FINAL REVIEW DAY 1

WED, NOV 27, 2013

Problem 1. Prove that

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-3}{x+2}=-\frac{1}{3}
$$

using the ϵ, δ definition of limit.
Problem 2. Show that the equation $x^{4}-10 x^{2}+5=0$ has a root in the interval $(0,2)$.
Problem 3 (pg. 265, \#54). Let $f(x)=\frac{1}{2-x}$. Find a general formula for $f^{(n)}(x)$.
Problem 4 (pg. 265, \#55). Let $f(x)=x e^{x}$. Prove that $f^{(n)}(x)=(x+n) e^{x}$.
Problem 5 (pg. 267, \#109). Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}
$$

Problem 6 (pg. 267, \#110). Suppose f and g are differentiable functions such that $f(g(x))=x$ and $f^{\prime}(x)=1+(f(x))^{2}$. Show that $g^{\prime}(x)=\frac{1}{1+x^{2}}$.

Problem 7 (pg. 353, \#50). Find two positive integers m, n such that $m+4 n=1000$ and $m n$ is as large as possible.

Problem 8 (pg. 353, \#52). Find the point on the hyperbola $x y=8$ that is closest to the point $(3,0)$.
Problem 9 (pg. 420, \#3). If $\int_{0}^{4} e^{(x-2)^{4}} d x=k$, find the value of $\int_{0}^{4} x e^{(x-2)^{4}} d x$.
Problem $10(\mathrm{pg} .420, \# 6)$. If $f(x)=\int_{0}^{x} x^{2} \sin \left(t^{2}\right) d t$, find $f^{\prime}(x)$.
Problem 11 (pg. 420, \#9). Find the interval $[a, b]$ for which the value of the integral $\int_{a}^{b}\left(2+x-x^{2}\right) d x$ is a maximum.

Problem 12 (pg. 436, Example 7). A solid has a circular base of radius 1. Each cross-section of the solid by a plane perpendicular to the base is a square. Compute the volume of the solid.

Problem 13. Let $\left\{(x, y, z): x^{2}+y^{2}=1\right\}$ and $\left\{(x, y, z): x^{2}+z^{2}=1\right\}$ be two cylinders of radius 1. Find the volume of the solid defined by the intersection of these cylinders.

Problem 14 (pg. 445, \#12). Let R be the region bounded by the curves $y=4 x^{2}-x^{3}$ and $y=0$. Use cylindrical shells to find the volume of the solid obtained by rotating R about the y-axis.

