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Limits of Sequences

Problem 1: Write a rigorous definition of what the following means: lim
𝑛→∞

𝑎𝑛 = 𝑐 (i.e. write the

definition for a sequence to converge) three times.

Solution: For every 𝜀 > 0, there exists a 𝑁 ∈ ℕ such that 𝑛 > 𝑁 implies that |𝑎𝑛 − 𝑐| < 𝜀. ■

Problem 2: Let 𝑎𝑛 = 𝑛
10𝑛+ 7 . Does lim

𝑛→∞
𝑎𝑛 exist? If so, prove it. If not, justify.

Solution: Yes, the limit does exist. We claim that lim𝑎𝑛 = 1
10 .

Scratch Work: We want |𝑎𝑛 − 1
10| < 𝜀. Well,

𝑎𝑛 − 1
10 = 𝑛

10𝑛+ 7 − 1
10

= 10𝑛− (10𝑛+ 7)
10(10𝑛+ 7)

= −7
10(10𝑛+ 1)

= 7
10(10𝑛+ 7)

So, if we want

𝑎𝑛 − 1
10 < 𝜀

we want

7
10(10𝑛+ 7) < 𝜀

Solving this inequality in the standard way shows it is equivalent to

𝑛 > 7
100

1
𝜀 − 10

So, we would want to take 𝑁 = 7
100

1
𝜀 − 10 , right? The only problem with this is that tech-

nically we want 𝑁 ∈ ℕ (where, ℕ = {1, 2, 3, 4,…}). Unfortunately, for some 𝜀 this expression

gives us a negative number. In particular, it's the subtraction of 10 that causes 𝑁 sometimes to

be negative. Since, if one 𝑁 works, any larger one works, we can just toss the −10 to get that a

valid choice is 𝑁 = 7
100𝜀 . ♣

Let 𝜀 > 0 be given. Let 𝑁 = 7
100𝜀 . Then, by the scratch work we see that if 𝑛 > 𝑁 then
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𝑎𝑛 − 1
10 < 𝜀

Since 𝜀 > 0 was arbitrary, the conclusion follows. ■

Problem 3: Let 𝑎𝑛 = 1
𝑛2 + 2𝑛+ 1 . Does lim

𝑛→∞
𝑎𝑛 exist? If so, prove it. If not, justify.

Solution: Yes, lim𝑎𝑛 exists. In fact, we claim that lim𝑎𝑛 = 0.

Scratch Work: We first note that 𝑎𝑛 = 1
(𝑛+ 1)2 . So, then we want |𝑎𝑛 − 0| < 𝜀. But,

|𝑎𝑛 − 0| = 1
(𝑛+ 1)2 − 0

= 1
(𝑛+ 1)2

= 1
(𝑛+ 1)2

So, we see that if we want |𝑎𝑛 −0| < 𝜀 we want

1
(𝑛+ 1)2 < 𝜀

Solving this for 𝑛 shows that we want

𝑛 > 1
𝜀 − 1

So, it would seem that we should take 𝑁 = ⎡⎢⎢⎢
1
𝜀 − 1⎤⎥⎥⎥

. But, we see that we run into the same

problem. For some values of 𝜀 > 0 we'd have that 𝑁 = 0, which is not a natural number. So, we

employ the same trick as in problem 1--we forget that −1. So, we see that 𝑁 = ⎡⎢⎢⎢
1
𝜀
⎤⎥⎥⎥

is good. ♣

Let 𝜀 > 0 be given. Let 𝑁 = ⎡⎢⎢⎢
1
𝜀
⎤⎥⎥⎥
. Now, if 𝑛 > 𝑁, then by our scratch work we see that

|𝑎𝑛 −0| < 𝜀

Since 𝜀 > 0 was arbitrary, the conclusion follows. ■

Problem 4: State and prove the Squeeze Theorem for sequences. Use it to prove that

lim
𝑛→∞

𝑛2 +𝑛+ 48769504 + sin(𝑛)
𝑛4 +𝜋𝑛2 −2 = 0

Solution: The squeeze theorem states the following
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Theorem (Squeeze Theorem): Let 𝑎𝑛, 𝑏𝑛, and 𝑐𝑛 be real sequences. Suppose that

𝑎𝑛 ⩽ 𝑏𝑛 ⩽ 𝑐𝑛

for all 𝑛 ⩾ 1. If lim𝑎𝑛 = lim𝑐𝑛 = 𝑐, then lim𝑏𝑛 = 𝑐.

