INDEFINITE INTEGRALS; FUNDAMENTAL THEOREM OF CALCULUS

WED, OCT 30, 2013

(Last edited November 1, 2013 at 8:36am.)

Summary of Fundamental Theorem of Calculus:

- (1) Part 1 says that one (of many) antiderivatives of f(x) is given by the function $F(x) = \int_a^x f(t) dt$. For this antiderivative, it is clear by the additive properties of the integral that $F(b) F(a) = \int_a^b f(t) dt$.
- (2) Part 2 says that if G(x) is any other antiderivative of f(x), then $G(b) G(a) = \int_a^b f(t) dt$ also.

Exercise 1 (Section 5.3, #9). Use Part 1 of FTC to find the derivative of the function

$$g(s) = \int_{5}^{s} (t - t^2)^8 dt$$
.

Solution. This is a straightforward application of FTC, which says that g(x) is an antiderivative of the function $(x - x^2)^8$, or in other words $g'(x) = (x - x^2)^8$.

Exercise 2 (Section 5.3, #13). Use Part 1 of FTC to find the derivative of the function

$$h(x) = \int_1^{e^x} \ln t \, dt \; .$$

Solution. Notice that h(x) is the composite of two functions $f(x) = \int_1^x \ln t \, dt$ and $g(x) = e^x$, i.e. h(x) = f(g(x)). We know by FTC (part 1) that $f'(x) = \ln x$. So, by the Chain Rule, we have $f'(x) = h'(g(x))g'(x) = \ln(e^x)e^x = xe^x$.

(By the way, how can you use FTC (part 2) to solve this? Note that $F(x) = x \ln x - x$ is an antiderivative of $\ln x$. Thus $h(x) = F(e^x) - F(1) = (e^x \ln(e^x) - e^x) - (1 \ln 1 - 1) = xe^x - e^x + 1$. Thus $h'(x) = xe^x$.) \Box

Exercise 3 (Section 5.3, #31). Evaluate the integral

$$\int_0^{\pi/4} (\sec t)^2 dt \, .$$

Solution. Look up the fact that an antiderivative of $(\sec x)^2$ is $\tan x$. By FTC (part 2), we have

$$\int_0^{\pi/4} (\sec t)^2 \, dt = \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1 \, .$$

Exercise 4 (Section 5.3, #40). Evaluate the integral

$$\int_1^2 \frac{4+u^2}{u^3} \, du$$

Solution. Notice that an antiderivative of $\frac{4+u^2}{u^3}$ is $\frac{-2}{u^2} + \ln u$. By FTC (part 2), we have

$$\int_{1}^{2} \frac{4+u^{2}}{u^{3}} du = \left(\frac{-2}{2^{2}} - \ln 2\right) - \left(\frac{-2}{1^{2}} - \ln 1\right) = \frac{3}{2} - \ln 2.$$

1

Exercise 5 (Section 5.3, #72). If f is continuous and g and h are differentiable functions, find a formula for

$$\frac{d}{dx}\int_{g(x)}^{h(x)}f(t)\ dt\ .$$

Solution. Let $A(x) = \int_0^x f(t) dt$. By FTC (part 1), we have A'(x) = f(x). Then

$$\int_{g(x)}^{h(x)} f(t) \, dt = \int_0^{h(x)} f(t) \, dt - \int_0^{g(x)} f(t) \, dt = A(h(x)) - A(g(x))$$

 \mathbf{SO}

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt = A'(h(x))h'(x) - A'(g(x))g'(x)$$
$$= f(h(x))h'(x) - f(g(x))g'(x) .$$