USING INTEGRATION TO DERIVE GEOMETRIC FORMULAS

MON, NOV 25, 2013

We can use integration to derive various known geometric formulas.
Problem 1. Derive the formula for the circumference of a circle of radius r by computing the arclength of the curve $\sqrt{r^{2}-x^{2}}$ from $x=-r$ to $x=r$.

Problem 2. Derive the formula for the area of a circle of radius r by computing the area between the curves $\sqrt{r^{2}-x^{2}}$ and $-\sqrt{r^{2}-x^{2}}$ between $x=-r$ and $x=r$.

Problem 3. Derive the formula for the volume of a sphere of radius r by computing the volume of "the object obtained by rotating the curve $\sqrt{r^{2}-x^{2}}$ above the x-axis".

Problem 4. Derive the formula for the volume of a cone whose height is h and whose base has area A by "integrating along the height".