Proof: Let 𝜀 > 0 be given. Since lim𝑎𝑛 = 𝑐, we may choose 𝑁1 ∈ ℕ such that 𝑛 > 𝑁1 implies that

|𝑎𝑛 − 𝑐| < 𝜀. Similarly, since lim𝑐𝑛 = 𝑐, we may choose 𝑁2 ∈ ℕ such that 𝑛 > 𝑁 implies that

|𝑐𝑛 − 𝑐| < 𝜀. Let 𝑁 = max{𝑁1,𝑁2}. Suppose that 𝑛 > 𝑁. Note that since 𝑛 > 𝑁1 we have that

|𝑎𝑛 − 𝑐| < 𝜀 ⟺ −𝜀 < 𝑎𝑛 − 𝑐 < 𝜀

Similarly, since 𝑛 > 𝑁2, we have that

|𝑐𝑛 − 𝑐| < 𝜀 ⟺ −𝜀 < 𝑐𝑛 − 𝑐 < 𝜀

We claim that

|𝑏𝑛 − 𝑐| < 𝜀 ⟺ −𝜀 < 𝑏𝑛 − 𝑐 < 𝜀

But, note that since 𝑎𝑛 ⩽ 𝑏𝑛 ⩽ 𝑐𝑛 we have that

−𝜀 < 𝑎𝑛 − 𝑐 ⩽ 𝑏𝑛 − 𝑐

and

𝑏𝑛 − 𝑐 ⩽ 𝑐𝑛 − 𝑐 < 𝜀

Thus,

−𝜀 < 𝑎𝑛 − 𝑐 ⩽ 𝑏𝑛 − 𝑐 ⩽ 𝑐𝑛 − 𝑐 < 𝜀

and so

−𝜀 < 𝑎𝑛 − 𝑐 < 𝜀

as desired. Since 𝜀 > 0 was arbitrary, the conclusion follows. ■

Now, let's use the squeeze theorem to prove the desired limit is zero. Let us note that for all

𝑛 ⩾ 1 we have that

𝑛2 +𝑛+ 4876904 + sin(𝑛) ⩽ 𝑛2 +𝑛2 +4876904𝑛2 +𝑛2 = 4876907𝑛2

and

𝑛4 −𝜋𝑛2 − 2 ⩾ 𝑛4
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Thus,

𝑛2 +𝑛+ 48769504 + sin(𝑛)
𝑛4 +𝜋𝑛2 − 2 ⩽ 4876907𝑛2

𝑛4 = 4876907
𝑛2

Now, note that for all 𝑛 ⩾ 1 we have that

𝑛2 +𝑛+ 4876904 + sin(𝑛) ⩾ 𝑛2 −1

and

𝑛4 −𝜋𝑛2 −2 ⩽ 𝑛4

Thus,

𝑛2 − 1
𝑛4

𝑛2 +𝑛+ 48769504 + sin(𝑛)
𝑛4 +𝜋𝑛2 − 2

Thus, putting the two inequalities we've derived together gives

𝑛2 − 1
𝑛4

𝑛2 +𝑛+ 48769504 + sin(𝑛)
𝑛4 +𝜋𝑛2 −2 ⩽ 4876907

𝑛2

Since the two outward bounding sequences converge to 0 (exercise left to the reader) the Squeeze

Theorem implies that

lim
𝑛→∞

𝑛2 +𝑛+ 48769504 + sin(𝑛)
𝑛4 +𝜋𝑛2 −2 = 0

as desired. ■
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Limits of Functions

Problem 5: Write a rigorous definition of what the following means: lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 (i.e. write the

definition of a limit converging).

Solution: Let 𝜀 > 0 be given. There exists a 𝛿 > 0, such that if 0 < |𝑥−𝑎| < 𝛿 then |𝑓(𝑥)−𝐿| < 𝜀.■

Problem 6:

a) Use the definition of the limit to show that lim
𝑥→0

1 = 1.

b) Generalize the above to show that lim
𝑥→0

𝑐 = 𝑐 where 𝑐 is any real constant.

c) Use the definition of the limit to show that lim
𝑥→𝑎

1 = 1 where 𝑎 is any real number.

d) Generalize part c) to show that lim
𝑥→𝑎

𝑐 = 𝑐 where 𝑎 and 𝑐 are any (possibly unrelated) real

constants.

Solution:

a) Let 𝜀 > 0 be given. Let 𝛿 = 1, note then that if 0 < |𝑥 − 0| < 𝛿, we have that |1 − 1| = 0 < 𝜀.

Note that since 𝜀 > 0 was arbitrary, the conclusion follows.

Remark 1: Note that we could have taken ANY 𝛿 we wanted here (why?). ♦

b) Let 𝜀 > 0 be given. Let 𝛿 = 1. Then, if 0 < |𝑥 − 0| < 𝛿 we have that |𝑐 − 𝑐| = 0 < 𝜀. Note that

since 𝜀 > 0 was arbitrary, the conclusion follows.

Remark 2: Same remark as the last remark. ♦

c) Let 𝜀 > 0 be given. Let 𝛿 = 1. Note that if 0 < |𝑥 − 𝑎| < 𝛿, then |1 − 1| = 0 < 𝜀. Since 𝜀 > 0

was arbitrary, the conclusion follows.

Remark 3: Same remark as the last remark about the remark before that remark. ♦

d) Let 𝜀 > 0 be given. Let 𝛿 = 1. Note if 0 < |𝑥 − 𝑎| < 𝛿, then |𝑐 − 𝑐| = 0 < 𝜀. Since 𝜀 > 0 was

arbitrary, the conclusion follows.

Remark 4: I'm not even going to attempt this one... (remarkception) ♦
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Problem 7: Let 𝑓(𝑥) = 𝜋𝑥− 1. Does lim
𝑥→𝜋

𝑓(𝑥) exist? If so, prove it. If not, justify.

Solution: Yes, the limit does exist. In fact, we claim that lim
𝑥→𝜋

𝑓(𝑥) = 𝜋2 − 1.

Scratch Work: Let us first mess around with |𝑓(𝑥) − (𝜋2 − 1)|. Well:

|𝑓(𝑥) − (𝜋2 −1)| = |𝜋𝑥− 1− (𝜋2 − 1)|

= |𝜋𝑥−𝜋2|

= 𝜋|𝑥−𝜋|

So, if we want |𝑓(𝑥) − (𝜋2 − 1)| < 𝜀, we really want 𝜋|𝑥−𝜋| < 𝜀, and so we want |𝑥 −𝜋| < 𝜀
𝜋 .

Thus, it behooves us to take 𝛿 = 𝜀
𝜋 . ♣

Let 𝜀 > 0 be given. Let 𝛿 = 𝜀
𝜋 . Note then that if 0 < |𝑥 −𝜋| < 𝛿, then |𝑓(𝑥) − (𝜋2 − 1)| < 𝜀 by

our scratch work. Since 𝜀 > 0 was arbitrary, the conclusion follows. ■

Problem 8: Let 𝑓(𝑥) = 𝑥2 + 2𝑥+ 7. Does lim
𝑥→1

𝑓(𝑥) exist? If so, prove it. If not, justify.

Solution: Yes, the limit does exist. In fact, we claim that lim
𝑥→1

𝑓(𝑥) = 10.

Scratch Work: Let's screw around with |𝑓(𝑥) − 10|. Well:

|𝑓(𝑥) − 10| = |𝑥2 +2𝑥+ 7− 10|

= |𝑥2 +2𝑥− 3|

= |(𝑥− 1)(𝑥+ 3)|

= |𝑥− 1||𝑥 + 3|

Now, as always, we have made appear the term we wanted (namely |𝑥 − 1|) but it's accompanied

by a scary function of 𝑥. We might be scared, as always, that as we choose 𝑥 to make |𝑥−3| tiny,

that |𝑥 + 3| might get back, actually stopping |𝑥 − 3||𝑥 + 3| from getting small. So, let's try and

bound |𝑥 + 3| by a constant, so this fear disappears. Taking a hint from Dr. Coward, what if we

restrict ourselves to only looking at |𝑥−1|< 1
1000? This manifests itself in our language by always

choosing 𝛿⩽ 1
1000 . Well, if |𝑥−1|< 1

1000 , then

− 1
1000 < 𝑥− 1 < 1

1000
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so

4 − 1
1000 < 𝑥+ 3 < 4+ 1

1000

Thus, we easily see that |𝑥 + 3| < 5. Thus, we see that

|𝑓(𝑥) − 10| = |𝑥− 1||𝑥 + 3| ⩽ 5|𝑥− 1|

So, if we want to make |𝑓(𝑥) − 10| < 𝜀, it really suffices to make 5|𝑥 − 1| < 𝜀, or |𝑥 − 1| < 𝜀
5 .

