CAN THE WEYL ALGEBRA BE A FIXED RING?

S. P. SMITH

(Communicated by Donald S. Passman)

ABSTRACT. If a finite soluble group acts as automorphisms of a domain, then the invariant subring is not isomorphic to the first Weyl algebra C[t, d/dt].

Let R = C[t, d/dt] be the first Weyl algebra. We prove the following result.

Theorem. Let G be a finite solvable group. Let $S \supset R$ be a C-algebra such that (a) S_R and $_RS$ are finitely generated,

(b) S is a domain,

(c) G acts as automorphisms of S, and $S^G = R$. Then S = R.

We will prove a rather more general result, from which the theorem follows. The original proof was improved by comments of T. J. Hodges. I would like to thank him for his interest, and for allowing his improvements to be included here.

Let B be an R-R-bimodule. We call B an *invertible bimodule*, if there exists another bimodule, C say, such that $B \otimes_R C$ is isomorphic to R as a bimodule. The invertible bimodules form a group under the operation of tensor product \otimes_R ; this group is called the Picard group, denoted Pic(R). If σ , $\tau \in Aut(R)$ are C-linear algebra automorphisms of R, then we write ${}_{\sigma}R_{\tau}$ for the invertible bimodule which is R as an abelian group, and for which the right R-module action is given by

 $b \cdot x = b\tau(x)$ for $x \in R$, $b \in {}_{\sigma}R_{\tau}$

and the left R-module action is given by

 $x \cdot b = \sigma(x)b$ for $x \in R, b \in {}_{\sigma}R_{\tau}$.

There is a map $\operatorname{Aut}(R) \to \operatorname{Pic}(R)$ given by $\sigma \mapsto_{\sigma} R_1$. This is a group homomorphism. A key point in our analysis is the following result of J. T. Stafford.

Received by the editors September 28, 1988 and, in revised form, October 10, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 16A72.

Theorem [3, Corollary 4.5]. The map $Aut(R) \rightarrow Pic(R)$ is an isomorphism.

Hence if B is an invertible R-bimodule, there exists $e \in B$ and $\sigma \in Aut(R)$ such that $x \cdot e = e \cdot \sigma(x)$ for all $x \in R$ (just take e to be the image of 1 under the isomorphism ${}_{\sigma}R_1 \to B$).

Proposition. Let $S \supset R$ be a C-algebra satisfying conditions (a) and (b) of the theorem. Then the only invertible R-bimodule contained in S is R itself.

Proof. Let $B \subset S$ be an invertible bimodule. Choose $e \in B$ and $\sigma \in \operatorname{Aut}(R)$ such that B = Re = eR and $x \cdot e = e \cdot \sigma(x)$ for all $x \in R$ (here \cdot denotes multiplication in S). The multiplication in S is an R-bimodule map, so $B^n \cong_{\sigma^n} R_1$. If σ has infinite order (or equivalently, if B has infinite order in Pic R), then all the bimodules B^n are non-isomorphic, and their sum in S would be direct. However, since S_R is finitely generated, S has finite length as an R-bimodule. Therefore, $\sigma^n = 1$ for some n. Hence for all $x \in R$, $xe^n = e^n \sigma^n(x) = e^n x$.

Therefore there is a surjective algebra homomorphism $R \otimes_{\mathbb{C}} \mathbb{C}[X] \to R[e^n]$, with $X \mapsto e^n$, where X is an indeterminate commuting with R. By [1, 4.5.1], the ideals of $R \otimes_{\mathbb{C}} \mathbb{C}[X]$ are of the form $R \otimes_{\mathbb{C}} I$ where I is an ideal of $\mathbb{C}[X]$. For $R[e^n] \cong R \otimes_{\mathbb{C}} \mathbb{C}[X]/R \otimes_{\mathbb{C}} I \cong R \otimes_{\mathbb{C}} \mathbb{C}[X]/I$ to be a domain it is necessary that $I = \langle X - \alpha \rangle$ for some $\alpha \in \mathbb{C}$. Thus $e^n = \alpha$. But $\mathbb{C}[e] \subset S$ is a domain, so n = 1. Therefore B = R.

If M is a left *R*-module, then the rank of M is the dimension of Fract $R \otimes_R M$ as a left Fract *R*-module. It is clear that an invertible bimodule is of rank 1.

Proof of the theorem. First we prove it for G abelian. In that case write $S = \bigoplus_{\chi} S_{\chi}$ where the sum is over the irreducible characters of G, and S_{χ} is the CG-submodule of S which is the sum of the χ -isotypical components. Therefore $S_1 = R$, $S_{\chi}S_{\xi} = S_{\chi\xi}$, and each S_{χ} is an R-bimodule.

 $S_1 = R$, $S_{\chi}S_{\xi} = S_{\chi\xi}$, and each S_{χ} is an *R*-bimodule. Suppose that $\chi\xi = 1$, and let $0 \neq a \in S_{\xi}$. Then $S_{\chi}a \subset R$, and is isomorphic to S_{χ} as a left *R*-module since *S* is a domain. In particular, S_{χ} is of rank 1 as a left *R*-module. Similarly, S_{χ} is of rank 1 as a right *R*-module. The multiplication map on *S* gives an *R*-bimodule homomorphism $S_{\chi} \otimes_R S_{\xi} \rightarrow S_{\chi}S_{\xi}$. The image is a non-zero subbimodule of *R*, hence equals *R*. Because all the ranks are 1, the map is injective. Therefore S_{χ} is an invertible bimodule. By the proposition, this forces $S_{\chi} = R$. Hence S = R as required.

Now let G be any finite solvable group, and set H = [G, G]. Then there is an action of G/H as automorphisms of S^H , and $R = S^G = (S^H)^{G/H}$. But G/H is abelian, and the first part of the argument applied to S^H shows that $S^H = R$. Now by induction on |G|, the theorem follows.

Remarks. 1. It would be very nice to have the same result for an arbitrary finite group G, but a new idea is necessary. Not much is known about finitely generated R-bimodules which are not invertible, and that is probably a prerequisite.

2. I do not know of any domain $S \supseteq R$ such that (a) and (b) hold. It would be very interesting to know whether or not such an S could exist. I expect not.

3. More generally I think it would be an interesting question to look at some other well understood non-commutative algebras, and ask if they can occur as the fixed ring of some reasonable extension ring. See [2] for an example concerning primitive factor rings of U(sl(2)).

References

- 1. J. Dixmier, Enveloping algebras, North-Holland Publishing Co., Amsterdam, 1977.
- 2. S. P. Smith, Overrings of primitive factor rings of U(sl(2)), J. Pure and Appl. Alg., (to appear).
- 3. J. T. Stafford, *Endomorphisms of right ideals of the Weyl algebra*, Trans. Amer. Math. Soc. **299** (1987), 623-639.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195