MORE FUNCTION GRAPHING; OPTIMIZATION

FRI, OCT 25, 2013

(Last edited October 28, 2013 at 11:09pm.)

Exercise 1. Let n be an arbitrary positive integer. Give an example of a function with exactly n vertical asymptotes. Give an example of a function with infinitely many vertical asymptotes.

Solution. The function $y=\frac{1}{(x-1)(x-2) \cdots(x-n)}$, with domain of definition $\mathbb{R} \backslash\{1,2, \ldots, n\}$, has exactly n vertical asymptotes, namely at $x=1, \ldots, n$. In general, given n distinct numbers a_{1}, \ldots, a_{n}, the function $y=\frac{1}{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)}$, with domain of definition $\mathbb{R} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$, has exactly n vertical asymptotes, namely at $x=a_{1}, \ldots, a_{n}$.

The function $y=\tan x$, with domain of definition $\mathbb{R} \backslash\left\{\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots\right\}$, has infinitely many vertical asymptotes, exactly at $x \in\left\{\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots\right\}$, which is where $\cos x=0$.

Exercise 2. Let f be a function which is differentiable everywhere. Suppose that $f^{\prime}(x)>1$ for all x. Show that $\lim _{x \rightarrow \infty} f(x)=\infty$.

Solution. Let $x_{1}<x_{2}$ be real numbers. By the Mean Value Theorem, there exists some $c \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$, and since $f^{\prime}(c)>1$ we have $f\left(x_{2}\right)-f\left(x_{1}\right)>x_{2}-x_{1}$. In particular, substituting $x_{2}=x$ and $x_{1}=0$, we have $f(x)>x+f(0)$ for all $x>0$. Thus, since $\lim _{x \rightarrow \infty}(x+f(0))=\infty$, we have $\lim _{x \rightarrow \infty} f(x)=\infty$.

An alternate solution is to use the Fundamental Theorem of Calculus. We have

$$
f(x)-f(0) \stackrel{(*)}{=} \int_{0}^{x} f^{\prime}(t) d t>\int_{0}^{x} 1 d t=x
$$

where we used FTC in the equality marked $(*)$ above.
Be careful about using indefinite integrals. It is not necessarily true that $f(x)>x$ for all x; it is only true for all x greater than some number. For example, consider the case $f(x)=2 x$; then $f^{\prime}(x)=2$ so $f^{\prime}(x)>1$ for all x. But $f(x)>x$ only if $x>0$.

Exercise 3. Graph the function

$$
f(x)=x^{3}+6 x^{2}+9 x
$$

Indicate domain, critical points, inflection points, regions where the graph is increasing/decreasing, x intercepts and y-intercepts, regions of concavity (up or down), local maxima and minima, any asymptotes and behavior at infinity.

Solution. The domain is \mathbb{R}. A point $(x, f(x))$ on the graph of the function is a critical point if $f^{\prime}(x)=0$ or is not defined; $f(x)$ is differentiable everywhere, so the only way a point can be a critical point is if $f^{\prime}(x)=0$. We have

$$
f^{\prime}(x)=3 x^{2}+12 x+9=3(x+1)(x+3)
$$

so the only critical points of f are $(-1, f(-1))=(-1,-4)$ and $(-3, f(-3))=(-3,0)$. A point $(x, f(x))$ on the graph of the function is an inflection point if $f^{\prime \prime}(x)=0$ or is not defined; again, the only way a point can be an inflection point is if $f^{\prime \prime}(x)=0$. We have

$$
f^{\prime \prime}(x)=6 x+12
$$

so the only critical point of f is $(-2, f(-2))=(-2)$. We can factor $f(x)=x(x+3)^{2}$, so the x-intercepts are $x=0,-3$. The y-intercept is $f(0)=0$.

The function f is increasing (resp. decreasing) in the interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ (resp. $f\left(x_{1}\right)>f\left(x_{2}\right)$) for all $x_{1}, x_{2} \in I$ such that $x_{1}<x_{2}$ (this is the definition on page 19). This is equivalent to saying that $f^{\prime}(x)>0\left(\right.$ or $\left.f^{\prime}(x)<0\right)$ for all x in the interval. ${ }^{1}$ Since $f^{\prime}(x)>0$ on $(-\infty,-3)$ and $(-1, \infty)$ and $f^{\prime}(x)<0$ on $(-3,-1), f$ is increasing on $(-\infty,-3)$, decreasing on $(-3,-1)$, and increasing on $(-1, \infty)$.

