Differential Operators on Commutative Algebras.
5.P. Smith

Abstract. This article discusses sume of the similarities/differences
between the theory of differential operators on (a) a non-singular variety
in characteristic zero (b} a non-singular variety in positive
characteristic {c) a singular variety in characteristic zero.

§1. Introduction.

The goal is to describe some of the ring theoretic structure of the
rings of differential operators described in the abstract. Our main
interest will be in singular wvarieties in characteristic zero, and
non-singular varieties in characteristic p > 0 . The theory for
differential operators on non-singular varieties in characteristic zero is
well developed. We begin by recalling some of this theory, which will
provide the background against which the other cases will be viewed,

Let X be anon-singular irreducible affine algebraic variety over an
algebraically closed field k of characteristic zero. The ring of
differential operators on ¥, denoted (X}, may be defined as follows:

denote by A the co-ordinate ring of X (i.e. A =6(X), the ring of regular
functions on X ) and define (X) to be the k-subalgebra of End,A

generated by A (actingon A by multiplication) and Der, A, the module

of k-linear derivations on A. For example, if A= AN | affine n-space,

then 3(X) = K[ty,..,1,34,.,3,] where aj = 3/9% , the partial derivative

with respect to tj . The following properties hold for any such X (some

details may be found in Bjork's book [2])

(8) 8(X) is a simple, noetherian, domain, finitely generated as a
k-algebra;

(b} 9(X) is a filtered algebra, filtered by the order of the
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differential operators and the associated graded algebra

is grd(X} = S,(Der A), the symmetric algebra of the
A-module DerkA;

{c) The global homological dimension of § (X) is
gl.dim 9(X) = dim X .

As yet non-commutative algebraists do not have sufficient
techniques to penetrate the mysteries of simple, noetherian domains. For
example, one would conjecture that if ¥ and Y are non-isomorphic curves
then 8(X) and &(Y) are non-isomorphic k-algebras - but this question
remains wide open (of course the real guestion is to allow X and Y tote
of any dimension, but why add insult to injury!).

In this article we will neatly sidestep this difficulty by considering
singular varieties over a field of characteristic zero, and non-singular
varieties over a field of posiiive characteristic. As this conference is
primarily for ring theorists, we hope to convince the audience/reader that
the rings of differential operators on such varieties are worthy of their
interest,

§2. Singular Varieties.

The results an singular varieties in this section are joint work with
J.T. Stafford [8). Many of these results have 3lso been obtained independ-
ently by J. Muhasky and will appear in his Ph.D. Thesis.

The definition of (X} given in §1 for ¥ non-singular, char k = 0 is
not the appropriate definition when X is singular, or when chark=p>0.
We begin by giving the appropriate definition (for any commutative
k-algebra A) of H(A), the ring of k-linear differential operators
oh A. Not surprisingly if X isasin§l, and A = 6(X) then B(A) = I(X).

Let k be any commutative ring, A any commutative k-algebra. For

M,N any A-modules, give Homk(M,N) an A®k A-module structure by

(a @ b)e(m) = 38(bm) for abe A ,8¢ Hom (M,N} , m € M. Denote by p
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the multiplication map A @ A- A, pla @ b)) =ab. Thisisa
k-algebra homomorphism so the kernel, J say, is an ideal. It is easily
shown that J is generated as an idealby {1 & a-2a@ 1laea}.

Definition 1. For n z -1 define JJAn(M,N), the space or
A-fingsr qifTarentisl angratars fram M foe N af orger <n, by

9,"(M,N) = {8 € Homy (M,N) | S L6 = 0} .
Write 9,(MN):= U,5q SJAn(M,N) , for the space of differential operators
from M to N.

We shall drop the subscript A from 3, whenever convenient. It is
clear that 8"(M,N) ¢ 9™ 1MN), and 9 1(M,N) = 0 . Observe that
o e 9%M,N), 1f ang onlyif, (1 ®a-a@1)=0 forall acA (as J is
generated by such elements) . This is equivalent to
(1@a-a@1)6(m)=0 forall meM, and from the definition of the

A ®k A action this is saying that a8{m) = 8(am) for all ae A, meM;
that is, 9O(M,N) = Hom 4 (M,N) .

