
FINAL REVIEW DAY 1

(Last edited December 4, 2013 at 5:07pm.)

Problem 1. Prove that

lim
x→1

x2 + x− 3

x+ 2
= −1

3

using the ε, δ definition of limit.

Scratch work. We want to prove the following statement: “for every ε > 0, there exists δ > 0 such that

0 < |x− 1| < δ implies |x
2+x−3
x+2 − (− 1

3 )| < ε”. We have∣∣∣∣x2 + x− 3

x+ 2
−
(
−1

3

)∣∣∣∣ =

∣∣∣∣3x2 + 4x− 7

3x+ 6

∣∣∣∣ =

∣∣∣∣ (3x+ 7)(x− 1)

3x+ 6

∣∣∣∣ ;

we’re going to work with the last expression. If |x− 1| is small (i.e. x ≈ 1), then 3x+ 7 ≈ 10 and 3x+ 6 ≈ 9

(this is an inexact statement which needs to be made precise). I can ensure that 9 < 3x+7 < 11 if |x−1| < 1
3 ,

which is satisfied whenever δ ≤ 1
3 . Coincidentally, |x − 1| < 1

3 also ensures that 8 < 3x + 6 < 10. Thus

|x − 1| < 1
3 implies that | 3x+7

3x+6 | <
11
8 (check this). If δ is less than ε

11/8 (in addition to being less than or

equal to 1
3 ), then | (3x+7)(x−1)

3x+6 | < ε. Notice that the condition “δ < ε
11/8 and δ < 1

3” is equivalent to the

condition “δ < min{ ε
11/8 ,

1
3}”. �

Solution. Let ε > 0. Set δ < min{ ε
11/8 ,

1
3}. Assume 0 < |x − 1| < δ. Then |x − 1| < 1

3 , which implies

9 < 3x+ 7 < 11 and 8 < 3x+ 6 < 10. Thus | 3x+7
3x+6 | <

11
8 . Also, we have |x− 1| < ε

11/8 . Thus∣∣∣∣x2 + x− 3

x+ 2
−
(
−1

3

)∣∣∣∣ =

∣∣∣∣ (3x+ 7)(x− 1)

3x+ 6

∣∣∣∣ < 11

8
· ε

11/8
= ε .

�

Problem 2. Show that the equation x4 − 10x2 + 5 = 0 has a root in the interval (0, 2).

Solution. Let f(x) = x4 − 10x2 + 5. Then f is continuous on the closed interval [0, 2]. Notice that f(0) = 5

and f(2) = −19. Then 0 is strictly between f(0) and f(2). Thus, by the Intermediate Value Theorem, there

exists c ∈ (0, 2) such that f(c) = 0. �

Problem 3 (pg. 265, #54). Let f(x) = 1
2−x . Find a general formula for f (n)(x).1

Solution. Compute the first few derivatives of f(x): we have f ′(x) = 1
(2−x)2 , f ′′(x) = 2

(2−x)3 , and f ′′′(x) =
6

(2−x)4 . So I guess that f (n)(x) = n!
(2−x)n+1 ; let Pn be the statement “f (n)(x) = n!

(2−x)n+1 ”. We have checked

P0, P1, P2, P3 above. Assume Pn−1 is true. Then

f (n)(x) = (f (n−1)(x))′
(∗)
=

(n− 1)!

(2− x)n+1
(−n)(−1) =

n!

(2− x)n+1

where the equality marked (∗) is where I use the assumption that Pn−1 is true. Thus Pn−1 implies Pn. Since

P0 is true, Pn is true for all n = 0, 1, 2, . . . . So the general formula for f (n)(x) is f (n)(x) = n!
(2−x)n+1 . �

1Recall that f (n)(x) is the nth derivative of f(x).



Problem 4 (pg. 265, #55). Let f(x) = xex. Prove that f (n)(x) = (x+ n)ex.

Solution. We have f (0)(x) = f(x) = xex = (x + 0)ex. Assume that f (n−1)(x) = (x + (n − 1))ex. Then

f (n)(x) = (f (n−1)(x))′ = ex + (x + (n − 1))ex = (x + n)ex. Thus f (n)(x) = (x + n)ex for all nonnegative

integers n. �

Problem 5 (pg. 267, #109). Evaluate

lim
x→0

√
1 + tanx−

√
1 + sinx

x3
.

Solution. This problem is about recognizing indeterminate forms and applying L’Hospital’s Rule. I didn’t

think it would be this messy. Since the power of x on the denominator is a 3, you can expect to have to

apply L’Hospital’s Rule at most 3 times. Define

f(x) =

√
1 + tanx−

√
1 + sinx

x3
.

Below, if an equality is marked with an (∗), then it means that I’ve used L’Hospital’s Rule. Then

lim
x→0

f(x)
(∗)
= lim

x→0

1
2 sec2 x√
1+tan x

−
1
2 cos x√
1+sin x

3x2

(∗)
= lim

x→0

−1

cos3 x
(− sin x)

√
1+tan x−(sec2 x)

1
4

sec2 x
√

1+tan x

1+tan x −
1
2 (− sin x)

√
1+sin x−( 1

2 cos x)
1
2
(cos x)

√
1+sin x

1+sin x

6x

= lim
x→0

g(x) + lim
x→0

h(x)

where

g(x) =

−1

cos3 x
(− sin x)

√
1+tan x

1+tan x −
1
2 (− sin x)

√
1+sin x

1+sin x

6x

=
sinx

x
·

1
cos3 x

√
1+tan x

1+tan x +
1
2

√
1+sin x

1+sin x

6

and

h(x) =

−(sec2 x)
1
4

sec2 x
√

1+tan x

1+tan x −
−( 1

2 cos x)
1
2
(cos x)

√
1+sin x

1+sin x

6x

=
1

24

−(sec x)4
(1+tan x)3/2

+ (cos x)2

(1+sin x)3/2

x
.

Then

lim
x→0

g(x) =

(
lim
x→0

sinx

x

) lim
x→0

1
cos3 x

√
1+tan x

1+tan x +
1
2

√
1+sin x

1+sin x

6


(∗)
=
(

lim
x→0

cosx

1

) lim
x→0

1
cos3 0

√
1+tan 0

1+tan 0 +
1
2

√
1+sin 0

1+sin 0

6


=

1

4
.



Also,

lim
x→0

h(x)
(∗)
= lim

x→0

1

24

(
−

4(secx)3(secx tanx)(1 + tanx)3/2 − (secx)4(− 3
2 (1 + tanx)−5/2(secx)2)

(1 + tanx)3

)

+ lim
x→0

1

24

(
2(cosx)(− sinx)(1 + sinx)3/2 − (cosx)2(− 3

2 (1 + sinx)−5/2(cosx))

(1 + sinx)3

)

=
1

24

(
−

4(sec 0)3(sec 0 tan 0)(1 + tan 0)3/2 − (sec 0)4(− 3
2 (1 + tan 0)−5/2(sec 0)2)

(1 + tan 0)3

)

+
1

24

(
2(cos 0)(− sin 0)(1 + sin 0)3/2 − (cos 0)2(− 3

2 (1 + sin 0)−5/2(cos 0))

(1 + sin 0)3

)
= 0 .

Thus

lim
x→0

f(x) = lim
x→0

g(x) + lim
x→0

h(x) =
1

4
.

�

Problem 6 (pg. 267, #110). Suppose f and g are differentiable functions such that f(g(x)) = x and

f ′(x) = 1 + (f(x))2. Show that g′(x) = 1
1+x2 .

Solution. The chain rule gives f ′(g(x))g′(x) = 1. Substituting g(x) into f ′(x) = 1 + (f(x))2 gives f ′(g(x)) =

1 + (f(g(x)))2 = 1 + x2. Thus g′(x) = 1
f ′(g(x)) = 1

1+x2 . �

Problem 7 (pg. 353, #50). Find two positive integers m,n such that m+ 4n = 1000 and mn is as large as

possible.

Solution. We have m = 1000 − 4n, so we want to find a positive integer n such that 1000 − 4n is positive

and (1000− 4n)(n) is as large as possible. We have (1000− 4n)(n) = 4(250− n)(n) = 4(1252 − (n− 125)2),

which is maximized when n = 125. Thus (m,n) = (500, 125) maximizes mn. 2 �

Problem 8 (pg. 353, #52). Find the point on the hyperbola xy = 8 that is closest to the point (3, 0).

Solution. Let f(x) = 8
x . The distance between the point (x, f(x)) = (x, 8x ) and (3, 0) is

d(x) =

√
(x− 3)2 + (

8

x
− 0)2 .

To minimize d(x), it is equivalent to minimize e(x) = (d(x))2 = x2 − 6x+ 9 + 64
x2 , since d(x1) < d(x2) if and

only if e(x1) < e(x2). We have e′(x) = 2(x4−3x3−64)
x3 , which is 0 if and only if x4 − 3x3 − 64 = 0. We have

that 4 is a solution to x4 − 3x3 − 64 = 0, and x4 − 3x3 − 64 = (x− 4)(x3 + x2 + 4x+ 16) so 4 is the unique

nonnegative solution to x4−3x3−64. Since e′(x) < 0 if 0 < x < 4 and e′(x) > 0 if x > 4, we have that x = 4

is a local minimum of e(x). Note that e(4) = (4−3)2 + 64
16 = 5. If x < 0, then e(x) = (x−3)2 + 64

x2 > 32 = 9,

so e(4) < e(x) for all negative x. Thus x = 4 is the global minimum of e(x), hence of d(x). Thus the point

(4, 2) is the point on the hyperbola xy = 8 which is closest to (3, 0). �

Problem 9 (pg. 420, #3). If
∫ 4

0
e(x−2)

4

dx = k, find the value of
∫ 4

0
xe(x−2)

4

dx.

