DEFINITE INTEGRALS

MON, OCT 28, 2013

(Last edited October 30, 2013 at 6:32pm.)
A definite integral is generally defined to be the limit of approximations of area. The formal definition is given on page 372 , but it will usually suffice to use Theorem 4 on page 374 , which says

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad \text { where } \quad \Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \tag{1}
\end{equation*}
$$

In other words, the integral $\int_{a}^{b} f(x) d x$ is the limit of the sequence whose nth term is equal to the Riemann sum $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, which in turn is the sum of the areas of n rectangles, where the i th rectangle has width $\Delta x=\frac{b-a}{n}$ and (possibly negative) height $f\left(x_{i}\right)=f(a+i \Delta x)$.

Exercise 1 (Section 5.2, \#17). Express the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \ln \left(1+x_{i}^{2}\right) \Delta x$, where $\Delta x=\frac{6-2}{n}$ and $x_{i}=2+i \Delta x$, as a definite integral on the interval $[2,6]$.

Solution. Set $f(x)=x \ln \left(1+x^{2}\right)$ and $a=2$ and $b=6$. Then

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \ln \left(1+x_{i}^{2}\right) \Delta x=\int_{2}^{6} x \ln \left(1+x^{2}\right) d x
$$

Exercise 2 (Section 5.2, \#24). Use (1) to compute $\int_{0}^{2}\left(2 x-x^{3}\right) d x$.

Solution. We have

$$
\begin{aligned}
\int_{0}^{2}\left(2 x-x^{3}\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2\left(i \frac{2}{n}\right)-\left(i \frac{2}{n}\right)^{3}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \frac{8}{n^{2}} \sum_{i=1}^{n} i-\frac{16}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& =\lim _{n \rightarrow \infty} \frac{8}{n^{2}} \frac{n(n+1)}{2}-\frac{16}{n^{4}}\left(\frac{n(n+1)}{2}\right)^{2} \\
& =\lim _{n \rightarrow \infty} \frac{4(n+1)}{n}-4 \frac{(n+1)^{2}}{n^{2}} \\
& =0
\end{aligned}
$$

(You can check that you have the right answer using FTC. Since $F(x)=x^{2}-\frac{1}{4} x^{4}$ is an antiderivative of $2 x-x^{3}$, FTC says $\int_{0}^{2}\left(2 x-x^{3}\right) d x=F(2)-F(0)=0$.)

Exercise 3. Use (11) to compute $\int_{0}^{4} e^{x} d x$.

Solution. This turned out to be much harder than I expected. Don't expect anything like this to show up on the midterms or final. For those interested, I'll provide a proof. We have

$$
\begin{aligned}
\int_{0}^{4} e^{x} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} e^{i \cdot \frac{4}{n}} \cdot \frac{4}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \frac{e^{\frac{4}{n}}-e^{(n+1) \frac{4}{n}}}{1-e^{\frac{4}{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \frac{e^{\frac{4}{n}}\left(1-e^{4}\right)}{1-e^{\frac{4}{n}}} \\
& =\left(1-e^{4}\right) \lim _{n \rightarrow \infty} \frac{\frac{4}{n} e^{\frac{4}{n}}}{1-e^{\frac{4}{n}}}
\end{aligned}
$$

Let f be the function

$$
f(x)=\frac{\frac{4}{x} e^{\frac{4}{x}}}{1-e^{\frac{4}{x}}}
$$

with domain of definition $(0, \infty)$. I want to find the limit (of sequences) $\lim _{n \rightarrow \infty} f(n)$. I claim that this is equal to the limit (of functions) $\lim _{x \rightarrow \infty} f(x)$. This depends crucially on the fact that the function $f(x)$ is monotonically increasing on $(0, \infty)$, which you can check by showing that the derivative is always greater than 0 :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(-\frac{4}{x^{2}} e^{\frac{4}{x}}+\frac{4}{x} e^{\frac{4}{x}}\left(-\frac{4}{x^{2}}\right)\right)\left(1-e^{\frac{4}{x}}\right)-\left(\frac{4}{x} e^{\frac{4}{x}}\right)\left(-e^{\frac{4}{x}}\left(-\frac{4}{x^{2}}\right)\right)}{\left(1-e^{\frac{4}{x}}\right)^{2}} \\
& =\frac{-\frac{4}{x^{2}} e^{\frac{4}{x}}\left(\left(1+\frac{4}{x}\right)\left(1-e^{\frac{4}{x}}\right)+\frac{4}{x} e^{\frac{4}{x}}\right)}{\left(1-e^{\frac{4}{x}}\right)^{2}} \\
& =\frac{\frac{4}{x^{2}} e^{\frac{4}{x}}}{\left(1-e^{\frac{4}{x}}\right)^{2}}\left(e^{\frac{4}{x}}-1-\frac{4}{x}\right)
\end{aligned}
$$

where in the last term, the first factor is always positive. The second factor is always positive since, for any $\alpha>0$, we have $e^{\alpha} \geq 1+\alpha$ (this is because $e^{\alpha}=1+\alpha+\frac{\alpha^{2}}{2!}+\frac{\alpha^{3}}{3!}+\frac{\alpha^{4}}{4!}+\cdots$). This shows that f is monotonically increasing on $(0, \infty)$.

So suppose we know $\lim _{n \rightarrow \infty} f(n)=L$ and L is finite. Let $\epsilon>0$; then there exists $M>0$ such that $n \geq M$ implies $|f(n)-L|<\epsilon$. Suppose $x>M$. Then there exists an integer N such that $N \leq x \leq N+1$. Since $|f(N)-L|<\epsilon$ and $|f(N+1)-L|<\epsilon$ and $f(N) \leq f(x) \leq f(N+1)$, we have $|f(x)-L|<\epsilon$. Thus $\lim _{x \rightarrow \infty} f(x)=L$.

