INDEFINITE INTEGRALS; FUNDAMENTAL THEOREM OF CALCULUS

WED, OCT 30, 2013

(Last edited November 1, 2013 at 8:36am.)

Summary of Fundamental Theorem of Calculus:
(1) Part 1 says that one (of many) antiderivatives of $f(x)$ is given by the function $F(x)=\int_{a}^{x} f(t) d t$. For this antiderivative, it is clear by the additive properties of the integral that $F(b)-F(a)=\int_{a}^{b} f(t) d t$.
(2) Part 2 says that if $G(x)$ is any other antiderivative of $f(x)$, then $G(b)-G(a)=\int_{a}^{b} f(t) d t$ also.

Exercise 1 (Section 5.3, \#9). Use Part 1 of FTC to find the derivative of the function

$$
g(s)=\int_{5}^{s}\left(t-t^{2}\right)^{8} d t
$$

Solution. This is a straightforward application of FTC, which says that $g(x)$ is an antiderivative of the function $\left(x-x^{2}\right)^{8}$, or in other words $g^{\prime}(x)=\left(x-x^{2}\right)^{8}$.

Exercise 2 (Section 5.3, \#13). Use Part 1 of FTC to find the derivative of the function

$$
h(x)=\int_{1}^{e^{x}} \ln t d t
$$

Solution. Notice that $h(x)$ is the composite of two functions $f(x)=\int_{1}^{x} \ln t d t$ and $g(x)=e^{x}$, i.e. $h(x)=$ $f(g(x))$. We know by FTC (part 1) that $f^{\prime}(x)=\ln x$. So, by the Chain Rule, we have $f^{\prime}(x)=h^{\prime}(g(x)) g^{\prime}(x)=$ $\ln \left(e^{x}\right) e^{x}=x e^{x}$.
(By the way, how can you use FTC (part 2) to solve this? Note that $F(x)=x \ln x-x$ is an antiderivative of $\ln x$. Thus $h(x)=F\left(e^{x}\right)-F(1)=\left(e^{x} \ln \left(e^{x}\right)-e^{x}\right)-(1 \ln 1-1)=x e^{x}-e^{x}+1$. Thus $h^{\prime}(x)=x e^{x}$.)

Exercise 3 (Section 5.3, \#31). Evaluate the integral

$$
\int_{0}^{\pi / 4}(\sec t)^{2} d t
$$

Solution. Look up the fact that an antiderivative of $(\sec x)^{2}$ is $\tan x$. By FTC (part 2), we have

$$
\int_{0}^{\pi / 4}(\sec t)^{2} d t=\tan \frac{\pi}{4}-\tan 0=1-0=1
$$

Exercise 4 (Section 5.3, \#40). Evaluate the integral

$$
\int_{1}^{2} \frac{4+u^{2}}{u^{3}} d u
$$

Solution. Notice that an antiderivative of $\frac{4+u^{2}}{u^{3}}$ is $\frac{-2}{u^{2}}+\ln u$. By FTC (part 2), we have

$$
\int_{1}^{2} \frac{4+u^{2}}{u^{3}} d u=\left(\frac{-2}{2^{2}}-\ln 2\right)-\left(\frac{-2}{1^{2}}-\ln 1\right)=\frac{3}{2}-\ln 2 .
$$

Exercise 5 (Section 5.3,\#72). If f is continuous and g and h are differentiable functions, find a formula for

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t
$$

Solution. Let $A(x)=\int_{0}^{x} f(t) d t$. By FTC (part 1), we have $A^{\prime}(x)=f(x)$. Then

$$
\int_{g(x)}^{h(x)} f(t) d t=\int_{0}^{h(x)} f(t) d t-\int_{0}^{g(x)} f(t) d t=A(h(x))-A(g(x))
$$

so

$$
\begin{aligned}
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t & =A^{\prime}(h(x)) h^{\prime}(x)-A^{\prime}(g(x)) g^{\prime}(x) \\
& =f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)
\end{aligned}
$$

