) so the 
natural map A (D) -X B ( E) is injective, and it is enough to prove the proposition 
for B ( E ). So assume D is a free A-module. 

Pick W, V, C as in ?4, but with the extra condition that C is a vector space of 
dimension r=rkD. As grA(D)-SA(D)_A[XX,...,Xr], one has for all t that 
dimC, = (CIr). Because W' = ' OV"'-'C,, 

fl fl 

dim W' s 2 (dim V-t )(dim C,) = : q(n-t)p(t), 
t=O t=O 

say, where q(n - t) = dim Vn-", p(t) = dim C,. However, p(t) is a polynomial of 
degree r, and q(n - t) is a polynomial of degree d = tr deg A. Hence by Lemma 3.2, 

,t=oq(n - t)p(t) is a polynomial of degree d + r. Because dim W" is bounded 
above by a polynomial of degree tr deg A = rk D, the result follows. 

Now we have the upper bound for GK(A KD)), and combining the previous three 
lemmas proves Theorem A for A a domain. Notice that to prove the theorem for a 
domain no assumption on char k was required. The necessity of the condition 
becomes clear in the following (where we no longer assume A is a domain). 

PROPOSITION 5.4. Let A be an algebra over a field of characteristic zero. Let D be a 
projective (k, A)-Lie algebra. Then 

GK(A (D)) = max {GK( (D/DP)) P is a minimalprime of A. 

PROOF. When A is an algebra over a field of characteristic zero then the minimal 
primes of A are invariant under every derivation on A. There are minimal primes 
Pi,...,PPn of A with P *... Pn = 0. Putting R =AKD) and using the fact that 

RP, = P,R is an ideal of R, one has the product (P, R)(P2R) ... (PAR) equal to 
zero. Consequently, GK(A K D)) = max{GK(R/PiR) I i = 1,... , n}. However, given 
an ideal I of A, invariant under any derivation, R/IR -(A/I)KD/DI). This 
follows from the fact that the diagram 

A(D) - (A/I)(D/DI) 

I 
SA(D) - SA/l(D/DI) 

(with the vertical maps being the gradings and the horizontal maps being those 
induced by the natural surjections A -+ A/I, D -+ D/DI) is commutative, and the 
kernel of the lower map is the ideal of SA(D) generated by I. 
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COROLLARY 5.5. Let A and D be as above. Then 

GK(A ( D)) = max{trdegk A/P + rkA/p(D/DP) I P is a minimalprime of A). 

PROOF. Just use the above propositions, and note that if D is projective as an 
A-module then D/DP is projective as an A/P-module. This completes the proof of 
Theorem A. 
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