In the special case where M = N, write 3d(Mh= J(MM) . 1t is
straightforward to check that this is @ k-subalgebra of EndyM, and that
H(M,N) becomes a J(N) - H(M) bimedule. The module action comes from
the fact that Hom, (M,N) is a EngN - End, M bimodule.

Some work is involved in proving the following:

THEOREM 2.1 ([S], [} Z&7 k be om sigetraically clased Field of
chsraciertsiic zere, snd let X be 3 non-singuisr irregucitie 377ine
variely aver k . let A be 3 lecalissiion of S(X) . Then MA) is

genersled by A and Der A .

It was shown above that ao(A,A) = A, and it is an easy exercise to

prove that SJI(A,A) = AP Der A ; so one sees that the subalgebra of
End A generated by A and Deri A lies in D(A) forany k, any A.

NOTATION. For the remainder of this section, k will be an
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algebraically closed field of characteristic zers, and X an irreducible
affine variety over k.

Define B(X), the differential operatorson ¥ tobe D(G(X)), where
8(%) 1is the ring of regular functions on X, and D(6(X)) is obtained
through Definition 1 in the case M =N = 8(X) = A . By Theorem 2.1 this
agrees for X non-singular with the definition given in §1.

Recall that for ¥ non-singular (X} is a(right and left) noetherian
finitely generated k-algebra, but this is not necessarily true for X

singular. In[1]itis shown that if ¥ is the zeroes aver € of

X13 + X23 + X33 then DX} is neither noetherian nor finitely generated.

In this example dim X = 2, however, we have
THEQREM 2.2 [B] i[&t X fHea curve. Then
(a) DX) 7= dright ond 1e71) noetherisn, snd 8 finitely genersted
k- slgetirs;
(b) K} Aas & wnigue minimal nao-cere Mwe sidged 1063, M%)
sat, and WXhi= QX)) JK) 75 5 Zinite gimensionsi k- algebra.
This theorem is proved by relating o(X) and () where ¥
denotes the normalisation of X . The morphism m¥ -+ X corresponds to
the k-algebra homomorphism 8(X) » 8(X) , where &) is the integral
closure of B(X) in its field of fractions. Viewing 6(X) and 6() as
6(X)-modules, the definition above allows us to construct (R X):-

m@(x)(e(ﬁ’),@(x}) . More concretely, one may show (%) = {D e I &

6(X) forall fe G(f)} . There is a natural 9(x) - 3 bimodule structure
on (%), where the module action is just compasition of maps. Thus,
there is a functor 9(X %) ®33(§1'§' : 9(0-Mod » $0OO-Mod. The following
holds:

THEOREM 2.3 [8] ‘et X te g curve. Tre funcior SEXNQ@gm-
gives an aquivalence hatween the categories d()-Mod and H(X)-Mad (i.e.

3){3(’) ang MX) are Marils equivaient), if and only i1, n¥ s X Js

injeciive.
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Remark. [nfactalittle more is true, in that, if 1 is not injective
then (%) is not a simple ring (so cannot be Morita equivalent to 9(F)
which is a simple ring).

One step in the proof of Theorem 2.3 is to show that the functor
induces an equivalence of categories, if and only if, the natural map
3{?’,}{) & 66{) » B(4%) is surjective, or {what i5 the same thiny) that there
exist differential operators D, € aT%) and regutar functions 1y € 8%

such that 3y Dy(fy)=1.

Example. This gives an easy case where finding the D)k and f}\

. Rl . 2 . 2 z ~

is childs play. Consider the curve X< &< givenby y~=x", Then Kz
al and malsx s given by mt - (tz,t3) . This ig injective g0 such
Dy.fy exist. Consider 6(¥) = k{t] > 6(X) = k[tZ,t3]. Put D = (18/3t-1) €

ﬂfﬁ:}i) and observe that D{-1) = 1 . In this case, a® and 200 are
Morita equivalent.

One consequence of Thearem 2.3 is that one loses information about
the existence of singularities when passing from X, or 8(%)-Med to
3(X)-Mad. A natural question is whether 3(¥) still retfains this
information - one would at least like to know that if ¥+ X then 9(F) and
(X} are not isomorphic. Suppose this is the case; then what structural
aspects of (X) reflect the existence of singularities on ¥ 2 Of course,
one can recognhise the existence of singularities on X from 80%) just by
determining the global dimension of 6(X); thatis, X is non-singular, if
and only if, gl.dim(X) <co (this is not a sensible way to see if ¥ has
singularities but at least shows how the geometric information is
reflected in the algebraic structure of 6(X)) . Of course, the global
dimension of (X} does not retain the necessary information since if ¥
» ¥ isinjective then gl.dim 0(X) = 1 (by Theorem 2.3 and (c) of §1).