This last condition manifests itself by always considering 𝛿⩽ 𝜀
5 . Thus, we see the two conditions

we've imposed are 𝛿 ⩽ 1
1000 and 𝛿 ⩽ 𝜀

5 . Since we want both conditions to hold for 𝛿, we merely

take 𝛿 = min{ 1
1000 , 𝜀

5} for then 𝛿 will certainly satisfy both conditions. ♣

So, let 𝜀 > 0 be given. Let 𝛿 = min{ 1
1000,

𝜀
5}. If 0| < |𝑥 − 1| < 𝛿, then the scratch work shows

that

|𝑓(𝑥) − 1| < 𝜀

Since 𝜀 > 0 was given, the conclusion follows. ■

Problem 9: State and prove the Squeeze Theorem for functions (include a drawn picture of why it

makes sense IN ADDITION to the proof). Use it to prove the following equality:

lim
𝑥→0

𝑥4 sin 1
𝑥2

(see discussion notes for a similar problem/hint).

Solution:

Theorem (Squeeze Theorem): Let 𝑓(𝑥),𝑔(𝑥) and ℎ(𝑥) be real valued functions. Suppose that

𝑓(𝑥) ⩽ 𝑔(𝑥) ⩽ ℎ(𝑥)

for all 𝑥 near 𝑎. If lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

ℎ(𝑥) = 𝐿, then lim
𝑥→𝑎

𝑔(𝑥) = 𝐿.

Proof: Suppose that 𝑓(𝑥) ⩽ 𝑔(𝑥) ⩽ ℎ(𝑥) whenever |𝑥 − 𝑎| < 𝑟0 (this is true for some 𝑟0 since

we assumed the inequality was true near 𝑎). Let 𝜀 > 0 be given. Since lim
𝑥→𝑎

𝑓(𝑥) = 𝐿, there exists

𝛿1 > 0 such that if 0 < |𝑥− 𝑎| < 𝛿1 then

|𝑓(𝑥) − 𝐿| < 𝜀 ⟺ −𝜀 < 𝑓(𝑥) − 𝐿 < 𝜀
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Similarly, since lim
𝑥→𝑎

ℎ(𝑥) = 𝐿, there exists 𝛿2 > 0 such that if 0 < |𝑥− 𝑎| < 𝛿2, then

|ℎ(𝑥) − 𝐿| < 𝜀 ⟺ −𝜀 < |ℎ(𝑥) − 𝐿| < 𝜀

Let 𝛿 = min{𝛿1, 𝛿2, 𝑟0}. Suppose that 0 < |𝑥− 𝑎| < 𝛿. We want to show that

|𝑔(𝑥) − 𝐿| < 𝜀 ⟺ −𝜀 < 𝑔(𝑥) − 𝐿 < 𝜀

Note that since |𝑥 − 𝑎| < 𝑟0 we have that 𝑓(𝑥) ⩽ 𝑔(𝑥). But, we also have that 0 < |𝑥 − 𝑎| < 𝛿1,

and so we see that

−𝜀 < 𝑓(𝑥) − 𝐿 ⩽ 𝑔(𝑥) − 𝐿

Also, since |𝑥 − 𝑎| < 𝑟0 we have that 𝑔(𝑥) ⩽ ℎ(𝑥). But, we also have that 0 < |𝑥 − 𝑎| < 𝛿2, and

so we have that

𝑔(𝑥) − 𝐿 ⩽ ℎ(𝑥) − 𝐿 < 𝜀

Putting these inequalities together gives that

−𝜀 < 𝑓(𝑥) − 𝐿 ⩽ 𝑔(𝑥) − 𝐿 ⩽ ℎ(𝑥) − 𝐿 < 𝜀

In particular, we see that

−𝜀 < 𝑔(𝑥) − 𝐿 < 𝜀

as desired. Since 𝜀 > 0 was arbitrary, the conclusion follows. ■

The picture for the proof the Squeeze Theorem would be something like the following (taken from

Wikipedia):
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We see that since ℎ(𝑥) and 𝑓(𝑥) go to 𝐿 as 𝑥 goes to 𝑎, and 𝑔(𝑥) is stuck in between the two,

that 𝑔(𝑥) is "squeezed"/forced to also approach 𝐿 as 𝑥 → 𝑎.

Now, let's use the Squeeze Theorem to show that lim
𝑥→0

𝑥4 sin 1
𝑥2 . As usual, we want to get rid of

the nastiest term, which, in this case, is sin 1
𝑥2 . Using the standard estimation

−1 ⩽ sin 1
𝑥2 ⩽ 1

gives

−𝑥4 ⩽ 𝑥4 sin 1
𝑥2 ⩽ 𝑥4

Since the bounding functions have limit 0 at 0 (I leave this to you), wemay conclude by the squeeze

theorem that

lim
𝑥→0

𝑥4 sin 1
𝑥2 = 0

as desired. ■
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Continuity and the Intermediate Value Theorem

Problem 10: Write the definition of what it means for a function 𝑓(𝑥) to be continuous at 𝑥 = 𝑎

three times.

Solution: The function 𝑓 is continuous at 𝑥 = 𝑎 if and only if lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎). ■

Problem 11: Interpret the statement of Problem 6, d) as a statement about continuity.

Solution: Problem 6), part d) is really just saying that every constant function 𝑓(𝑥) = 𝑐 is contin-

uous at every point of ℝ. ■

Problem 12: Show that the function 𝑓(𝑥) = 𝑥 is continuous at every point 𝑎 of ℝ.

Solution: We need to show that for every 𝑎 ∈ ℝ we have that lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎). Or, substitution

𝑓(𝑥) = 𝑥, we must show that for every 𝑎 ∈ ℝ we have that lim
𝑥→𝑎

𝑥 = 𝑎.

To do this, we let 𝜀 > 0. Let 𝛿 = 𝜀. Then, if 0 < |𝑥 − 𝑎| < 𝛿 then certainly |𝑥 − 𝑎| < 𝜀. Since

𝜀 > 0 was arbitrary, the conclusion follows. ■

Problem 13: Use various limit laws (be sure to state clearly what they are!) as well as the conclusions

of Problem 12 and Problem 11 to justify why any polynomial is continuous (hint: think about a

polynomial as being built out of combinations of the function 𝑓(𝑥) = 𝑥 and constant functions).

Solution: Every polynomial is of the form
𝑛

𝑗=0
𝑎𝑗𝑥𝑗 for some 𝑛 and some constants 𝑎1,… ,𝑎𝑛 ∈ ℝ.

Note that since we have proven 𝑔(𝑥) = 𝑥 is continuous for all 𝑎 ∈ ℝ, we have by themultiplication

limit law that 𝑔(𝑥)𝑚 = 𝑥𝑚 is continuous for all 𝑎 ∈ ℝ (why?). Also, for any 𝑐 ∈ ℝ we have that

𝑐𝑥𝑚 is also continuous, being the product of continuous functions (using the product rule for

limits again). From this, we see that each term 𝑎𝑗𝑥𝑗 is continuous. Finally, the sum
𝑛

𝑗=0
𝑎𝑗𝑥𝑗 is

continuous, being the sum of continuous functions (we are using the sum law for limits here--

how?). From this we may conclude that every polynomial is indeed continuous. ■
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Problem 14: Draw three pictures. The first should depict a function continuous at 𝑥 = 1. The

second should depict a function with a jump discontinuity at 𝑥 = 1. The third should depict a

function which is discontinuous at 𝑥 = 1, but which isn't a jump discontinuity. Discuss briefly

how these last two don't satisfy what you wrote (three times!) in Problem 10, in particular, what is

different between the two types of discontinuity.

Solution: Pretty much any function will work for drawing a function continuous at 𝑥 = 1 (e.g. a

parabola). The key is that the limit of 𝑓(𝑥) as 𝑥 → 𝑎 is actually where the value is at that point.

A picture of a jump discontinuity at 1 would be something like the following (image credit:

http://www.sagemath.org/calctut/pix-calctut/continuity04.png)

You see that the limit of 𝑓(𝑥) as 𝑥 → 1 exists, it's equal to 2, but that 𝑓(2) = 3 ≠ 2.

