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(Last edited October 30, 2013 at 6:32pm.)

A definite integral is generally defined to be the limit of approximations of area. The formal definition is

given on page 372, but it will usually suffice to use Theorem 4 on page 374, which says∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x where ∆x =
b− a
n

and xi = a+ i∆x . (1)

In other words, the integral
∫ b
a
f(x)dx is the limit of the sequence whose nth term is equal to the Riemann

sum
∑n
i=1 f(xi)∆x, which in turn is the sum of the areas of n rectangles, where the ith rectangle has width

∆x = b−a
n and (possibly negative) height f(xi) = f(a+ i∆x).

Exercise 1 (Section 5.2, #17). Express the limit limn→∞
∑n
i=1 xi ln(1 + x2i )∆x, where ∆x = 6−2

n and

xi = 2 + i∆x, as a definite integral on the interval [2, 6].

Solution. Set f(x) = x ln(1 + x2) and a = 2 and b = 6. Then

lim
n→∞

n∑
i=1

xi ln(1 + x2i )∆x =

∫ 6

2

x ln(1 + x2) dx .

�

Exercise 2 (Section 5.2, #24). Use (1) to compute
∫ 2

0
(2x− x3)dx.

Solution. We have ∫ 2

0

(2x− x3) dx = lim
n→∞

n∑
i=1

(
2

(
i
2

n

)
−
(
i
2

n

)3
)

2

n

= lim
n→∞

8

n2

n∑
i=1

i− 16

n4

n∑
i=1

i3

= lim
n→∞

8

n2
n(n+ 1)

2
− 16

n4

(
n(n+ 1)

2

)2

= lim
n→∞

4(n+ 1)

n
− 4

(n+ 1)2

n2

= 0 .

(You can check that you have the right answer using FTC. Since F (x) = x2 − 1
4x

4 is an antiderivative of

2x− x3, FTC says
∫ 2

0
(2x− x3) dx = F (2)− F (0) = 0.) �

Exercise 3. Use (1) to compute
∫ 4

0
exdx.

1
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Solution. This turned out to be much harder than I expected. Don’t expect anything like this to show up

on the midterms or final. For those interested, I’ll provide a proof. We have∫ 4

0

ex dx = lim
n→∞

n∑
i=1

ei·
4
n · 4

n

= lim
n→∞

4

n

e
4
n − e(n+1) 4

n

1− e 4
n

= lim
n→∞

4

n

e
4
n (1− e4)

1− e 4
n

= (1− e4) lim
n→∞

4
ne

4
n

1− e 4
n

.

Let f be the function

f(x) =
4
xe

4
x

1− e 4
x

with domain of definition (0,∞). I want to find the limit (of sequences) limn→∞ f(n). I claim that this is

equal to the limit (of functions) limx→∞ f(x). This depends crucially on the fact that the function f(x) is

monotonically increasing on (0,∞), which you can check by showing that the derivative is always greater

than 0:

f ′(x) =

(
− 4
x2 e

4
x + 4

xe
4
x (− 4

x2 )
)(

1− e 4
x

)
−
(

4
xe

4
x

)(
−e 4

x (− 4
x2 )
)

(
1− e 4

x

)2
=
− 4
x2 e

4
x

((
1 + 4

x

) (
1− e 4

x

)
+ 4

xe
4
x

)
(

1− e 4
x

)2
=

4
x2 e

4
x(

1− e 4
x

)2 (e 4
x − 1− 4

x

)

where in the last term, the first factor is always positive. The second factor is always positive since, for

any α > 0, we have eα ≥ 1 + α (this is because eα = 1 + α + α2

2! + α3

3! + α4

4! + · · · ). This shows that f is

monotonically increasing on (0,∞).

So suppose we know limn→∞ f(n) = L and L is finite. Let ε > 0; then there exists M > 0 such that

n ≥ M implies |f(n)− L| < ε. Suppose x > M . Then there exists an integer N such that N ≤ x ≤ N + 1.

Since |f(N) − L| < ε and |f(N + 1) − L| < ε and f(N) ≤ f(x) ≤ f(N + 1), we have |f(x) − L| < ε. Thus

limx→∞ f(x) = L.