Returning to Theorem 2.2 an obvious question is to determine the

structure of the finite dimensional algebra H(X). First, we remark that

JI¥) = Anng](x)(G(X)m(ﬂ,K)*G&)) where D(TX)*8(%) denotes the image of
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the natural map 9(F.x) @8 » 600, D ® £+ D(D) . In particular, if

X is non-singular then 3(X) is simple so H(X} = 0 . But also after

Theorem 2.3, if ¥ - % s injective then H(X) = 0 . In fact, as

(implicitly) remarked earlier, H(X) = 0, if and only if, T is injective.
During the meeting A. Schofield asked whether H(X) was a direct

sum of algebras, one for each singuiar point. This is the case (as is

proved in [8]), and thus we write H(X) = £B H, ; 1t can be shovn that
®ESingX

if 8y, isthe localringat x, and 3y, = BBy ), then Dy, hasa

unigue minimal non-zero ideal J, and mx,xNx x H,. The point is that

determining H{X) is a local prablem, and the question is to determine how

the structure of H, depends on the nature of the singularity at x . The

results in [8) are a long way from answering this question completely and
we just mention twao examples.

Example 1. tet T==a1, and 80 = k[t]. Let X be the curve
with G(X)=k[t2,t(t2-k1)...(12—)\n)] where J.4,.., are distinct non-zero

elements of k. Inthis case H(X) = k P...B k adirect sum of n copies
of k.

Example 2. Let ¥=al, and 6 = k[t]. Let ¥ be the curve
with 6(X) = k[t(t-1)(t—2),12(t—1)(t—2)] =k +Kkf + kil + fzk[t] where f =
1(t-1)(1-2) . Then (after much computation) one has H(X) g(k kz) i

0k

Another interesting aspect of Theorem 2.2 is that although 3(X) is
finitely generated gr&(X) neednot be. In[ 8 ] it is proved that gr (%)
is finitely generated if and only if n¥- % is injective. The proof is
somewhat tricky, but in the special case where mX + X is unramified at
all points it is easy to prove ths! gr (X} is not noetherian (and hence not
finitely generated). To start, when T is unramified then 3(X) ¢ (% by

[3]. Hence a@,X) becomes a two-sided ideal of $(X) ; however, the
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endomorphism ring of any a(¥)-modute of finite length is finite

dimensional over k by Quillen's Lemma, and hence mmkm(k)/;)(%',x) < 0.

-

Consider R=gr 8%) =5 = gr 9041 = J = gr HFX), incide the commutative

k-algebra gr o). Itisan easy exercise to show that because dimy(R/J)
=co and dimk(SN) < oo, then S cannot be noetherian. ‘We do not have

an explicit description of gra(X) in terms of 6(X) - it would be
interesting to have such a description.

Recsll that when X is non-singular, then grd(¥) = 6(T*X) where
T*X is the cotangent bundle. As we have just said, gra(¥) need not be the
co-ordinate ring of any affine variety when ¥ is singular, hence it is not
possible 16 give a similar geometric definition of what it means for a
module ta be holonomic. Is there same "suitaliz" algebraic definition? If

X 1s non-singular then for 0+ f e 8(X), 6{K); isa D(X)-module of finite

length. Is this true when X is singular?

To end we state a result for higher dimensional varieties.

THEOREM 2.4 /f&7 Xt 5 singuisr variely of gimensian = 2
sunpase 1hat ihe noarmalisation X « 18 nap-sigguisn, snd ha! Sing X s
finite. Then XY Is g 7finilely ganersled k- algshra which is right but not

187} noetberian.

§3_. Paositive Characteristic.

The differences between the characteristic zero and positive
tharacteristic theories are striking. Yet so are the similarities. Let us
gxplain by giving two theorems. In this section k denotes an slgebraically
closed field of characteristic p > 0, and X denoles a non-singular,

irreducible affine variety ove; k. Write A = 8(X) and foreach rz 0

r
define A, = {aP | aeA}. Thisisa k-subalgebraof A isomorphictc A.
)
H M 3.1 ([4], = - dy AL
THEORE ([4, (7]} aGt)= Up,oq En An

Notation Wwrite Dn:= EndA & .
n
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THEOREM 3.2 [7] gldim () =dim X .
Certainly Theorem 3.1 has no analogue in characteristic zero and

illustrates a substantial difference. A good example to keep in mind is X =

v v
a1 in which case A =k[t] and An=K[tP 1 . Thus Endy A 2 M'r(k[tp D

r
as k[t] is afree k[tP ]-module of rank p" . More explicitly, if p=2,
then Do = k[t], Dy = Mo(k[1?]), Dy = M4(k[t4]) etc., and the inclusions

Dp e Dq =D5 e areeasy o describe in terms of basis elements viz.

0100 o o tt o
01 0000 2 o 00 ¢ tt
(o) [ o—
00 0001} 0 t2 1 60 0
0600 01 0 0f et

Some of the differences from the characteristic zerg theory (which are
immediate from Theorem 3.1) are that 2(X) is no longer a domain, 3(X)
is not finitely generated, DH(X) is not noetherian (all for dimXz= 1) .

For example, 3(X) s not finilely generated because any finite set of

elements can at best generated some D, but it is an easy matter to see
that Dn# Bpet - If K=Fract A, then O(K) is a localisation of 3(X) and
similarly 3(K) = U %oy Endy K where Ky - (P e K). As K is a
free K,-module of rank p", EndK“K = MPn(Kn) 50 O(K) is not a domain,

hence neither is (X} . Also the argurrent of [ 8 , Corollary 2.2 (4)]
shows that 3(K) is not noetherian, hence neither is H(X).

Theorem 3.2 illustrates one of the similarities with the
characteristic zero theory. The characteristic zero proof makes use of
grd(X). Incharacteristic p, gr H(X) appears to be of little help in
understanding 9(X) (for example gl.dim D(AL) = 0 ). Instead one makes

use of the description of 2{X) given in Theorem 3.1. The following

summarises some of the good properties of the Dy, .

PROPOSITION 3.3 [7] FarsiinelN, lhe faliowing bold.
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{a) Dy 7s Morits equivalent o Ay, 1he prageneraicr belng the Dp-Ay,
simogile & (4],
(b} Dy.q 753 7initely generated projective friyni ar lefl) Dy - maguie,

and Dy 783 direct summand of D a5 3 Dy-mocule;

n+1

(e} QXY 75 g projectiva irighi or Jert) Oy, ~madide;
(d)y X mzn, ey HUmD“( BmyDp) 75 & ok { projective right

D~ mrcouie;

m
(8)  HM Jisgsimplelelt O,-magule then J(K) @Dnrvl j& 3 simple
ler? H(X)- moduie

One further similarity with the characteristic zero theory is that
(%) isa simple ring, and B(¥) is a simple (X)-module. Before proving
this note that if 0 # 1 is an ideal of D(A) then Anls+ 0. To see this
chioose 0+ D el of lowest urder; if ae A, then [a,D] €1 is of lower
order, hence zerc by choice ef D ; but [a,D] =0 for all ae A implies
that D is a multiplication operator.

Proposition 3.4 /7 X Jsnon-cinguise then P(X) Js 3 simpie ring.

Proof. In [B] this is proved for X x al . since aaM =
o(aH®N itis easy to see that (A" is also simple.

As dy is a quasi-coherent Gy-module it is enough to show that
each stalk Dy, = 6y, & gx)dX) is a simplering for x € X. As By 1S
regular local, there is a local system of parameters ty,.,t, (n=dimX)
(which we may choose to be elements of 8(X)} such that Qg , the
module of Kahler differentials is free on dty,.,dt,. Henceby [ S ,§16]
dy,x 15 generated by 6y . and a set of differential operators {Dyl 1=
(i punsip) 0% <00} which satisfy Dy(t) = (P11 where J = (jg,eup)
and we are using standard multi-index notation. The point is that y .

contains a copy of H(A"), narmely the subalgebra generated by k[t sty
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and all the Dy .
Let O +1 be anideal of dy y - Then {as argued above) In Oy x*0.
Hence 1n 8(X)+ 0, and consequently Ink[ty,,...t;]#0 . Inparticular