2This solution doesn’t really use calculus since the problem deals with integers (which are discrete) rather than real numbers

(which are smooth).



Solution. (I expected this problem to require some integration by parts, but I couldn’t figure it out and in

the end came up with this.) We have∫ 4

0

xe(x−2)
4

dx =

∫ 4

0

(x− 2)e(x−2)
4

dx+

∫ 4

0

2e(x−2)
4

dx

=

∫ 4

0

(x− 2)e(x−2)
4

dx+ 2k .

Let u = x− 2. Then du
dx = 1, so∫ 4

0

(x− 2)e(x−2)
4

dx =

∫ u(4)

u(0)

ueu
4

du =

∫ 2

−2
ueu

4

du

by the Chain Rule. Notice that ueu
4

is an odd function and −2 = −(2). Thus
∫ 2

−2 ue
u4

du =
∫ 0

−2 ue
u4

du+∫ 2

0
ueu

4

du = 0. Thus ∫ 4

0

xe(x−2)
4

dx = 2k .

�

Problem 10 (pg. 420, #6). If f(x) =
∫ x
0
x2 sin(t2) dt, find f ′(x).

Solution. Let g(x) =
∫ x
0

sin(t2) dt. Then g′(x) = sin(x2) by the Fundamental Theorem of Calculus. Thus

f(x) = x2g(x) implies that f ′(x) = 2xg(x) + x2g′(x) = 2xg(x) + x2 sin(x2). 3 �

Problem 11 (pg. 420, #9). Find the interval [a, b] for which the value of the integral
∫ b
a

(2 + x− x2) dx is a

maximum.

Solution. Let f(x) = 2 + x − x2. We have f(x) = (2 − x)(x + 1) so f(x) < 0 on (−∞,−1) ∪ (2,∞) and

f(x) > 0 on (−1, 2). The integral
∫ b
a
f(x) dx is maximized when we integrate f(x) over only the intervals

where f(x) > 0, so it is maximized when (a, b) = (−1, 2). �

Problem 12 (pg. 436, Example 7). A solid has a circular base of radius 1. Each cross-section of the solid by

a plane perpendicular to the base is a square. Compute the volume of the solid.4

Solution. I assume that each cross-section of solid by a plane perpendicular to the line segment (−1, 0)(1, 0)

is a square. The infinitesimal cross-section by the plane x = a is a thin square of side length 2
√

1− a2 and

thickness ∆x. Thus the volume is∫ 1

−1
(2
√

1− x2)2 dx =

∫ 1

−1
4− 4x2 dx = 4x− 4

3
x3|1−1 =

16

3
.

�

Problem 13. Let {(x, y, z) : x2 + y2 = 1} and {(x, y, z) : x2 + z2 = 1} be two cylinders of radius 1. Find

the volume of the solid defined by the intersection of these cylinders.

3I don’t think the point is to find a nice formula for g(x); in fact it’s kind of complicated, as you can check using Wolfram
Alpha.
4There is a little ambiguity in the statement of the problem: it should have said “each cross-section of the solid by a plane
perpendicular to a fixed diameter of the base is a square”. I don’t know if the solid described in the original problem statement

exists.



Solution. The cross section of the solid by the plane x = a is the square {(y, z) : a2 +y2 ≤ 1 , a2 + z2 ≤ 1},
which has side length 2

√
1− a2. We integrate along the x-axis. The volume of the solid is then∫ 1

−1
(2
√

1− x2)2 dx =

∫ 1

−1
4− 4x2 dx = 4x− 4

3
x3|1−1 =

16

3
.

Notice that this is the same integral as the one in Problem 12. You can visualize moving each cross section

of the solid in Problem 12 so that their centers are lined up; then you’ll get the solid in this problem. �

Problem 14 (pg. 445, #12). Let R be the region bounded by the curves y = 4x2 − x3 and y = 0. Use

cylindrical shells to find the volume of the solid obtained by rotating R about the y-axis.

Solution. Let f(x) = 4x2−x3 = x2(4−x). Then f(x) > 0 if x ∈ (−∞, 0)∪ (0, 4) and f(x) < 0 if x ∈ (4,∞),

and f(x) = 0 exactly when x = 0 or x = 4. Thus the region bounded by f(x) and the x-axis is between

x = 0 and x = 4. The shell with radius x has height f(x) = 4x2 − x3, so the volume of the solid is∫ 4

0

(2πx)(4x2 − x3) dx = 2π(x4 − x5

5
)
∣∣∣4
0

=
512π

5
.

�


