THE SUBSTITUTION RULE

FRI, NOV 15, 2013

(Last edited November 17, 2013 at 11:16pm.)

Theorem 1 (Substitution Rule for Definite Integrals, page 411). If g' is continuous on [a, b] and f is continuous on the range of g(x), then

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(x)dx .$$
(1)

Proof. Let F be an antiderivative of f, i.e. we have F' = f. By FTC(ii), we have

$$F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(x)dx .$$
⁽²⁾

(You should read the LHS as the net change of F(x) between g(a) and g(b).) Also, notice that

$$(F(g(x)))' = F'(g(x))g'(x) = f(g(x))g'(x)$$
.

Thus F(g(x)) is an antiderivative of f(g(x))g'(x). By FTC(ii), we have

$$F(g(b)) - F(g(a)) = \int_{a}^{b} f(g(x))g'(x)dx .$$
(3)

(You should read the LHS as the net change of F(g(x)) between a and b.) Then (2) and (3) implies (1).¹

The Substitution Rule for Definite Integrals asserts that two numbers are equal. By fixing a and varying b in (1), we obtain an equality of functions

$$G_1(t) = G_2(t)$$

where

$$G_1(t) := \int_a^t f(g(x))g'(x)dx$$
 and $G_2(t) := \int_{g(a)}^{g(t)} f(x)dx$

You can use the Substitution Rule backwards and forwards. It's useful to know both methods.

Substitution Method 1. Given a function f(x) of which you want to find an antiderivative, find a function g(x) such that the function f(g(x))g'(x) has a known antiderivative, find an antiderivative G(x) of f(g(x))g'(x), and define $F(x) := G(g^{-1}(x))$. Then F(x) is an antiderivative of f(x). You can check as

¹Equation (1) is false if we remove the limits of integration. The assertion $\int f(g(x))g'(x)dx = \int f(x)dx$ seems to imply the following: "if $F_1(x)$ is an antiderivative of f(g(x))g'(x) and $F_2(x)$ is an antiderivative of f(x), then there exists a constant C such that $F_1(x) = F_2(x) + C$." But this is false: consider $f(x) = x^2$ and $g(x) = x^2$. Then $f(g(x))g'(x) = 2x^5$. Let's pick the antiderivatives $F_1(x) = \frac{2}{6}x^6$ and $F_2(x) = \frac{1}{3}x^3$ of f(g(x))g'(x) and f(x), respectively. Notice that there is no constant C such that $F_1(x) = F_2(x) + C$ for all x, since this says that the polynomial $\frac{2}{6}x^6 - \frac{1}{3}x^3 - C$ has infinitely many roots. The correct statement is: "if $F_1(x)$ is an antiderivative of f(g(x))g'(x) and $F_2(x)$ is an antiderivative of f(x), then there exists a constant C such that $F_1(x) = F_2(g(x)) + C$." (The only difference is that we have $F_1(x) = F_2(g(x)) + C$ instead of $F_1(x) = F_2(x) + C$.) You can check this for the example $f(x) = x^2$ and $g(x) = x^2$.

follows:

$$F'(x) = G'(g^{-1}(x))g^{-1'}(x)$$

= $f(g(g^{-1}(x))) \cdot g'(g^{-1}(x)) \cdot \frac{1}{g'(g^{-1}(x))}$
= $f(x)$.

Let's look at an example from class today.

Problem 1. Find an antiderivative of $f(x) = e^{\sqrt{x}}$.

Solution. Let $g(x) = x^2$. Then $f(g(x))g'(x) = e^{\sqrt{x^2}} \cdot 2x = 2xe^x$. An antiderivative of xe^x is $xe^x - e^x$ (which you can find by integration by parts; set u(x) = x, $v(x) = e^x$) so set $G(x) = 2xe^x - 2e^x$. Then G'(x) = f(g(x))g'(x). Set $F(x) = G(g^{-1}(x)) = 2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}}$. Then F(x) is an antiderivative of f(x).

Substitution Method 2. Given a function h(x) of which you want to find an antiderivative, find functions f(x) and g(x) such that h(x) = f(g(x))g'(x) and f(x) has a known antiderivative F(x). Then h(x) = f(g(x))g'(x) = F'(g(x))g'(x) = (F(g(x)))', so F(g(x)) is an antiderivative of h(x).

Problem 2. Find an antiderivative of $h(x) = \tan x$.

Solution. Write $h(x) = \tan x = \frac{\sin x}{\cos x}$. Define $f(x) = \frac{-1}{x}$ and $g(x) = \cos x$. Then $h(x) = \frac{-1}{\cos x}(-\sin x) = f(g(x))g'(x)$. Since $-\ln x$ is an antiderivative of f(x), $-\ln(\cos x)$ is an antiderivative of h(x).

Exercise 1 (Section 5.5, #27). Find an antiderivative of the function $f(x) = (x^2 + 1)(x^3 + 3x)^4$.

Exercise 2 (Section 5.5, #32). Find an antiderivative of the function $f(x) = \frac{\sin(\ln x)}{x}$.

Exercise 3 (Section 5.5, #36). Find an antiderivative of the function $f(x) = \frac{2^x}{2^x+3}$.

Exercise 4 (Section 5.5, #48). Find an antiderivative of the function $f(x) = \frac{x}{1+x^4}$.

Exercise 5 (Section 5.5, #60). Evaluate the definite integral

$$\int_0^1 x e^{-x^2} dx$$

Exercise 6 (Section 5.5, #69). Evaluate the definite integral

$$\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} \, dx \, dx$$

Exercise 7 (Section 5.5, #86). If f is continuous and $\int_0^9 f(x) dx = 4$, find $\int_0^3 x f(x^2) dx$.

Exercise 8 (Section 5.5, #89). If a and b are positive numbers, show that

$$\int_0^1 x^a (1-x)^b \, dx = \int_0^1 x^b (1-x)^a \, dx \, .$$

Exercise 9 (Section 5.5, #90,91). If f is continuous on $[0,\pi]$, use the substitution $u = \pi - x$ to show that

$$\int_0^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) \, dx \, .$$

Use this to evaluate the integral

$$\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, dx$$