Conversely, suppose we know $\lim _{x \rightarrow \infty} f(x)=L$ and L is finite. Let $\epsilon>0$; then there exists $M>0$ such that $x>M$ implies $|f(x)-L|<\epsilon$. Let $N=\lceil M\rceil$. For any $n>N$, we have $n>M$, so $|f(n)-L|<\epsilon$. Thus $\lim _{n \rightarrow \infty} f(n)=L$.

The proofs of the statements " $\lim _{n \rightarrow \infty} f(n)=\infty$ if and only if $\lim _{x \rightarrow \infty} f(x)=\infty$ " and " $\lim _{n \rightarrow \infty} f(n)=$ $-\infty$ if and only if $\lim _{x \rightarrow \infty} f(x)=-\infty "$ are similar.

So let's compute $\lim _{x \rightarrow \infty} f(x)$. Since we actually have a function instead of a sequence, we can use L'Hospital's Rule (it turns out that L'Hospital's Rule does include the case when x approaches ∞; you can
look at Note 2 at the top of page 303). We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{-\frac{4}{x^{2}} e^{\frac{4}{x}}+\frac{4}{x} e^{\frac{4}{x}}\left(-\frac{4}{x^{2}}\right)}{-e^{\frac{4}{x}}\left(-\frac{4}{x^{2}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{4}{x}}{-1} \\
& =-1
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\int_{0}^{4} e^{x} d x & =\left(1-e^{4}\right) \lim _{n \rightarrow \infty} \frac{\frac{4}{n} e^{\frac{4}{n}}}{1-e^{\frac{4}{n}}} \\
& =\left(1-e^{4}\right) \lim _{x \rightarrow \infty} f(x) \\
& =\left(1-e^{4}\right)(-1) \\
& =e^{4}-1
\end{aligned}
$$

Exercise 4 (Section 5.2, \#27). Prove that $\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$. Note that this is $f(b)-f(a)$ where $f(x)=\frac{1}{2} x^{2}$.

Solution. We have

$$
\begin{aligned}
\int_{a}^{b} x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(a+i \frac{b-a}{n}\right) \frac{b-a}{n} \\
& =\lim _{n \rightarrow \infty} a \frac{b-a}{n} \sum_{i=1}^{n} 1+\left(\frac{b-a}{n}\right)^{2} \sum_{i=1}^{n} i \\
& =\lim _{n \rightarrow \infty} a \frac{b-a}{n}(n)+\left(\frac{b-a}{n}\right)^{2} \frac{n(n+1)}{2} \\
& =a(b-a)+(b-a)^{2} \frac{1}{2} \\
& =\frac{1}{2}\left(b^{2}-a^{2}\right)
\end{aligned}
$$

Exercise 5 (Section 5.2, \#28). Prove that $\int_{a}^{b} x^{2} d x=\frac{1}{3}\left(b^{3}-a^{3}\right)$. Note that this is $f(b)-f(a)$ where $f(x)=\frac{1}{3} x^{3}$.

Solution. We have

$$
\begin{aligned}
\int_{a}^{b} x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(a+i \frac{b-a}{n}\right)^{2} \frac{b-a}{n} \\
& =\lim _{n \rightarrow \infty} \frac{b-a}{n^{3}} \sum_{i=1}^{n}(a n+i(b-a))^{2} \\
& =\lim _{n \rightarrow \infty} \frac{b-a}{n^{3}} \sum_{i=1}^{n}\left(a^{2} n^{2}+2 a i n(b-a)+i^{2}(b-a)^{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{b-a}{n^{3}}\left(a^{2} n^{2} \sum_{i=1}^{n} 1+2 a n(b-a) \sum_{i=1}^{n} i+(b-a)^{2} \sum_{i=1}^{n} i^{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{b-a}{n^{3}}\left(a^{2} n^{2}(n)+2 a n(b-a) \frac{n(n+1)}{2}+(b-a)^{2} \frac{n(n+1)(2 n+1)}{6}\right) \\
& =(b-a)\left(a^{2}+2 a(b-a) \frac{1}{2}+\frac{(b-a)^{2}}{3}\right) \\
& =\frac{1}{3}\left(b^{3}-a^{3}\right) .
\end{aligned}
$$

Exercise 6 (Section 5.2,\#29). Express the integral $\int_{1}^{10}(x-4 \ln x) d x$ as a limit of Riemann sums as in (11). Solution. We have

$$
\int_{1}^{10}(x-4 \ln x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+i \frac{10-1}{n}-4 \ln \left(1+i \frac{10-1}{n}\right)\right) \frac{10-1}{n} .
$$

Exercise 7 (Section 5.2, \#57). Use the properties of integrals (page 379 to 381) to verify the following inequality without evaluating an integral:

$$
2 \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq 2 \sqrt{2}
$$

Solution. Since $0 \leq x^{2} \leq 1$ for all $x \in[-1,1]$, we have $1 \leq \sqrt{1+x^{2}} \leq \sqrt{2}$ for all $x \in[-1,1]$. Thus

$$
2=\int_{-1}^{1} 1 d x \stackrel{(*)}{\leq} \int_{-1}^{1} \sqrt{1+x^{2}} d x \stackrel{(*)}{\leq} \int_{-1}^{1} \sqrt{2} d x=2 \sqrt{2}
$$

where in the inequalities marked by $(*)$ we used property 7 on page 381. Alternatively, you can obtain the result straight from property 8 on the same page.

