INDEFINITE INTEGRALS; FUNDAMENTAL THEOREM OF CALCULUS

WED, OCT 30, 2013

Let f be continuous on $[a, b]$. An indefinite integral (or antiderivative) of f is a function F which is continuous on $[a, b]$ and differentiable on (a, b) and $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$. By FTC (part 1), you can find an indefinite integral of f as follows: define $F(x):=\int_{a}^{x} f(t) d t$ for every real number x. Then

$$
F(b)-F(a)=\int_{a}^{b} f(t) d t-\int_{a}^{a} f(t) d t=\int_{a}^{b} f(t) d t
$$

Part 2 of FTC says that $G(b)-G(a)=\int_{a}^{b} f(t) d t$ for any other indefinite integral G of f. This follows from the fact that any two indefinite integrals of f differ by a constant (if $F^{\prime}=f$ and $G^{\prime}=f$, then $(F-G)^{\prime}=0$, and any function whose derivative is 0 is a constant).

A definite integral is a number, while an indefinite integral is a function. Always take care to think about what type of integral is being dealt with. By the FTC, you can use indefinite integrals to compute definite integrals.

Exercise 1 (Section 5.3, \#9). Use Part 1 of FTC to find the derivative of the function

$$
g(s)=\int_{5}^{s}\left(t-t^{2}\right)^{8} d t
$$

Exercise 2 (Section 5.3,\#13). Use Part 1 of FTC to find the derivative of the function

$$
h(x)=\int_{1}^{e^{x}} \ln t d t
$$

Exercise 3 (Section 5.3, \#31). Evaluate the integral

$$
\int_{0}^{\pi / 4}(\sec t)^{2} d t
$$

Exercise 4 (Section 5.3, \#40). Evaluate the integral

$$
\int_{1}^{2} \frac{4+u^{2}}{u^{3}} d u
$$

Exercise 5 (Section 5.3, \#72). If f is continuous and g and h are differentiable functions, find a formula for

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t
$$