A function f is concave up (resp. down) on the interval I if $f^{\prime \prime}(x)>0$ (resp. $\left.f^{\prime \prime}(x)<0\right)$ for all $x \in I$. Since $f^{\prime \prime}(x)=6(x+2), f^{\prime \prime}(x)>0$ on the interval $(-2, \infty)$ and $f^{\prime \prime}(x)<0$ on the interval $(-\infty,-2)$. So f is concave up on $(-2, \infty)$ and concave down on $(-\infty,-2)$. A function which is differentiable on all of \mathbb{R} has a local maximum (resp. minimum) at $x=a$ if and only if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$ (resp. $\left.f^{\prime \prime}(a)>0\right)$. We have $f^{\prime}(-1)=0$ and $f^{\prime \prime}(-1)=6>0$, so f has a local minimum at $x=-1$; we have $f^{\prime}(-3)=0$ and $f^{\prime \prime}(-3)=-6<0$, so f has a local maximum at $x=-3$.

There are no vertical asymptotes because the function is continuous on the entire real line. Suppose there is a slant or horizontal asymptote; then there exist real numbers m, b such that either

$$
\lim _{x \rightarrow \infty}(f(x)-(m x+b))=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty}(f(x)-(m x+b))=0 .
$$

But $f(x)-(m x+b)$ is a polynomial of degree 3, so we have a contradiction (recall the exercise about endpoint behavior of nonconstant polynomials). So there are no slant or horizontal asymptotes.

Figure 1. Graph of $f(x)=x^{3}+6 x^{2}+9 x$

[^0]Exercise 4. Find

$$
\lim _{t \rightarrow 16} \frac{\sqrt{t}-4}{t-16}
$$

in three ways: (i) using methods learned up to and including the first midterm; (ii) by realizing the limit as $f^{\prime}(c)$ for some function $f(t)$ and some value c; (iii) using L'Hospital's Rule.
Solution. (i) We have

$$
\lim _{t \rightarrow 16} \frac{\sqrt{t}-4}{t-16}=\lim _{t \rightarrow 16} \frac{\sqrt{t}-4}{(\sqrt{t}-4)(\sqrt{t}+4)}=\lim _{t \rightarrow 16} \frac{1}{\sqrt{t}+4}=\frac{1}{8}
$$

(ii) Set $f(t)=\sqrt{t}$. Then

$$
\lim _{t \rightarrow 16} \frac{\sqrt{t}-4}{t-16}=\lim _{t \rightarrow 16} \frac{f(t)-f(16)}{t-16}=f^{\prime}(16)=\frac{1 / 2}{\sqrt{16}}=\frac{1}{8}
$$

(iii) We have

$$
\lim _{t \rightarrow 16} \frac{\sqrt{t}-4}{t-16}=\lim _{t \rightarrow 16} \frac{\frac{1 / 2}{\sqrt{t}}}{1}=\frac{1}{8}
$$

Exercise 5 (Section 4.7,\#19). Find the point on the line $y=2 x+3$ that is closest to the origin.
Solution. At the point $(x, 2 x+3)$, the distance to the origin is

$$
d(x)=\sqrt{(x-0)^{2}+(2 x+3-0)^{2}}=\sqrt{x^{2}+(2 x+3)^{2}}=\sqrt{5 x^{2}+12 x+9}
$$

by the Pythagorean theorem. The function $d(x)$ is defined for all x and is differentiable everywhere. We want to find a global minimum of $d(x)$. To ease computation, I make the following (perhaps unconventional) argument. Let $p(x)=5 x^{2}+12 x+9$. For any two nonnegative real numbers, the condition $\sqrt{x_{1}} \leq \sqrt{x_{2}}$ is equivalent to $x_{1} \leq x_{2}$. Thus, for any two real numbers x_{1}, x_{2}, the condition $d\left(x_{1}\right) \leq d\left(x_{2}\right)$ is equivalent to $p\left(x_{1}\right) \leq p\left(x_{2}\right)$ (since $\left.d(x)=\sqrt{p(x)}\right)$. Thus $d(a)$ is a global minimum value of the function $d(x)$ if and only if $p(a)$ is a global minimum value of the function $p(x)$. Let's find the global minimum value of $p(x)$. For quadratic polynomials $a x^{2}+b x+c$ with $a>0$, the minimum value takes place at $x=-\frac{b}{2 a}$ since that's the vertex of the parabola \square^{2} So in our case the minimum of $p(x)$ occurs at $x=-\frac{12}{2 \cdot 5}=-\frac{6}{5}$. Thus the desired point is $\left.\left(-\frac{6}{5}, 2\left(-\frac{6}{5}\right)+3\right)=\left(-\frac{6}{5},-\frac{3}{5}\right)\right]^{3}$
Exercise 6 (Section 4.7, \#21). Find the points on the ellipse $4 x^{2}+y^{2}=4$ that are farthest away from the point $(1,0)$.