Conversely, suppose we know limx→∞ f(x) = L and L is finite. Let ε > 0; then there exists M > 0 such

that x > M implies |f(x)−L| < ε. Let N = dMe. For any n > N , we have n > M , so |f(n)−L| < ε. Thus

limn→∞ f(n) = L.

The proofs of the statements “limn→∞ f(n) =∞ if and only if limx→∞ f(x) =∞” and “limn→∞ f(n) =

−∞ if and only if limx→∞ f(x) = −∞” are similar.

So let’s compute limx→∞ f(x). Since we actually have a function instead of a sequence, we can use

L’Hospital’s Rule (it turns out that L’Hospital’s Rule does include the case when x approaches ∞; you can
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look at Note 2 at the top of page 303). We have

lim
x→∞

f(x) = lim
x→∞

− 4
x2 e

4
x + 4

xe
4
x (− 4

x2 )

−e 4
x (− 4

x2 )

= lim
x→∞

1 + 4
x

−1

= −1 .

Hence we have ∫ 4

0

ex dx = (1− e4) lim
n→∞

4
ne

4
n

1− e 4
n

= (1− e4) lim
x→∞

f(x)

= (1− e4)(−1)

= e4 − 1 .

�

Exercise 4 (Section 5.2, #27). Prove that
∫ b
a
x dx = 1

2 (b2 − a2). Note that this is f(b) − f(a) where

f(x) = 1
2x

2.

Solution. We have ∫ b

a

x dx = lim
n→∞

n∑
i=1

(
a+ i

b− a
n

)
b− a
n

= lim
n→∞

a
b− a
n

n∑
i=1

1 +

(
b− a
n

)2 n∑
i=1

i

= lim
n→∞

a
b− a
n

(n) +

(
b− a
n

)2
n(n+ 1)

2

= a(b− a) + (b− a)2
1

2

=
1

2
(b2 − a2)

�

Exercise 5 (Section 5.2, #28). Prove that
∫ b
a
x2 dx = 1

3 (b3 − a3). Note that this is f(b) − f(a) where

f(x) = 1
3x

3.
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Solution. We have∫ b

a

x2 dx = lim
n→∞

n∑
i=1

(
a+ i

b− a
n

)2
b− a
n

= lim
n→∞

b− a
n3

n∑
i=1

(an+ i(b− a))
2

= lim
n→∞

b− a
n3

n∑
i=1

(
a2n2 + 2ain(b− a) + i2(b− a)2

)
= lim
n→∞

b− a
n3

(
a2n2

n∑
i=1

1 + 2an(b− a)

n∑
i=1

i+ (b− a)2
n∑
i=1

i2

)

= lim
n→∞

b− a
n3

(
a2n2(n) + 2an(b− a)

n(n+ 1)

2
+ (b− a)2

n(n+ 1)(2n+ 1)

6

)
= (b− a)

(
a2 + 2a(b− a)

1

2
+

(b− a)2

3

)
=

1

3
(b3 − a3) .

�

Exercise 6 (Section 5.2, #29). Express the integral
∫ 10

1
(x− 4 lnx) dx as a limit of Riemann sums as in (1).

Solution. We have∫ 10

1

(x− 4 lnx) dx = lim
n→∞

n∑
i=1

(
1 + i

10− 1

n
− 4 ln

(
1 + i

10− 1

n

))
10− 1

n
.

�

Exercise 7 (Section 5.2, #57). Use the properties of integrals (page 379 to 381) to verify the following

inequality without evaluating an integral:

2 ≤
∫ 1

−1

√
1 + x2 dx ≤ 2

√
2 .

Solution. Since 0 ≤ x2 ≤ 1 for all x ∈ [−1, 1], we have 1 ≤
√

1 + x2 ≤
√

2 for all x ∈ [−1, 1]. Thus

2 =

∫ 1

−1
1 dx

(∗)
≤
∫ 1

−1

√
1 + x2 dx

(∗)
≤
∫ 1

−1

√
2 dx = 2

√
2

where in the inequalities marked by (∗) we used property 7 on page 381. Alternatively, you can obtain the

result straight from property 8 on the same page. �


