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Abstract

Let G be a connected complex semi-simple Lie group with
Borel subgroup B containing a maximal torus T and unipotent
radical N. ILet g,?,g,g denote the corresponding Lie algebras
and denote by U(g) the enveloping algebra of g. If A ¢ h*,
denote by M(A).the Verma module of highest weight A-p
(p is the half-sum of the positive roots). Write
DA = U(g)/Ann M(A). Let n = dim N, and denote by An the -
ring of regular differential operators on (complex) affine
n-space.

A. Beilinson and J. N. Bernstein (C. R. Acad. Sci. 292
(1981) 15 - 18) have constructed, for each A ¢ g*,a sheaf, DX
of twisted differential operators, on the flag variety G/B,
such that DA = P(G/B,DA)‘ Let w, be the longest element of
the Weyl group, and denote by BWOB.the large Bruhat cell.
Then BWOB is isomorphic to affine n-space (as a subVariety
of G/B) and F(BWOB’DX) = A . The restriction map

jx : F(G/B,Dx) > P(BwoB,DA)
gives én embedding of DA into An.

Denote by Q— the nilpotent subalgebra of g opposite n.
N. Conze (Bull. Soc. Math. France 102 (1974) 379 - 415;

zentralblatt fur Mathematik (1975) 298.17012). showed that



the action of U(g) on M(A) induces an action of U(g) on S(n),
such that U(g) acts as regular differential operators on Q—.
Consequently one has a map U(g) - An (realising An as regular
differential operators on n ) with kernel Ann M()A). Denote
by ik : DA -+ An the induced embedding.

In this paper it is shown that these two embeddings
of DA into An are essentially the same. More precisely the

following is established: let iw D

OA y 7 An denote the
Conze embedding obtained through the action of U(g) on M(wox)
and hence on S(n ); then there exists an automorphism T of g

(extending to an automorphism of DA)’ and an automorphism

Y of An such that lwox = WJAT.
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Differential Operators on the Flag Variety

and the Conze Embedding

T.J. Hodges and S.P.Smith

l. Introduction

Let G be a connected complex semi-simple Lie group with
Borel subgroup B containing a maximal torﬁs T and unipotent
radical N. Let g, b, h, n denote the corresponding Lie algebras
and denote by U(g) the enveloping algebra of g. If Asb* denote
by M(A) the Verma module of highest weight A-p (where p is the
half-sum of the positive roots). Put DA = U(g)/annM(X). 1In [BB] .

Beilinson and Bernstein construct a sheaf 3% of twisted

differential operators on the flag variety X=G/B such that

DA = T(X,i&). If VeX is an open affine subset isomorphic to

affine n-space A® (n = dim X = dim N) then I'(V,d ) = A  the n-th
Weyl algebra. The restriction map DA+F(V,£k) gives an embedding
of D, in A . In [C] Conze shows that the action of U(g) on M(X)

induces an action of U(g) on S(n-), the symmetric algebra of n-,
sucli Luait U{z, atls ao Giflereucial uperdarors ui Lfiuilie ordec.
Consequently one has a map U(g)+ An (realising A  as the ring of
differential operators on S(E"))’ with kernel anaM()A). In
Theorem 4.4 we-describe the relationship between these two

embeddings of D, in An'

A
If V=Bw,B denotes the large Bruhat éell then up to an
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embeddings coincide. The precise relationship is as follows.

Let jA: DA*An be the embedding obtained from the restriction map




DX+P(V,81); let w, denote the longest element of the Weyl group,

and let iwok: Dw°A+An denote the Conze embedding obtained

through the action of g on M(wok);'let T : g+ g be an

automorphism such that t(kX ) = kX and T(H ) = H for all
a woa a LR

roots o (k=C) ; T extends to an automorphism of U(g) and

induces an automorphism of DX which we also denote by T; denote

by ¢ the canonical automorphism of An given by

v(py) = a4 and w(qj) = -py; then iwok = Y3yt

One consequence of this and the equivalence of categories
established in [BB] is that if A is dominant regular then the
Conze embedding Dwox+An makes A flat as a right DWOX - module.

The proof of these results proceeds by examining the action
of g on T(V,0) (where @is the structure sheaf of X) induced by
the map g DA and the restriction DA + P(V,E&). As N acts
simply transitively on V we may identify TI'(V,@) with k[N], the
ring of regular functions on the affine algebraic group N. This
action of g on k[N] induces an action of g on k[N]°, the Hopf
dual of k[N] consisting of those distributions on N supported at
the identify. It is well known that k[N]° is isomorphic
to U(E) the algebra of right invariant differential operators on
N. We show that this action of g on k[N]° makes k[N]° isomorphic
to M(A), the co-unit being a highest weight vector. We are then
able to show that the action of g on k[N], which we are
identifying with T(V,®), is such that k[N] is isomorphic to the
dual orf M(A) (not the rull auai DUL CLne moaulre

of b—finite functionals on M{A)). This appears in §2.

In Section 3, we examine an arbitrary finite dimensional




nilpotent Lie algebra n over a field k of characteristic zero.
If N is the unipotent algebraic group with Lie algebra n then the
natural action of n on k[N] as right invariant derivations gives
an embedding of 'U(g) into a Weyl algebra; denote this embedding by

iZ:U(B)'+ A. The symmetrisation map w: S(n)——U(n) allows the
left regular representation of U(E) on itself to be transferred
to an action of . U(n) on S(E)' As U(n) acts on S(n) as
differential operators of finite order, if B denotes the ring of
differential operators on S(n), we obtain an embedding
ile(B)——+B. We show in Theorem 3.7 that there is an isomorphism .
p:A—+B such that i1=¢iz.

In Section 4, the result of §3 is applied to the subalgebra

n of g. Let A denote the ring of differential operators on
r(v,@). When we identify T(V,0) with k[N] the action of g
on I'(V,®) is such that 1n has its natural action (as right
invariant differential operators) on k[N]. Hence the map .
jA:Dk__+A’ when restricted to U(n) coincides with the map
iZ:U(B)——*A described above. Lt B denotes the ring or
differential operators on S(n) then the result of §3 says that
ij:DA——+B when restricted to U(B) coincides with il:U(E)——+B.
More importantly, the map ijT:DX——+B (where we now identify B
with the ring of differential operators on S(E—)) has the

property that when restricted to U(E—)’ the action of
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symmetrisation map w:S(B—)——+U(E—). To show that ijr=iw )’ it
0

is then just a matter of checking that the actions of n and h

on S(q—) are such that 1n.1=0 and that H.l=(wﬂx—p)(ﬂ).l



for H e h. This is straightforward after §2.




2.

The Beilinson-Bernstein construction and the action of

g on U

For ueU(g) denote by ut

the image of u under the anti-
automorphism given by X; = X_a for aeR (R is the set of
roots), and Ht = H for Heh. If M is a U(g)-module,

M#%* = Homk(M,k) is given a U(g)-module structdrg by (u.8)(m)
= 9(utm) for ue U(g), 8eM*, meM. Define the dual of

M, 8(M), to be the subspace of M* consisting of those

functionals which generate a finite-dimensional U(h)-

module. It is easy to check that 8§(M) is a U(g)-module.

The following characterisation of the dual of a Verma
module is better suited to our purposes (it is probably well
known but does not seem to appear explicitly in the

literature).

LEMMA, Let I denote the ideal of U(n-) geuneraled

by n-. Then SM(N)) consists of those functionals in M(A )%

which vanish on InM(K) for some n.

. v L $ -
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Proof. Write M = M(A). It is standard that
* .
(M) = %(Mu) where MH consists of the elements of M of

* .
weight p, and (M )" is identified with the subspace of u*

£ .thousz famcticnals sn M voniching on DM
a UFEL
Because M is a free U(g Y-module and NI =0, we also have

n . A . .
Ni%4 = 0. Hence, as Mp is finite dimensional, we have




MJ\InM = 0 for some n. But I™ 1s a sum of weight spaces
(because I® and M are). So an element of (Mu)* vanishes on
1.

Conversely, 1if GEM* vanishes on some I™M, then
8eS(M) for the following reason: as I™ is a sum of welght
spaces, it h;s a complement M' in M.which is also a sum of
weight spaces, hence eeZ(Mu)* where the sumris over the
finite set {ulMdﬁM'} (the set 1s finite as U(E_)/In is

finite dimensional).

Denote by k[N] the ring of regular functions on the
affine algebraic group N, and let E_denoté the ideal of k[N]
of those functions vanishing at the identity eeN. Denote
by A and € respectively the co-multiplication and co=-unit of
k[N]; that is, €:K[N]+k is the algebra map with kernel m,
or e(f) = £(e).

The Hopf dual k[N]° of k[N] is defined as the algebra
of functiomals on KiN] wiich vanish on some puwer 0L ke Tiis

—

multiplication in k[N]°® is defined by ¢6 = (¢ @ 8) A

for 0,$ek[N]°; that is ¢6(f) = I ¢(f(l))6(f(2)) where A(f)
(£)
(i)f(l)’Q f(2) in Sweedler's notation.

We view U(n) as the algebra of right invariant
d4ftarential onerators aAn N. There 12, an . algenra anty-
isomorphism (see, for example [W, p.99]) i:k[N]°+U(E) given

1(9) = (9 @ id)a; (6 @ id)A is the differential operator

given by (6 @ 1id)A(f) = I S(f(l))f(Z) for fek[N]. Through
L

’ N
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this anti-isomorphism the action of U(E) on itself by right
multiplication can be transferred to give k[N]° the
structure of a right U(n)- module : for deU(B), Bek[N]®

define 8d = 1”1(1(8)d) where 1(8)d is the product in U(n).

LEMMA. The action of U(n) on k[N]° given by (8d)(f) =

8(d(f)) for 6ek[N]°, deU(n), fek[N] makes k[N]° a free

right U(n)-module generated by €.

Proof. The action of U(n) on k[N]° described in the
statement of the Lemma coincides with that described just
prior to the Lemma. To see this, first observe that 1if
d = 1(¢p) = (¢ @ 1d)A then 1(8)d = 1(8)1i(¢) = 1(¢6). Hence
6d = ¢8 and (8d)(£) = (¢8)(£) =(§)¢(f(l))9(f(2>)

8 (29 (£ 1))E,y) = 6((4@1d)A(E)) = 8(d(£)).
‘0 Thus, as U(n) is a free right U(n)-module generated

by 1, k[N] is a free right U(pn)-module generated by

i-l(l); but i(e) =(e@id)d = 1, hence the result.

Let Der k[N] denote the module of k-linear derivations
on k[N] and think of n « Der k[N] as the space of right

invariant derivatiouns.