The same image as above shows a discontinuity at 𝑥 = 2, which is not a jump discontinuity.

Namely, in this case, lim
𝑥→2

𝑓(𝑥) doesn't even exist! Indeed, lim
𝑥→2+

𝑓(𝑥) = 3 and lim
𝑥→2−

𝑓(𝑥) = 1.

The big difference between jump discontinuity, and the other type of discontinuity is whether

or not the limit of the function at the point even exists. ■

Problem 15:
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a) State the Intermediate Value Theorem. Draw a picture with a brief explanation to support the

theorem.

b) Use the Intermediate Value Theorem to show that 𝑓(𝑥) = 𝑒𝑥 −𝑥− 2 has a root in [1, 2].

c) Use the intermediate value theorem to show that 𝑔(𝑥) = 𝑥5 −𝑥+ 1 has a root on [−1, 1].

Solution:

a) Theorem (Intermediate Value Theorem): Let 𝑓 ∶ [𝑎,𝑏] → ℝ be continuous. If 𝑓(𝑎) ⩽ 𝑢 ⩽

𝑓(𝑏) or 𝑓(𝑏) ⩽ 𝑢 ⩽ 𝑓(𝑎), then there exists some 𝑐 ∈ [𝑎,𝑏] such that 𝑓(𝑐) = 𝑢.

A picture intuitively justifying the Intermediate Value Theoremwould be something like the fol-

lowing (image credit: http://figures.boundless.com/50cf94e8e4b07bfa7a41efab/full/intermediatevaluetheorem.png):

You see that 𝑢 is a value with 𝑓(𝑎) ⩽ 𝑢 ⩽ 𝑓(𝑏). What it should mean that there exists

some value 𝑐 ∈ [𝑎,𝑏] such that 𝑓(𝑐) = 𝑢, is that the graph of 𝑓 should intersect the line

𝑦 = 𝑢 somewhere on [𝑎, 𝑏]. But, note that the graph of 𝑓 must connect the points (𝑎,𝑓(𝑎))

and (𝑏,𝑓(𝑏)). There is clearly no way to connect these points without lifting your hand (i.e.

continuously), and also not intersecting the line 𝑦 = 𝑢. Thus, the graph of 𝑓 must intersect

the line at some point as desired.
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b) Note that 𝑓(𝑥) is continuous on [1, 2]. We merely note that 𝑓(1) = 𝑒 − 3 < 0, and 𝑓(2) =

𝑒2 − 4 > 0. Thus, by the Intermediate Value Theorem, since 𝑓(1) < 0 < 𝑓(2) there must exist

some 𝑥0 ∈ [1, 2] such that 𝑓(𝑥0) = 0 as desired.

c) We note that 𝑔(𝑥) is continuous on [−1, 1]. Note then that 𝑔(−1) = −1, and 𝑔(1) = 1. Thus,

by the Intermediate Value Theorem there exists some 𝑥0 ∈ [−1, 1] such that 𝑔(𝑥0) = 0 as

desired.
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One-sided Limits

Problem 16: Write a rigorous definition of what the following means: lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿. Do the same

for lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿.

Solution: The definition of lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿 is the following: for every 𝜀 > 0, there exists 𝛿 > 0 such

that 𝑎 < 𝑥 < 𝑎+ 𝛿 implies that |𝑓(𝑥) − 𝐿| < 𝜀.

The definition of lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿 is the following: for every 𝜀 > 0, there exists 𝛿 > 0 such that

𝑎− 𝛿 < 𝑥 < 𝑎 implies that |𝑓(𝑥) − 𝐿| < 𝜀. ■

Problem 17: Draw a picture of a function 𝑓(𝑥) such that lim
𝑥→1−

𝑓(𝑥) = 2 and lim
𝑥→1+

𝑓(𝑥) = −1. Find

an actual such 𝑓(𝑥).

Solution: A function whose graph looks like that of the graph of

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪
⎩

2 if 𝑥 < 1

𝜋𝑒 if 𝑥 = 1

−1 if 𝑥 > 1

works (did it matter what I declared 𝑓(1) to be?). ■

Problem 18: Draw a picture of a function 𝑓(𝑥) such lim
𝑥→3−

𝑓(𝑥) exists, but lim
𝑥→3+

𝑓(𝑥) does not exist.

