USING INTEGRATION TO DERIVE GEOMETRIC FORMULAS

MON, NOV 25, 2013

(Last edited November 27, 2013 at 12:21 Noon.)

Problem 1. Derive the formula for the circumference of a circle of radius r by computing the arclength of the curve $\sqrt{r^{2}-x^{2}}$ from $x=-r$ to $x=r$.

Solution. The general formula for the arclength of the curve defined by the function f defined on an interval $[a, b]$ is $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$. Let $f(x)=\sqrt{r^{2}-x^{2}}$ on $[-r, r]$. (This is the upper-half of the circle.) Its arclength is

$$
\begin{aligned}
\int_{-r}^{r} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x & =\int_{-r}^{r} \sqrt{1+\left(\frac{-x}{\left.\sqrt{r^{2}-x^{2}}\right)^{2}} d x\right.} \\
& =\int_{-r}^{r} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x \\
& =\int_{-r}^{r} \frac{r}{\sqrt{r^{2}-x^{2}}} d x \\
& =r \int_{-r}^{r} \frac{1 / r}{\sqrt{1-(x / r)^{2}}} d x \\
& =r \int_{-1}^{1} \frac{1}{\sqrt{1-u^{2}}} d u \quad \text { where } u=\frac{x}{r} \\
& =\left.r \arcsin (u)\right|_{-1} ^{1} \\
& =r\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right) \\
& =\pi r .
\end{aligned}
$$

Thus the circumference of a circle is $2 \pi r$ (twice the arclength of the upper-half of the circle).

Problem 2. Derive the formula for the area of a circle of radius r by computing the area between the curves $\sqrt{r^{2}-x^{2}}$ and $-\sqrt{r^{2}-x^{2}}$ between $x=-r$ and $x=r$.

Solution. The area of the circle is the area bounded by the curves $\sqrt{r^{2}-x^{2}}$ and $-\sqrt{r^{2}-x^{2}}$ between $x=-r$ and $x=r$, which is the following definite integral:

$$
\int_{-r}^{r} 2 \sqrt{r^{2}-x^{2}} d x
$$

Let $x=r \sin \theta$; then $\frac{d x}{d \theta}=r \cos \theta$. Thus by the substitution rule we have

$$
\begin{aligned}
\int_{-r}^{r} 2 \sqrt{r^{2}-x^{2}} d x & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sqrt{r^{2}-r^{2}(\sin \theta)^{2}} \cdot(r \cos \theta) d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 r^{2}(\cos \theta)^{2} d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 r^{2} \frac{\cos (2 \theta)+1}{2} d \theta \\
& =\left.r^{2}\left(\frac{\sin (2 \theta)}{2}+\theta\right)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\
& =\pi r^{2}
\end{aligned}
$$

Problem 3. Derive the formula for the volume of a sphere of radius r by computing the volume of "the object obtained by rotating the curve $\sqrt{r^{2}-x^{2}}$ above the x-axis".

Solution. We will integrate vertical disks from $x=-r$ to $x=r$. At the point x, the infinitesimal volume of the disk is $\pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x$ (the radius of the disk is the value of the function $\sqrt{r^{2}-x^{2}}$). Thus the volume is

$$
\begin{aligned}
V & =\int_{-r}^{r} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x \\
& =\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x \\
& =\left.\pi\left(r^{2} x-\frac{1}{3} x^{3}\right)\right|_{-r} ^{r} \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Problem 4. Derive the formula for the volume of a cone whose height is h and whose base has area A by "integrating along the height".

Solution. We integrate vertically from top to bottom $(x=0$ to $x=h)$. The horizontal slice at x has area $\left(\frac{x}{h}\right)^{2} A$ because of similar triangles: the horizontal slice is what you get when you shrink the base by a factor of $\frac{x}{h}$. If you scale a figure by a factor of r, then its area gets multiplied by r^{2}. The infinitesimal volume of the disk at x is $\left(\frac{x}{h}\right)^{2} d x$. Thus the volume is

$$
V=\int_{0}^{h}\left(\frac{x}{h}\right)^{2} A d x=\left.\frac{1}{3} \frac{x^{3}}{h^{2}} A\right|_{0} ^{h}=\frac{1}{3} A h .
$$