In (&™) + 0, sobythe simplicity of (A" it follows that 1€ 1. Hence
JJX’X s simple as required. a
CORDLLARY 3.5 6{X) Js s simple D(X)- madguie
Proof. If not then any proper submaodule would be an ideal of 6{X)
ag 800 ¢ 900 ; if I« 6(X) were the proper submodule then
0+ 1 8(X) ¢ Anng yy(8(X)/1}  would be a proper ideal of the simple ring

304 . Contradiction, O
Remark. Of course the above proof works for any commutative
K-algebra A; viz. 3(A) simple, implies A 1s a simple 3J(A)-module. Is

the converse true?

Questions.

Some problems/questions have already been mentioned above. Let
us give a few more which retate to the characteristic p theory - so in
what follows X,k are as in§3.

1. ¥hat is the appropriate definition of a holonomic module? It is

tempting to hope that an algebraic rather than a geometric definition

is possible viz. M is solanamic if Extimx)(M,al(X)) =0 for all

0 si<dimX. Incharacteristic zero this is equivalent to the
geometric definition in terms of the dimension of the associated
variety [2]. As Bjork pointed out during the meeting, this
definition would 1ead to s “good” theory if question {2) has a positive
answer.

2. Is 8(X) aGorensteinring? Thatis,if N isa(right) 9(X)-sub-
module of Extjm(x)(M,&)(X)) for some left H(X)-module M, is

Ext! gy (N, (X)) = 0 forall 0si<j?
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3. Does a version of Quillen's Lemma hald? That is, if M is a simple

8(X)-module, is EndgeyxyM =k ?
4. If 0+fe®(X), is 6(X)¢ of finite length as a (X)-module? This

may well require an answer to question (3) as a preliminary.

A curiosity. Take & =k[t)/(1"). Then 9(A)= Mo(k), the ring of nxn
matrices over k. To see this observe that End A = Mn(k) so we only nheed
show for © € End, A, that JF6 =0 for r>>0. As J is generated by

1@t-t@1, and 1 @1, t® 1 are both nilpotent elements in A o

it follows that J is a nilpotent ideal. Hence S =0 for r>>0 and the
result follows.

Another curiosity. The Steenrod Algebra acts as differential
operators. This observation was made with J.D.S. Jones, and I am grateful

for his altowing me to include it here,

Let F2 denote the field of two elements, and write
S= F2[5q1,8q2,... 1 for the Steenrod algebra - for brevity write Sj = qu.
The co-product A:S:+S &), S is given by Alsy) = Z;:osn_i @ s; where
sg=1. For xe S, adopt Sweedler's notation and write
Alx) = 2y ) ® X(z) - Suppose that A is a commutative F,-algebra

which is an S-module, such that for all xeS,3eA,be A one has

x(ab) = z(x) x(i)(a) x(2)(b) . Then we claim that the algebra
homomorphism S- Endp A, actually has its image inside H(A).

To prove this notice first that A(sq)=s; ® 1+ 1 ® $4 ,and thus
sliab) = sl(a)b + asi(b) » hence sy isaderivationon A. By induction

on n, show s, ¢ 27(4) . Notice that sn(ab) = Z:i Sp-i(a)s;(b) + as, (b},
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whence [a,s,](b) = - Z:(')s,.|_i(a)s1~(b) . Thatis, for all ae A, [a,5,] =
- Z:(') $p-i(a)s; & by induction this element is in a"-1ay, and hence
s, € AM(A) .

As concrete examples take the actionof S on H*(IRPDO,FQ) = F5ful,
the polynomial ring in u. The actionof S is given by
S = S Mo (U™, and it is immediate that this action coincides
with that of u(1/ni@"/8u™ . This explicitly describes the algebra
homormorphism, S - B(Fo[ul).

The action of S on H*(X,F») where X is a product of countably
many copies of RP®, is a faithful representation of 5. In this case
H*(X,F2) = FalugUz... 1, the polynomial ring on countahly many
indeterminates. Here the algeln a homomorphism is given by

sq » me uzlal » where 1= (iy,i... ), and ull - u12i' u22‘%....

and lll=1y +ip+ ., and 8y = (1/igliofl... } @M+t /au, Iau,la .,
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