MATH 16A WORKSHEET 3
 TUE, JAN 30, 2018

(1) Find the domain of the function $f(x)=\sqrt{x^{2}-4 x-5}$.

The only condition imposed on the function $f(x)$ is that the input to a square root must be a nonnegative real number (zero is allowed). Thus $x^{2}-4 x-5 \geq 0$. Factoring the left hand side gives $(x-5)(x+1) \geq 0$. There are two cases:

Suppose $x-5 \geq 0$ and $x+1 \geq 0$. This is the same as saying $x \geq 5$ and $x \geq-1$, which is the same as saying just $x \geq 5$.

Suppose $x-5 \leq 0$ and $x+1 \leq 0$. This is the same as saying $x \leq 5$ and $x \leq-1$, which is the same as saying just $x \leq-1$.

Thus our final answer is $(-\infty,-1] \cup[5, \infty)$.
(2) Complete the square and determine the vertex for the equation $y=-2 x^{2}+8 x-9$.

First we factor out the coefficient of x^{2} to get $y=-2\left(x^{2}-4 x+\frac{9}{2}\right)$. Then we add and subtract (inside the parentheses) $(b / 2)^{2}$ where b is the coefficient of x to get $y=-2\left(x^{2}-4 x+4-4+\frac{9}{2}\right)$ (in this case $\left.b=-4\right)$. Factoring the first three terms inside the parentheses and combining the other two constants gives $y=-2\left((x-2)^{2}+\frac{1}{2}\right)$. Distributing the -2 gives $y=-2(x-2)^{2}-1$. Thus our vertex is $(h, k)=(2,-1)$.
(3) Solve the equation:

$$
e^{x}=\frac{1}{e^{5}}
$$

We rewrite the right hand side in the form $e^{\text {something }}$ to get $e^{x}=e^{-5}$. Thus $x=-5$.
(4) Solve the equation:

$$
8^{x^{2}}=2^{x+4}
$$

We rewrite the left hand side as a power of 2 to get $\left(2^{3}\right)^{x^{2}}=2^{x+4}$. Simplifying the exponents in the left hand side gives $2^{3 x^{2}}=2^{x+4}$. Comparing exponents on both sides gives $3 x^{2}=x+4$, and moving everything to one side gives $3 x^{2}-x-4=0$, and factoring gives $(3 x-4)(x+1)=0$. Thus $x=\frac{4}{3},-1$.