Solution. I'm going to find the point on the upper half of the ellipse which is farthest from the point $(1,0)$, then note that the ellipse is symmetric with respect to the x-axis, so the reflection will be farthest, too. The equation of the upper part is given by $y=\sqrt{4-4 x^{2}}$, with domain of definition $[-1,1]$. It is continuous on $[-1,1]$ and differentiable on $(-1,1)$. The distance from the point $\left(x, \sqrt{4-4 x^{2}}\right)$ to $(1,0)$ is given by

$$
d(x)=\sqrt{(x-1)^{2}+\left(\sqrt{4-4 x^{2}}-0\right)^{2}}=\sqrt{-3 x^{2}-2 x+5}
$$

by the Pythagorean theorem. It is continuous on $[-1,1]$ and differentiable on $(-1,1)$. Set $p(x)=-3 x^{2}-$ $2 x+5$. By the argument given in the solution to Exercise 5, the problem reduces to finding the maximum

[^1]of the quadratic $p(x)$ on the interval $[-1,1]$. If the quadratic were defined over all of \mathbb{R}, then its global maximum would occur at $x=-\frac{-2}{2 \cdot-3}=-\frac{1}{3}$, which is inside the interval $[-1,1]$, so this a global maximum of the quadratic on the interval $[-1,1]$. Thus the point $\left(-\frac{1}{3}, \sqrt{4-4\left(-\frac{1}{3}\right)^{2}}\right)=\left(-\frac{1}{3}, \frac{4 \sqrt{2}}{3}\right)$ is the point on the upper half of the ellipse which is farthest away from $(1,0)$. On the bottom half, the point $\left(-\frac{1}{3},-\frac{4 \sqrt{2}}{3}\right)$ is farthest away. So the desired points are $\left(-\frac{1}{3}, \frac{4 \sqrt{2}}{3}\right)$ and $\left(-\frac{1}{3},-\frac{4 \sqrt{2}}{3}\right)$.

Exercise 7 (Section 4.7, \#24). Find the area of the largest rectangle that can be inscribed in the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.

Solution. Assume without loss of generality that a, b are positive. If $b=a$, then the ellipse is actually a circle and any rectangle inscribed in a circle of radius a is a square of side length $a \sqrt{2}$, so it has area $2 a^{2}$. Now assume $b<a$. I'm going to assume without proof that, for any rectangle inscribed in an ellipse which is not a circle, its sides are parallel to the axes of the ellipse ${ }^{4}$ Since the sides of our rectangles are parallel to the x and y axes, its vertices are $(x, y),(-x, y),(-x,-y),(x,-y)$ for some $x \in[0, a]$ and $y=b \sqrt{1-\frac{x^{2}}{a^{2}}}$. Thus the area of the rectangle is

$$
A(x)=2 x \cdot 2 y=4 b x \sqrt{1-\frac{x^{2}}{a^{2}}}
$$

where $A(x)$ is a function on the domain $[0, a]$. It is continuous on $[0, a]$ and differentiable on $(0, a)$. We maximize $A(x)$. Let $p(x)=x^{2}-\frac{1}{a^{2}} x^{4}$. Then $A(x)=4 b \sqrt{p(x)}$. By the argument given in the solution to Exercise 5, the problem reduces to finding the maximum of $p(x)$ on the interval $[0, a]$. Considering $p(x)$ to be a quadratic polynomial in the variable x^{2}, we have that it takes a maximum when $x^{2}=-\frac{1}{2 \cdot-\frac{1}{a^{2}}}=\frac{a^{2}}{2}$, or when $x=\frac{a}{\sqrt{2}}$, which is inside the interval $[0, a]$. For this value of x, we have $y=b \sqrt{1-\frac{(a / \sqrt{2})^{2}}{a^{2}}}=\frac{b}{\sqrt{2}}$, so the rectangle has area $2 \frac{a}{\sqrt{2}} \cdot 2 \frac{b}{\sqrt{2}}=2 a b b^{5}$

Exercise 8 (Section 4.7, \#54). At which points on the curve $y=1+40 x^{3}-3 x^{5}$ does the tangent line have the largest slope?

Solution. Let $f(x)=1+40 x^{3}-3 x^{5}$. At $(x, f(x))$, the tangent line to the curve $y=f(x)$ has slope $f^{\prime}(x)=120 x^{2}-15 x^{4}$. So our problem reduces to maximizing $f^{\prime}(x)$. We have $f^{\prime \prime}(x)=240 x-60 x^{3}=$ $60 x(x-2)(x+2)$, which is 0 only if $x=0, \pm 2$. We have $f^{\prime \prime \prime}(x)=240-180 x^{2}$ and $f^{\prime \prime \prime}(0)=240>0, f^{\prime \prime \prime}(2)=$ $-480<0, f^{\prime \prime \prime}(-2)=-480<0$, so 0 is a local minimum while ± 2 are local maxima. Since $f^{\prime \prime}(x)>0$ on the intervals $(-\infty,-2)$ and $(0,2)$ and $f^{\prime \prime}(x)<0$ on the intervals $(-2,0)$ and $(2, \infty)$, we have that $f^{\prime}(x)$ is increasing on the intervals $(-\infty,-2)$ and $(0,2)$ and $f^{\prime}(x)$ is decreasing on the intervals $(-2,0)$ and $(2, \infty)$. Thus $(-2, f(-2))=(-2,-223)$ and $(2, f(2))=(2,225)$ are the global maxima of $f^{\prime}(x)$.

Alternatively, you can complete the square in $f^{\prime}(x)$. We have $f^{\prime}(x)=-15\left(x^{4}-8 x^{2}\right)$. Completing the square gives $f^{\prime}(x)=-15\left(x^{4}-8 x^{2}+16\right)+240=-15\left(x^{2}-4\right)^{2}+240$, so $f^{\prime}(x)$ takes its maximum whenever

[^2]$\left(x^{2}-4\right)^{2}$ is minimized, i.e. when $x^{2}-4=0$, or $x= \pm 2$. Thus our points are $(-2, f(-2))=(-2,-223)$ and $(2, f(2))=(2,225)$.

[^0]: ${ }^{1}$ Notice that the function $f(x)=\frac{1}{x}$ defined on $\mathbb{R} \backslash\{0\}$ has the property that $f^{\prime}(x)<0$ for all $x \in \mathbb{R} \backslash\{0\}$, but it is not decreasing on $\mathbb{R} \backslash\{0\}$ (since $f(-1)<f(1)$). This has to do with the fact that f is not defined at $x=0$.

[^1]: ${ }^{2}$ Exercise: Prove this.
 ${ }^{3}$ Note that the line joining $\left(-\frac{6}{5},-\frac{3}{5}\right)$ to the origin is perpendicular to the line $y=2 x+3$. This will always be the case for problems of the form "find the point on the line ℓ that is closest to the point P ".

[^2]: ${ }^{4}$ This is a minor technical point which is less relevant to Math 1 A but is still necessary in a complete solution: if a rectangle is inscribed in an ellipse which is not a circle, how do I know that its sides are going to be parallel to the x and y axes? (For example, if the ellipse is a circle, then inscribed rectangles are squares, whose sides don't have to be parallel to the axes.) I hope this following argument will satisfy you. Assume without loss of generality that $b<a$ and a rectangle is inscribed in the ellipse such that its sides aren't parallel to the axes of the ellipse. Apply the linear transformation which shrinks everything along the x-axis by the factor $k=\frac{b}{a}$. So the ellipse now becomes a circle of radius b. Under this transformation, the rectangle that was inscribed in the ellipse becomes a parallelogram. The four sides of the original rectangle have slope $m,-\frac{1}{m}, m,-\frac{1}{m}$ for some nonzero m, so the parallelogram has four sides whose slopes are $m k,-\frac{k}{m}, m k,-\frac{k}{m}$. Since $k>1$, adjacent sides of the parallelogram aren't perpendicular, and the parallelogram is not a rectangle. Thus the parallelogram has an acute angle, and such parallelograms cannot be inscribed in circles, contradiction.
 ${ }^{5}$ Note that this gives the same answer as above for the special case $b=a$.