Solution: One such picture would be the graph of

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪
⎩

1 if 𝑥 < 3

100 if 𝑥 = 3
1

𝑥− 3 if 𝑥 > 3

(does it matter what I put as 𝑓(3)?). ■

Problem 19: State and prove the theorem relating the three notions of left-sided limit, right-sided

limit, and limits (e.g. which two are equivalent to the third?).

14



Solution: The statement is the following:

Theorem: Let 𝑓(𝑥) be a real valued function. Then, lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 if and only if lim
𝑥→𝑎−

𝑓(𝑥) =

lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿.

Proof: Suppose first that lim
𝑥→𝑎

𝑓(𝑥) = 𝐿. To see that lim𝑥→𝑎+ 𝑓(𝑥) = 𝐿, let 𝜀 > 0 be arbitrary.

By assumption that lim
𝑥→𝑎

𝑓(𝑥) = 𝐿, there exists some 𝛿 > 0 such that if 0 < |𝑥 − 𝑎| < 𝛿, then

|𝑓(𝑥) − 𝐿| < 𝜀. But, if 𝑎 < 𝑥 < 𝑎+ 𝛿, then 0 < |𝑥 − 𝑎| < 𝛿, and so we see that if 𝑎 < 𝑥 < 𝑎+ 𝛿

we have that |𝑓(𝑥) − 𝐿| < 𝜀. Since 𝜀 was arbitrary, it follows that lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿.

To see that lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿. Let 𝜀 > 0 be arbitrary. By assumption that lim
𝑥→𝑎

𝑓(𝑥) = 𝐿, there

exists some 𝛿 > 0 such that if 0 < |𝑥−𝑎| < 𝛿, then |𝑓(𝑥)−𝐿| < 𝜀. But, note that if 𝑎−𝛿 < 𝑥 < 𝑎,

then 0 < |𝑥 − 𝑎| < 𝛿. Thus, if 𝑎 − 𝛿 < 𝑥 < 𝑎, then |𝑓(𝑥) − 𝐿| < 𝜀. Since 𝜀 > 0 was arbitrary, it

follows that lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿 as desired.

Now, suppose that lim
𝑥→𝑎+

𝑓(𝑥) = lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿. Let's show that lim
𝑥→𝑎

𝑓(𝑥) = 𝐿. Let 𝜀 > 0 be

given. By assumption that lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿, there exists 𝛿1 > 0 such that if 𝑎 − 𝛿1 < 𝑥 < 𝑎 then

|𝑓(𝑥)−𝐿| < 𝜀. Similarly, since lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿, there exists some 𝛿2 > 0 such that if 𝑎 < 𝑥 < 𝑎+𝛿2,

then |𝑓(𝑥) − 𝐿| < 𝜀. Now, let 𝛿 = min{𝛿1, 𝛿2}. Now, suppose that 0 < |𝑥 − 𝑎| < 𝛿. If 𝑥 > 𝑎, we

see that 𝑎 < 𝑥 < 𝑎+ 𝛿 ⩽ 𝑎+ 𝛿2, in which case |𝑓(𝑥) − 𝐿| < 𝜀 by definition of 𝛿1. If 𝑥 < 𝑎, then

𝑎 > 𝑥 > 𝑎 − 𝛿 ⩾ 𝑎 − 𝛿1, and so |𝑓(𝑥) − 𝐿| < 𝜀 by definition of 𝛿1. Regardless, we see that if

0 < |𝑥− 𝑎| < 𝛿, then |𝑓(𝑥) − 𝐿| < 𝜀. Since 𝜀 > 0 was arbitrary, the conclusion follows. ■
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Limit Computations

Problem 20: Compute

lim
𝑡→−1

𝑡2 + 2𝑡+ 1
𝑡 + 1

Solution: We obviously can't just plug in −1, since the top and bottom are both zero at that point.

But, noting that 𝑡2 + 2𝑡+ 1 = (𝑡 + 1)2 we can see that for 𝑡 ≠ −1 we have that

𝑡2 +2𝑡 + 1
𝑡 + 1 = 𝑡+ 1

Thus, since limits are insensitive to the actual action of a function at the point 𝑥 is approaching,

we have that

lim
𝑡→−1

𝑡2 + 2𝑡+ 1
𝑡 + 1 = lim

𝑡→−1
(𝑡 + 1) = −1+ 1 = 0

■

Problem 21: Let 𝑓(𝑥) = 3
(𝑥+ 1)3 . State the definition of 𝑓 (𝑥) (in terms of a limit) and compute

it.