PROPOSITION. The map k[N] ® n » Der &[N] is an

isomorphism of k[N]-modules

Proof. |H,Theoren 3.1l,p.37]}.




We ﬁoint this out because it explains why é& is a sheaf
of twisted differential operators (see [BB] for the
definition). The point is that i1f N is any irreducible
affine algebraic group with Lie algebra n, the subalgebra of
Endkk[N] generated by k[N] and n coincides with that
generated by k[N] and Der k[N]. But as N is sﬁooth, this is
just the ring of differential operators on N. 1In other
words, the smash product k[N] # U(n) is {somorphic to the
ring of differential operators on N (in particular, if N is

unipotent this is a Weyl algebra).

The construction of the sheaf i& is described in
[BB]. We recall the details and then describe in some

detail the local structure of £& over the large Bruhat cell

vV = BwOB.

First let 0@ U(g) be the sheaf of k-algebras with
multiplication such that O 1 is a subsheaf isomorphic
to @, 1 @ U(g) is isomorphic to U(g), (f ® L)(g @ u) =
fg ® u, and for Xeg, [1 @ X,f @ l] = X(f) ® 1 where X(f) is
obtained by considering X as a global vector field on G/B.
Notice that [f @ X, g ® Y] = £X(g) ® Y + fg @. [X,¥Y] - gY(f) ® X
for X, Y e g.

Consider @ g as a subsheaf of Ve U(g), and denote
by o the map (9@ g TG/B into the tangent bundle. Denote
by b°® the kernel of a and put n° = [b°,b°]. The geometric

~

fibre of b° at xeG/B is EK = (Adx)b , the subalgebra



2.6

of g consisting of those vector fields vanishing at x. The
geometric fibre of n° at x is B, = (Adx) n « The factor

bundle b°/n° is trivial and isomorphic to Xxh, and hence one

~

~

has a map b° =+ (9@3 with kernel n°. For Aeh* denote

by A° the induced map b° + @.

For Aeh* denote by IA the sheaf of ideals generated by

z=-(A=p)°(z) for zeb® 3 then &k is defined as @@ U(g)/l& .

Put A = r(v,.‘B;‘), and @, = r(v,0). Then A=0, @ U(g)/I,
where I)\ = I‘(V,I)\). The map Ve g TG/B induces a map
UV ® 3 Der@% which we denots by a also. The kernel of

this map is by and ny = [bys byl

LEMMA. (i) The restriction of a to @V ® n is an

isomorphism from @V ® n onto Der @V‘

(11)0, 8 5 =0y © (&, ® g). Let p: Uy ® g > by be the

va

proiection.

(1ii) There is a surjective map by * CQ@ h with kernel
By

(iv) 1f Heh the image of p(l @ H) in QG /EG = GN @ b is

1 @ H.
Proof. All this is implicit in the construction
of El given in [BB].
(i) follows from Proposition 2.4 and the identification of
@, with k[N].

(ii) As @, is a polynomial algebra, Der(g‘ is a free
v J
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@V-module, hence OV 8 8 splits as a direct sum.
(1i1) and (iv) follow from the fact that b°/n° = U@ h.
All the maps mentioned in the Lemma are both Gw-module map s

and Lie algebra homorphisms.

For Aeh* denote by A° the composition
b >0, @0+ U, Then I, is the ideal of U, ol
generated by £-(A=p)°(z) for geby . We will identify Uy

and g with their images in A.

LEMMA. (i) A is generated by @% and n, and A = A , the

n

n—-th Weyl algebra.

(11) A/An = @% as 0V~modules.

(11ii) The embedding of g in A gives an action of g on A/Ag

which transferred to @V becomes

X.f = X(£) + (A-p)°p(l @ X)f for Xeg, fe ‘Ov'

Proof. A is generated by OV and g hence by
@V, P% and n (by Lemma 2.06(ii)); nowever the 1image P;
in A lies in ﬁ% (because of the definnition of IA)' Hence A
is generated by ﬁ% and n. The fact that A=An follows from
the discussion in §2.4. Hence (i).

The easiest way to see (11) is to realise An as
k[ql,..,qn,pl,..,pn] where k[ql,..,qn] = G% and Py = B/qu.
Than. asg ﬁk & o - ﬂerﬂv ie an dicomorphiem, An W Ap L +An
so A/An = k[ql,...,qn] = C%.

For acA let a denote the image in A/AE. For Xeg, feﬁh



& A

the action of g on @y is given by X.f = (I @ X\)(f @ 1) =

[1@X, £@ L] +£fQ@X=X(f) @1+ £@X =ZX(f) + £ @ X.

We have 1 @ X = p(1 @ X) + b for some be wvo n, so in A,

1@ X =(A-p)°p(1l @ X) + b and hence £ @ X = (A-p)’p(l @ X)f

(because the image of b in A lies in An). Hence (iii).

It is tﬁe action of g onmn OV given in Lemma 2.7 tiii)
that we want to understand.

Through the identification of @V and k[N] we transfer
this action of g on @V to an action on k{N] and use the Hopf
algebra structure of k[N] to transfer this to an action of g

on k[N]°., We will show in Theorem 2.10 that k[N]® = M(X).

LEMMA. Ei_k[N]* is given a g-module structure through

(u.8)(E) = 6(u%f) for uwel(g), Oe k[N]*, fek[N] then k[N]° is

a submodule.

