DEFINITE INTEGRALS

MON, OCT 28, 2013

A definite integral is generally defined to be the limit of approximations of area. The formal definition is given on page 372 , but it will usually suffice to use Theorem 4 on page 374 , which says

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad \text { where } \quad \Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \tag{1}
\end{equation*}
$$

In other words, the integral $\int_{a}^{b} f(x) d x$ is the limit of the sequence whose nth term is equal to the Riemann sum $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, which in turn is the sum of the areas of n rectangles, where the i th rectangle has width $\Delta x=\frac{b-a}{n}$ and (possibly negative) height $f\left(x_{i}\right)=f(a+i \Delta x)$.

Exercise 1 (Section 5.2, \#17). Express the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \ln \left(1+x_{i}^{2}\right) \Delta x$, where $\Delta x=\frac{6-2}{n}$ and $x_{i}=2+i \Delta x$, as a definite integral on the interval $[2,6]$.

Exercise 2 (Section 5.2, \#24). Use (1) to compute $\int_{0}^{2}\left(2 x-x^{3}\right) d x$.
Exercise 3. Use (1) to compute $\int_{0}^{4} e^{x} d x$.
Exercise 4 (Section 5.2, \#27). Prove that $\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$. Note that this is $f(b)-f(a)$ where $f(x)=\frac{1}{2} x^{2}$.

Exercise 5 (Section 5.2, \#28). Prove that $\int_{a}^{b} x^{2} d x=\frac{1}{3}\left(b^{3}-a^{3}\right)$. Note that this is $f(b)-f(a)$ where $f(x)=\frac{1}{3} x^{3}$.

Exercise 6 (Section 5.2, \#29). Express the integral $\int_{1}^{10}(x-4 \ln x) d x$ as a limit of Riemann sums as in (1).
Exercise 7 (Section 5.2, \#57). Use the properties of integrals (page 379 to 381) to verify the following inequality without evaluating an integral:

$$
2 \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq 2 \sqrt{2}
$$

