MATH 16A WORKSHEET 3

TUE, JAN 30, 2018

(1) Find the domain of the function $f(x) = \sqrt{x^2 - 4x - 5}$.

The only condition imposed on the function f(x) is that the input to a square root must be a nonnegative real number (zero is allowed). Thus $x^2 - 4x - 5 \ge 0$. Factoring the left hand side gives $(x - 5)(x + 1) \ge 0$. There are two cases:

Suppose $x - 5 \ge 0$ and $x + 1 \ge 0$. This is the same as saying $x \ge 5$ and $x \ge -1$, which is the same as saying just x > 5.

Suppose $x-5 \le 0$ and $x+1 \le 0$. This is the same as saying $x \le 5$ and $x \le -1$, which is the same as saying just $x \le -1$.

Thus our final answer is $(-\infty, -1] \cup [5, \infty)$

(2) Complete the square and determine the vertex for the equation $y = -2x^2 + 8x - 9$.

First we factor out the coefficient of x^2 to get $y = -2(x^2 - 4x + \frac{9}{2})$. Then we add and subtract (inside the parentheses) $(b/2)^2$ where b is the coefficient of x to get $y = -2(x^2 - 4x + 4 - 4 + \frac{9}{2})$ (in this case b = -4). Factoring the first three terms inside the parentheses and combining the other two constants gives $y = -2((x-2)^2 + \frac{1}{2})$. Distributing the -2 gives $y = -2(x-2)^2 - 1$. Thus our vertex is (b, k) = (2, -1).

(3) Solve the equation:

$$e^x = \frac{1}{e^5}$$

We rewrite the right hand side in the form $e^{\text{something}}$ to get $e^x = e^{-5}$. Thus $x = \boxed{-5}$

(4) Solve the equation:

$$8^{x^2} = 2^{x+4}$$

We rewrite the left hand side as a power of 2 to get $(2^3)^{x^2} = 2^{x+4}$. Simplifying the exponents in the left hand side gives $2^{3x^2} = 2^{x+4}$. Comparing exponents on both sides gives $3x^2 = x + 4$, and moving everything to one side gives $3x^2 - x - 4 = 0$, and factoring gives (3x - 4)(x + 1) = 0. Thus $x = \left[\frac{4}{3}, -1\right]$.