Proof. Let Xeg, Bek[N]° such that 6(2?) = 0. We want
to show X.f vanishes on some power of m,
s+l
Suppose Xeb and fem . Then (X.8)(£f) =

B(XE.E) = 0(XE(E) + (A =p)°p(l @ XE)E) = 9 (Xt (£)) (using the

fact that_e(gf) 0 and fsgs). But Xtap— and vector fields

in P vanish at WOB which identifies with eeN under the

identification of N and V, so xE(r(§]) € m. By induction

O

+1 t ;
Xt(:sﬂ Ve so 9(vt(E)) = 09, Yo howe shown that if Voh

—

then (X.@)(§f+ ) = 0 and hence X.9e¢k[N]°.
Suppose ng_. Then Xtag and (A-p)°p(l ® X%) = 0 hence

for any fek[N], (X.9)(f) = S(Xt(f)). This action of XF
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gives an action of n on k[N]°® which agrees with that in
Lemma 2.3 and as k[N]®° is a U(B)-module under this action we
have X.0ek[N]°.

So k[N]° is indeed closed under this action of ge

Before proving that k[N]° = M(A), where the g-module
action on k[N]°® is that given is §2.8, the following

technical results are required.

LEMMA. Inside @V ® g one has
(a)l@p-cm@p+m@h+ ny

(b) 1 ®@h cn @

b=

+ PG

Proof (a) As 1n acts ad-nilpotently on g there is a
chain of subspaces 0 = NOCEHJ"‘ CNm = 9_ with the
property that [E,Nj]c:p + Nj—l' Moreover each of these
subspaces has a basis consisting of weight vectors (e.g. the
basis of N1 consists of those Xa,aeR—, such that
(a + R+) NR =¢ etc).

We will show that 1 @ Nj <n@®n + B° +nQ (P + Nj_

v

and by induction on j, the first part of the Lemma will

L)

follow. Pick Xij a weight vector and Heh such that
[X,H]=X. As Q%xg = PVQ(EQQP) there exist a,b € @V9 n such

that 1®@X + a and 1®@d + b are both in In fact as

Pv'

Ty -

Al . . hal '
O“’ \
elements of P% vanish on all of V and so at WOB in

particular); but the only elements of Derﬁb vanishing at w03~

are those in_EPerﬂ » so a and b belong to m & n.




Now [1@X + a, 1@H+b]s[3°,h;] but this bracket

= B%’
equals 1@X + [1@X,b] + [a,l@H] + [a,b]. The last two terms
both belong to m@n. If b = zfiaxi with fisg,xieg then
[1@X,b] = EX(fi)oXi + fiQ[X,Xi]. The first term is in

n®n, and the second belongs to Ep(h + N e Putting

j=1

all these facts together we have shown that

[
1®@X € Ry + m@n + m @ (b + Nj-l

(b) If Heh, we can pick bem@n such that 1@H + b 536

) as required.

(by what was said above). Hence (b).

COROLLARY. If Xen-, then (A-p)°p(l @ X) e m

Proof. As 1®X ¢ m@n + m § h + 5%, and p has kernel

wv®5 > m® 1, and (h—p)°(g%) 0 (by Lemma 2.6) we have
(A=p)°p(l@X) € (A-p)°p(m @ h). The result follows from the

fact that (A=-p)° and p are both wv—module maps.

THEOREM. As a g-module K{N]° = M(A) and the co-unit €

is a uighest welght vector.

Proof. It is necessary to show that (i) U(B-).e
k[N]° and that k[N]°®° is free as a U(B—)—module;
(1i) g.e = 0; (iii) for Heh, (H-(A-p)(H)).e = O

(i) If Xen- then (X.8)(£) = 0(xX".£) =

8 (xt(f) + (A-p)°p(l @ XE)E), but X'e g, so p(l ® X*) = 0,

amd (x,49)(f) = a(x5(£1).  Now annly Lenma Z.DJ.
(i1) If Xem then (X.e)(f) = c(XE(E) + -p)°p(l ® XE)E).

. t - ,
But £ vanishes on E_and Xt(f)eg because X'gb vanishes at

w, 3. So (X.e)(f) = e((A-p)°p(1 @ %)£). Applying Corollary
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2.9, one has (A-p)°p(l @ X%) e m so e((A=p)°p(l ® X°)£)=0.
Hence X.c = 0. |

(11i) If Heh then HE = H so
(H.e)(£) = e(H(f) + (A-p)°p(1 @ H)f) = e (H(£) + (A-p)(H)E).
But Heg— so H vanishes at w_B and H(f)em. Hence e (H(£f))=0

and (H.e)(f) = (A-p)(H)e(f) as required.

THEOREM. As g-modules, €%= S(M(N)).

Proof. 1Identify @v with k[N]. The previous theorem
gives a pairing k[NIxM(A)+k given by <f,m> = 6(f) where
meM(A) corresponds to 8ek[N]° in the isomorphism of Theorem
2.10. In other words, if ec¥(h) is the highest weight
vector corresponding to € in the isomorphism above, then for
ueU(E_) we have <f,ued> = (u.e)(f) = s(ut.f).

By Lemma 2.2, 8(M(N)) consists of those functionals
which vanish on InM(X) for some n, where I is the ideal of
U(n-) generated by 3—. The anti-automorphism, u+ut,
+5 to an anti-isomorphism from U(R-\ to U(n) and
1t = J where J is the ideal of U(n) generated by n. Using
this anti-isomorphism M(A) may be viewed as a right U(n)~
module, and 5§ (M(\) may be éharacterized as the space of
functionals which vanish on M(K)Jn for some n.

It is standard that the functionals on U(n) which
vanish on some power of J form an algebra isomorphic to
k[N], and the pairing k[N] x U(n) » k is given by (f,u)
= g(u(f)) for fek[N], uel(n)., Tdentifying U(n) with M(N)

we must show these two pairings are the same. We must show




that <f,ﬁe> = (f,ut) for ueU(E-) and fek[N]. But <f,ued>

= e(ut.f) , so for Xeg_, <f,Xe> = e(Xt(f)-b

(A=p)°p(l @ X5)£) = e(x°(£)) as Xen. As e (X(£)) =
(f,Xt) we have <f,Xed> = (f,Xt) for all XeB- and hence

{f,ued> = (f,ut) for all ueU(E—).




Realising the enveloping algebra of a nilpotent Lie algebra

as a subalgebra of a Weyl algebra.

Let n Dbe any nilpotent Lie algebra of dimension n
over a field k of characteristic zero.

Let B denote the ring of differential operators
on S(n). Define an action of U(n) on S(n) by u.a
= w-l(uw(a)) for ueU(n), aeS(n). This gives an embedding
iy U(n)*B. Let N be the unipotent algebralc group with Lie
algebra n and let A denpte the ring of differential
operators on k[N], the co-ordinate ring of N. The.action
of U(n) on k[N] as right invariant differential operators
gives an embedding iz: U(n)+A. We show there is an

isomorphism Y :A+B such that wiz=il.

We will use A to deunote the co-multiplication on
both U(n) and k[N]; it will be clear from the context which
algebra A is acting on and no confusion should arise.

Let <n> denote the ideal of U(n) generated by n, and
let U(n)° denote the subalgebra of U(n)* consisting of those
functionals which vanish on some power of <E>‘ Then U(g)°
= k[N] as'algebras. We shall identify U(B)O and k[N] and
denote the pairing U(m) x k[N] =+ k by <,> viz. {u, £>
= f(u) for uaUﬁn),fek[N] = Uﬁn)°. There is a matural map
U(B)+ﬁndkK[N] given by u+&§ @ 1id)a where H is the elenent
of U(n) obtained through the anti-isomorphism of U(n)

induced by ¥ = -3 for Xen. Hence if ue U(n) and fek[N] then
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v
= f L ]
u(f) Qf)<u ,f(1)> (2) So if ve U(n) then u(f) is the
functional on U(n) given by u(f)(v)
v v v
)if)< a , fl) > <v,f(2)> (Af)( u @ V) f(uv).

A right invariant operator T on k[N] is one with the
property that AT = (T @ id)A, and it is an easy matter to
check that the action of U(n) on k[N] defined above
makes U(E) act as right invariant differential operators on
k[N].

Denote by 1, : U(n)+A the map given by iz(u)(f) = u(f).

Choose a chain R =1, 2 10,3 ¢eeDD_D01 = 0 of

$ il ~
ideals in n such that [n, n,] C'Ej+l' Pick on Pj‘\ Bj+l’

so Xy,.¢.,X, 1s a basis for pn. We shall describe the
generators of k[N] in a somewhat unortﬁodox manner (see [H]
for a description of the usual generators of k[N]). While
this has the disadvantage that some work is required to show
that k{N] actually is generated by these elements, l;ter on
thcse Zenerators will be easiesr to work with {(boiag reluted

to the symmetrisation map, whereas the usual generators are

not ). Set Yj = w-l(Xj), so that S(pn) = k[Yl,...,Yq]. For
h| i
1

. _ . . J _ n
each multi-index J = (Jl,..-,Jn) set Y& = Y1 ....Yn . So

the w(YJ) form a basis for U(n) and this basis contains

. . oJ
Xyy+000,% . Define qieu(g)* by qi(Xi) = 1 and qi(w(l )) = 0
for all other basis elements m(YJ\. We will show that U(g)°

= k[ql,...,qn].
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LEMMA. For each m, <11>m is spanned by a subset of
J
{w(Y )}.

Proof. We use the ideas of [S], and the notation in
[D, §2.8.12] (which contains.a useful account of the results
in [S]). Let T denote the tensor algebra of n, and let
©@:T+n be the map described in [D, §2.8.12]. The restriction

SIGPB induces a map Ep

—+ n defined by e(xl,;.f,xp) =
e(x1 ® ... @ xp). The map 6 has the important properties
that, if xl,...,xpsg then 6(x1,...,xp) € <3>p; and
if yen r\<g>s then S(y,xl,...,xp)a <n>p+s .
For xl,...,xpeg, denote by (xl,...,xp) the sum
%! zoeS Xope e ¥gpe So in particular, (xl...,xp)
= w(m-l(xl)...w—l(xp)) and if each of KpseeerXg is an
element of {Xl,...,Xn} then (xl,...,xp) is a scalar

multiple of some m(YJ).