Solution: By definition, 𝑓 (𝑥) is equal to the following:

lim
ℎ→0

𝑓(𝑥+ℎ) − 𝑓(𝑥)
ℎ = lim

ℎ→0

3
(𝑥+ 1+ℎ)3 − 3

(𝑥+ 1)3
ℎ

But,

3
(𝑥+ 1+ℎ)3 − 3

(𝑥+ 1)3
ℎ =

3(𝑥+ 1)3 − 3(𝑥+ 1+ℎ)3
(𝑥+ 1+ℎ)3(𝑥 + 1)3

ℎ

= 3(𝑥+ 1)3 − 3(𝑥+ 1+ℎ)3
ℎ(𝑥+ 1+ℎ)3(𝑥+ 1)3

⋆= 3(𝑥+ 1− (𝑥+ 1+ℎ))((𝑥+ 1)2 + (𝑥+ 1)(𝑥+ 1+ℎ) + (𝑥+ 1+ℎ)2)
ℎ(𝑥+ 1+ℎ)3(𝑥 + 1)3

= −3ℎ((𝑥+ 1)2 + (𝑥+ 1)(𝑥+ 1+ℎ) + (𝑥+ 1+ℎ)2)
ℎ(𝑥+ 1+ℎ)3(𝑥+ 1)3

= −3((𝑥+ 1)2 + (𝑥+ 1)(𝑥+ 1+ℎ) + (𝑥+ 1+ℎ)2)
(𝑥 + 1+ℎ)3(𝑥+ 1)3

where the starred step was achieved via the formula 𝑥3−𝑦3 = (𝑥−𝑦)(𝑥2+𝑥𝑦+𝑦2). Now, note

that in this last expression we can plug in ℎ = 0 to get
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−3((𝑥+ 1)2 + (𝑥+ 1)2 + (𝑥+ 1)2)
(𝑥+ 1)6 = −6(𝑥+ 1)2

(𝑥 + 1)6 = −6
(𝑥+ 1)4

Thus, we see that

𝑓 (𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ) − 𝑓(𝑥)
ℎ

= lim
ℎ→0

3
(𝑥+ 1+ℎ)3 − 3

(𝑥+ 1)3
ℎ

= lim
ℎ→0

−3((𝑥+ 1)2 + (𝑥+ 1)(𝑥+ 1+ℎ) + (𝑥+ 1+ℎ)2)
(𝑥+ 1+ℎ)3(𝑥 + 1)3

= −6
(𝑥+ 1)4

Note that this matches up with the formula we know for derivatives of polynomials (remember,

you can't actually use this! It's just a checking technique).

Remark 5: The one tricky step of the above calculations is the usage of the factorization𝑥3−𝑦3 =

(𝑥−𝑦)(𝑥2 +𝑥𝑦+𝑦2). Of course, you could have just went on a violent FOILing rampage. You

would have gotten the right answer, but in the numerator you would have gotten a bunch of terms

that happen to factor to −6(𝑥+ 1)2. Whatever makes you happy, and whatever works. ♦

Problem 22: Compute

lim
𝑤→2

√𝑤+2− 2
𝑤− 2

Solution: As usual, we rationalize:

√𝑤+2− 2
𝑤− 2 = √𝑤+2− 2

𝑤− 2
√𝑤+ 2+ 2
√𝑤+ 2+ 2

= 𝑤+ 2− 4
(𝑤− 2)(√𝑤+ 2+ 2)

= 𝑤− 2
(𝑤− 2)(√𝑤+ 2+ 2)

= 1
√𝑤+ 2+ 2

Now, note that we can just plug 2 into this last expression to get 1
4 . Thus, we see that

lim
𝑤→0

√𝑤+2− 2
𝑤− 2 = lim

𝑤→0

1
√𝑤+ 2+ 2

= 1
4

So, we're done.
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Remark 6: The astute amongst you will realize that this is merely a limit describing 𝑓 (2) for

𝑓(𝑤) = √𝑤+2. Indeed, note that 𝑓 (𝑤) = 1
2(𝑤+ 2)−1

2 , so that 𝑓 (2)= 1
24

−1
2 = 1

4 . ♦
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