THE SUBSTITUTION RULE

FRI, NOV 15, 2013

(Last edited November 17, 2013 at 11:16pm.)

Theorem 1 (Substitution Rule for Definite Integrals, page 411). If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $g(x)$, then

$$
\begin{equation*}
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(x) d x \tag{1}
\end{equation*}
$$

Proof. Let F be an antiderivative of f, i.e. we have $F^{\prime}=f$. By FTC(ii), we have

$$
\begin{equation*}
F(g(b))-F(g(a))=\int_{g(a)}^{g(b)} f(x) d x \tag{2}
\end{equation*}
$$

(You should read the LHS as the net change of $F(x)$ between $g(a)$ and $g(b)$. .) Also, notice that

$$
(F(g(x)))^{\prime}=F^{\prime}(g(x)) g^{\prime}(x)=f(g(x)) g^{\prime}(x)
$$

Thus $F(g(x))$ is an antiderivative of $f(g(x)) g^{\prime}(x)$. By FTC(ii), we have

$$
\begin{equation*}
F(g(b))-F(g(a))=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x \tag{3}
\end{equation*}
$$

(You should read the LHS as the net change of $F(g(x))$ between a and b.) Then (2) and (3) implies (1). ${ }^{1}$
The Substitution Rule for Definite Integrals asserts that two numbers are equal. By fixing a and varying b in (1), we obtain an equality of functions

$$
G_{1}(t)=G_{2}(t)
$$

where

$$
G_{1}(t):=\int_{a}^{t} f(g(x)) g^{\prime}(x) d x \quad \text { and } \quad G_{2}(t):=\int_{g(a)}^{g(t)} f(x) d x
$$

You can use the Substitution Rule backwards and forwards. It's useful to know both methods.

Substitution Method 1. Given a function $f(x)$ of which you want to find an antiderivative, find a function $g(x)$ such that the function $f(g(x)) g^{\prime}(x)$ has a known antiderivative, find an antiderivative $G(x)$ of $f(g(x)) g^{\prime}(x)$, and define $F(x):=G\left(g^{-1}(x)\right)$. Then $F(x)$ is an antiderivative of $f(x)$. You can check as

[^0]follows:
\[

$$
\begin{aligned}
F^{\prime}(x) & =G^{\prime}\left(g^{-1}(x)\right) g^{-1^{\prime}}(x) \\
& =f\left(g\left(g^{-1}(x)\right)\right) \cdot g^{\prime}\left(g^{-1}(x)\right) \cdot \frac{1}{g^{\prime}\left(g^{-1}(x)\right)} \\
& =f(x)
\end{aligned}
$$
\]

Let's look at an example from class today.
Problem 1. Find an antiderivative of $f(x)=e^{\sqrt{x}}$.
Solution. Let $g(x)=x^{2}$. Then $f(g(x)) g^{\prime}(x)=e^{\sqrt{x^{2}}} \cdot 2 x=2 x e^{x}$. An antiderivative of $x e^{x}$ is $x e^{x}-e^{x}$ (which you can find by integration by parts; set $u(x)=x, v(x)=e^{x}$) so set $G(x)=2 x e^{x}-2 e^{x}$. Then $G^{\prime}(x)=f(g(x)) g^{\prime}(x)$. Set $F(x)=G\left(g^{-1}(x)\right)=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}$. Then $F(x)$ is an antiderivative of $f(x)$.

Substitution Method 2. Given a function $h(x)$ of which you want to find an antiderivative, find functions $f(x)$ and $g(x)$ such that $h(x)=f(g(x)) g^{\prime}(x)$ and $f(x)$ has a known antiderivative $F(x)$. Then $h(x)=$ $f(g(x)) g^{\prime}(x)=F^{\prime}(g(x)) g^{\prime}(x)=(F(g(x)))^{\prime}$, so $F(g(x))$ is an antiderivative of $h(x)$.

Problem 2. Find an antiderivative of $h(x)=\tan x$.
Solution. Write $h(x)=\tan x=\frac{\sin x}{\cos x}$. Define $f(x)=\frac{-1}{x}$ and $g(x)=\cos x$. Then $h(x)=\frac{-1}{\cos x}(-\sin x)=$ $f(g(x)) g^{\prime}(x)$. Since $-\ln x$ is an antiderivative of $f(x),-\ln (\cos x)$ is an antiderivative of $h(x)$.

Exercise 1 (Section 5.5, \#27). Find an antiderivative of the function $f(x)=\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{4}$.
Exercise 2 (Section 5.5, \#32). Find an antiderivative of the function $f(x)=\frac{\sin (\ln x)}{x}$.
Exercise 3 (Section 5.5, \#36). Find an antiderivative of the function $f(x)=\frac{2^{x}}{2^{x}+3}$.
Exercise 4 (Section 5.5, \#48). Find an antiderivative of the function $f(x)=\frac{x}{1+x^{4}}$.
Exercise 5 (Section 5.5, \#60). Evaluate the definite integral

$$
\int_{0}^{1} x e^{-x^{2}} d x
$$

Exercise 6 (Section 5.5, \#69). Evaluate the definite integral

$$
\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} d x
$$

Exercise 7 (Section 5.5, \#86). If f is continuous and $\int_{0}^{9} f(x) d x=4$, find $\int_{0}^{3} x f\left(x^{2}\right) d x$.
Exercise 8 (Section 5.5, \#89). If a and b are positive numbers, show that

$$
\int_{0}^{1} x^{a}(1-x)^{b} d x=\int_{0}^{1} x^{b}(1-x)^{a} d x
$$

Exercise 9 (Section 5.5, \#90,91). If f is continuous on $[0, \pi]$, use the substitution $u=\pi-x$ to show that

$$
\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
$$

Use this to evaluate the integral

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

[^0]: ${ }^{1}$ Equation (1) is false if we remove the limits of integration. The assertion $\int f(g(x)) g^{\prime}(x) d x=\int f(x) d x$ seems to imply the following: "if $F_{1}(x)$ is an antiderivative of $f(g(x)) g^{\prime}(x)$ and $F_{2}(x)$ is an antiderivative of $f(x)$, then there exists a constant C such that $F_{1}(x)=F_{2}(x)+C$." But this is false: consider $f(x)=x^{2}$ and $g(x)=x^{2}$. Then $f(g(x)) g^{\prime}(x)=2 x^{5}$. Let's pick the antiderivatives $F_{1}(x)=\frac{2}{6} x^{6}$ and $F_{2}(x)=\frac{1}{3} x^{3}$ of $f(g(x)) g^{\prime}(x)$ and $f(x)$, respectively. Notice that there is no constant C such that $F_{1}(x)=F_{2}(x)+C$ for all x, since this says that the polynomial $\frac{2}{6} x^{6}-\frac{1}{3} x^{3}-C$ has infinitely many roots. The correct statement is: "if $F_{1}(x)$ is an antiderivative of $f(g(x)) g^{\prime}(x)$ and $F_{2}(x)$ is an antiderivative of $f(x)$, then there exists a constant C such that $F_{1}(x)=F_{2}(g(x))+C . "$ (The only difference is that we have $F_{1}(x)=F_{2}(g(x))+C$ instead of $F_{1}(x)=F_{2}(x)+C$.) You can check this for the example $f(x)=x^{2}$ and $g(x)=x^{2}$.