The result from [S] which we require is that for

P
X eee X € N, X7XneoeoeeX_ = L z \ X
1272 %p 7 oA TLlR2re P §=1 11, <eweeo<i <p
~ A 1 S N
4 - - e - ~ o ~ o~ ~r
\C(A_’ ye e e X, ),4\1,--o,A4 R R wnerc I,
& A . d a- o

) S 1 s L 3

means that the term Xy, is omitted.
]

Consider one of the terms appearing in this sum. Write

each of LS ERRRIFE (except xil,..,xis) as a linear

combination of the basis elements {Xl,..,Xq}. Because

O(X{ soeee,Xy ) € <£1>S N o the choice of the basis Xiseer Xy
s

i

ensures that @(wi ceas.%X. Y is a linear combination of basis
1

o

Frd
-~ o

elements Xj which belong to <E>Sf\ n. By the multi-

linearity of (xl,...,xm) each term

(O(xil,..,xis),xl..,xil,...,xis,...,xp) may be written as a




linear combination of terms of the form (yo’yl""’yp-s)
where each vy € {Xl""xn} and y_ ¢ <g>s; hence
(yo,yl,...,yp_s) 1s an element of <£1>p and is a scalar

multiple of w(YJ) for some YJ. Thus X1Xgeeeox, 18 a linear

P
combination'of terms m(YJ) which belong to <B>p.
As §9>m is spanned by elements of the form X KgeoooXy

with p>m and each x,en, the result follows.

3

COROLLARY. Each of qQiseessdy belongs to U(3)°.
Proof. As n is nilpotent n<2>m = 0 , so given any Xy,
there exists m with Xi ¢ <E>m. Now by the Lemma qq vanishes

on <3>m, so belongs to U(n)°®.

The following notation 1is standard.. For a multi-index

J

(3yreeesdpy) put | J] Jyteestiy » put Ji=i;! o..j . I

I

(il,...,in) write I < J if

1,63 0054 €3 and put J = T = (Jy=ij,..e,3,7ip).
If J < 1 2y = (Jl) (
put T - 'i ‘ e e 00 _'

A n

(0,¢4.,0,1,0,...,0), the index with 1 in the p-th position

.

n .
Yo Write ey for

and zeroes elsewhere. Define SIJ = 1 1if I = J and O
3 J
otherwise. Write qJ = qll...qnn.
J K
LEMMA q " (w(Y ")) = GJKJ!
Proof. If |J| = 1 this is true by the definition of

the q;. The Lemma is proved by induction on | J

. Suppose

the result is true for all q- with 1< |L]<]J]. We write q’

= qpqL with ps{l,Z,..,n} and L = J-ea. Now consider w(YK).
I




1f |K| ='1 then YK = Yr for some re{l,Z,...,n}, and

a? (™) = ayabxy = qpah(x) =(a, @ aMaxy)

- qp(Xr)qL(l) + qp(l)qL(Xr)= 0. So assume |K|>1. Then YX

= YrYM for some re{l,2,...,n} where M = K ~ e_.
Now q7(w(¥%)) = q al(w(r,yM) = (¢, ® ¥ (AuCr ™).

Denote the comultiplication in S(P) by A'; that is A'(Yj)

= Yj 1 +18 Yj for all j = 1,2,++.,n. As remarked in

[D, §2.8.13}], (w @ w)A' = Aw. Using this and ﬁhe fact

CeoMy M, I M-I
that A'(Y") IEM (I)Y ® Y we have

J K M I L M-I M-I
q" (X)) = 3, () {qp(w(YrY QW) + g (T Y N}
Applying the induction hypothesis to qL, the first term
will only make a non-zero contfibution when I = 0, r = p and
= L. M
M L. So the first part of the sum equals GprGML1

The second term will only make a non-zero contribution

when I = ey (so we would require ey < M) and
L = M—ep + e So, 1if mp = 0 the second term makes no
contribution to the sum; and if my > 1 the second term
M

n o N {
contribhutec (e > 8 M-e e 1. Nntice
that GL,M-e e GJK' Hence

P T

Ml =
6pr6ML4 if mp 0

a7 (0 (1% =

§ 5. Ml + (2 )8

' .
prOML i€ mp # 0

JKL.

It is rather tedious to give the deails but both these

expressions are identical to GJ( J! 1 we leave the details
i

to the reader.
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THEOREM. U(n)° = klqy,..,q,]+

Proof. We have already seen that
k[ql,...,qn} C U(n)°. The Lemma just proved may be
interpreted as saying that the set {qJIm(YJ) 4 <E>m} forms a
basis (on restriction)‘for (U(E)/<g>m)*, because the Lemma
implies that the images of {w(YJ)lw(YJ) ¢ <E>m} form a basis
for U(B)/<3>m. As U(n)° may be realized as the direct limit
of the (U(g)/(g)m)*, one sees that the qJ form a basis

for U(E)°.

Although there are easier ways to prove it we have
shown that U(n)° is a polynomial ring (the qj are

algebraically independent by Lemma 3.5).

The ring of differential operators on k[N] will be

denoted by A = k[ql;...,qn,pl,...,pn] where Py = a/qu, so

sij . The map i,: U(E) + A is given by iz(X)

= L Z(q,)p. fTor ZXen.
13773 ~

j=1

that [qi,qj]
n

The ring of differential operators on S(n) will be

denoted by B = k[Yl,...,Yn,al,...,an] where Bj = 3/8Yj so
Y = . F X. . = AdX, i
that [Bi, j} Gij or each i put AJ d j considered as
. - _ 1 ,
acting on S(n). Define s(Ai ,...,Ai ) = = cs§ Ai ....Ai
1 m m ol

We denote by bi the Bernoulli numbers, defined

1 <r -1
v ;U hoxt = wle =1) ", Wnw anch mnirti-indax
by X h.x 2 (e : 2 =1

L 1

I = (i;,.-+,i_ ) we define by = b!I‘|1|!(1!)“1.

gn
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For Xep,acS(a) one has Xu(a) =I brw(s(AT) (™ '(x))(a)).

I
Hence if the action of X on S(n) is given by X.a

= w-l(Xw(a)), we have 1, : U(n) + B given by
1,(X) =12 bi s(AI)(m_l(X))SI. Details concerning the above
appear 1£ [¢], [cl,I[B].

Let ¢ ¢ A+ B be the ring isomorphism given

by w(qj) = 3j and w(pj) = - Yj.

THEOREM. yi, = i .

1
Proof. Fix Xen and put Y = m_l(X). We begin by giving
a more explicit description for iz(X) = jgl X(qj)pj.

For any fek[N], X(f) is the functional on U(n) given by

X(f)(u) = = £(Xu). If X(£) ZanI for some scalars o

I,
then X(f)(m(YJ)) = aJJ! after Lemma 3.5. Hence X(f) =

1

- ZI(I!)_ f(Xm(YI))qI. We want to consider the case when

s Ky /e N oy L e , .
Consider qj(w(s(A YIS T(IT7)))y as s{A™{Y¥) is a liancar

combination of Yl,..,Y and qj vanishes on homogeneous terms

n

of degree greater than 1, a necessary condition for this
. \ K, ,1

expression to be non-zero is that 9 (¥ ) be a non—-zero

scalar. This can only happen if K = I, and then

3T (y') = 11. Hence ay(Ru(rh)) = e wa(s(AK)(Y)aK(YI)))
K

.
LE b L Ia gl AT IOy ) Hanra
i Tl s AT Oy ) 0]

n

b z

z <m<s<AI><Y>>>quj, and
I
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s I
Vi, (X) =L byd” LE, qj(w(s(A ) (Y)Y

I 3

But, when the a5 are viewed as functionals on kY; + ... + k.Yn
then Qpreeesr9y 1is the dual basis to Yl""’Yn‘ Consequently
v, 00 =1 b2 s(A1)(Y).

Comparing this with the expression for il(X) given
prior to the Theorem, the proof will be complete once we
have shown that BI and s(AI)(Y) commute. This is a
consequence of the way the basis for n was chosen. Consider
the Ai as acting on n. If Ai appears in Al then

AI(X) € 1 since [Xi’E] C'[Ei’ nl < n

Doyt In particular,

i+1
if A; appears in AI, then writing s(AI)(Y) as a linear
combination of Yl,...,Yn, the coefficient of Yi is zero. In

other words, if ai appears in BI, then Y, does not appear in

S(AI)(Y). Hence 81 and s(AI)(Y) comnute.



The Conze Embedding

We return to the themes of Section 2. Denote
by 3, D, + A the restriction map P(X,fk) *> P(V,i&).
Denote by B the ring of differential operators omn S(n). We
adopt the notation in §3 for the generators of A and B, and
define Y:A+B as in §3. First observe that the restriction
of jk to U(n) is just the map 1, : U(n) » A given in §3.
So ¥3, restricted to U(n) coincides with i, : U(n) + B.

Let L be the left ideal Aq;+...+ Aq,. Then B/y (L) may
be identified with S(n) and after the next Lemma we are able

to describe the action of g on S(E) that is induced by the

map wjx : Dk + B,

LEMMA. Let Xeb. Suppose 1 @ X + ZfY ® xYepg where

+
the sum is over YeR .

(i) If Xag—, then for each YER+, XY(EY) € m.

(11) 1f Xeh, then for each yeR', X (£) = ¥(X).

Proof. We already know each fYEE by Lemma 2.9.
For any BER+ the following is an element of the

ideal PG(of 6%@(5:

1@+ Tf @% ,1@%,] = 1Q[(X,%_ ] + L{f X ,X - X, (f b
(1@ LO%, » 16K, ] ®[%, %] { (Bl ] g (£ 0@ ] (%)
.
To prove (i) it is enough to prove it for X = X_a,aeR'.
Li [X_ ,%50 = b ihen IQUE_ »%g) & by + m @ by Leuna 2.2,

™

So from (*) we have :XB(fY) Q X mQ n. In particular

Y
each XB(fY) € m. So XB(fB) E M.
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Consider now the possibility that [X_ ,X;] e m. If it
is zero it is already in g_, s0 assume [X_a,XB] is a non-
zero scalar multiple of Xe_ae n. In this case the element
in (*) is in ((’)VQB)(\Q{, so must equal zero. Now l@[X,XB] is
not in m @ é so for it to cancel in (*) we must have
XB(fB—a) ® XB—a equal to 1 @ [X-a,XB] i.e. XB(fB-a) is a
non—=zero scélar. And for the other terms to cancel we must
have XB(fY) e m (for vy # B-a). In particular XB(fB) € M.
As BeR+ was arbitrary we have XB(fB) € m for all BeR+.

Turning to (ii), one has [X’XB] = B(X)Xeeg. As
remarked above, for 1 @ [X’XB] to cancel it 1is necessary

that XB(fB) ® XB = 1@ [¥X,X%,], hence B(X) = XB(fB).

B

PROPOSITION. Consider S(n) as a g-module through the

embedding ¢jk : DA + B. Then S(n) has the following

properties:

(1) The action of U(n) BE.S(E) is that obtained through

the symmetrisation map.

(i) o . 1 =0

(1ii) If Heh then H.1l = (A+p)(H)

Proof. (i) follows from Theorem 3.7 because jA|U(5)
equals ié, hence ij|U(E) equals i, in the terminology of §3.

Let Xeg— and choose stE such that 1 @ X + ZfY 0o XY € bVO
the sum being over Y€R+. The image of 1 X + Z?Y ® KY in A
is (A-p)°p(l®X + EfYQXY)= (A\=p)°p(l @ X). So the image of

1 ®@ X in A equals (A-p)°p(l @ X) - ZfYKY = (A=-p)°n(l ® X)
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- Z(XYf - XY(fY))' Now the action of g on S(n) = B/v (L)

Y
coincides with the action of g on A/L. As each fyaL, the
action of X on 1eA/L is X.T = ((A=p)°p(l @ X) + XY(fY))'T'
1f Xeg_ then by Corollary 2.9, (A-p)°p(l @ X).1 = 0 and
by Lemma 4.2, XY(fY). I = 0 also. Thus X.1 = 0, and this
gives (ii).
If Xeh then X.T = ((A=p)(X) + Iy(X)).T by‘Lemma74.2.

But EY(X) = 20(X) , so X.1 = (A+p)(X)T. This gives (iii).

Denote by T an automorphism of g which is induced

by w eW. That is t(kX ) = kX for all aeR and
0 o LR

T(Ha) = Hwoa'

THEOREM. wij = iwok
Proof. After the proposition it is clear that 1if we

view B as the ring of differential operators on S(B—)

(through the isomorphism 1 : S(n) =+ S(E_)) then the action
of g onm §(n ) f(ohtained through WjAT : ”A + H) =satiafies rhe

following:

(i) the U(E_) action on S(E_) is that obtained by the
symmetrisation map,

(1i) n.1 =0 ,

(iii) 1if Heh then H.1

(A + p)(WOH) =(wo>~ - p)(). So

-
~’ \ PO PR, 2 e P [V IS Y -~ O
ok oy o wdaxXES L L30NIOTPALL 0 salm vy Gal wee -

action of U(B_) is that obtained from the symmetrisation
map. This is all that is required to show that wj\w = i

9 2
0




4.5

Remark. The reader will have realised that T is not well-

defined; T is only determined up to a "scalar multiple” (that is,
an automorphism of g which is the identity on h and sends

each Xa to a scalar multiple of itself). The subsequent
ambiguity in the statement of Theorem 4.4 is, however, resolved
by realising that a similar problem occurs in the definition of
the Conze embedding; viz. the Conze embedding obtained through
the action of g on M(wg)) depends on the choice of a highest
weight vector (which is onl& defined up to multiplication by a

scalar) when defining the isomorphism M(wgd) = U(Q—).

= = 7
For each w ¢ W, put Vw waoB, and put Aw T(\W, &a).

Let j_ : D, - A_ be the restriction map.
w A W

PROPOSITION. Put S = @Aw. The diagonal map DA +~ S

obtained from the restriction maps makes S faithfully flat as

a rignt DA—module.

Proof. Suppose we can .show for each open affine U c G/B,

that T(U, o8 @ M) = 1(U, &.) ©_ M.
A A o,

Let 0 - M1 + M, » M, > 0 be a short exact sequence of D, -

modules. Put'm,i = ﬁn 2] Mi' The Beilinson-Bermstein equivalence
of categories shows that, for each w,

0 » TV ) ' 3 0
RS I w2 w3/

is exact. But, by the first paragraph, F(Vw,ﬂg) = AW ] b M.,



on

and so Aw is flat as a rightlDAfmodule. To prove the

"faithfulness", suppose M is a left D,-module with S eDM = 0;

A

A
by the first paragraph, P(VW, Eﬁ ® M) = 0, for all w.

Hence ak 8 M = 0, and so by the equivalence of categories M = Q.
We now pfove the statement at the beginning of the proof.
Consider the presheaf &kIU 8 M; we claim this is already

a sheaf. Put DU = P(U,ﬁ?x) and @U = F(U,o ). Comnsider

DU @D M as a left U—module and let DU 8 M be the associated sheaf
A

the (open affine) set U. By the definition of DU ® M, for

U D

any open affine W ¢ U, T(W,D, @ M) = r(w,®) e‘g D_ 8. M.
U
However, as a)\ is quasi-coherent, this equals TI'(W, ak) ® M;

and hence the presheaf ét

g 8@ M equals the sheaf D_ & M.
N

U
1f 3’ is a presheaf on G/B and ?-’- denotes the associated
o + +
sheaf then for any open affine U, 3 ’U = (?\U) . Thus
a'x 8 MIU = oa;\lu ® M, and consequently T (U, &A 8 M) = I’(U,&)\) ® M

as required. [

COROLLARY. The Conze embedding i” y ¢ Dy An (where An

0

is realised as the differential operators on S(E:) o~ M(WOA))

makes An flat as a right Dx~module.

Remark. A direct proof of this is given [JSI.
Proof. This follows at once from Theorem 4.4 and
Proposition 4.5 as i\7 = wj\T with ¢ and t both isomorphisms. .J

w oA
0
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