GRAPHS OF FUNCTIONS; L'HOSPITAL'S RULE

(Last edited October 24, 2013 at 6:09pm.)

The line y = L is called a horizontal asymptote of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L \ . \tag{1}$$

The line x = a is called a *vertical asymptote* of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a^+} f(x) = \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \infty \quad \text{or} \quad \lim_{x \to a^+} f(x) = -\infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = -\infty \ . \tag{2}$$

The line y = mx + b, for $m \neq 0$, is called a slant asymptote of the curve y = f(x) if either

$$\lim_{x \to \infty} \left(f(x) - (mx + b) \right) = 0 \quad \text{or} \quad \lim_{x \to -\infty} \left(f(x) - (mx + b) \right) = 0. \tag{3}$$

Exercise 1. Give an example of a function f which is continuous everywhere but has a horizontal asymptote. Give an example of a function f which is continuous everywhere but has a slant asymptote.

Solution. The simplest example of a function with a horizontal asymptote is the function y=0. More interesting examples are $y=\frac{1}{x^2+1}$ and $y=e^x$. The simplest example of a function with a horizontal asymptote is the function y=mx+b for $m\neq 0$. More interesting examples are $y=x(e^{-x}+1)$ and $y=x+\frac{1}{x}\sin x$.

Note that, if the curve y = f(x) has a slant asymptote mx + b, then, for any c, the curve y = f(x) - (mx + c) has a horizontal asymptote at y = b - c.

A function can have two distinct horizontal asymptotes; consider the function $f(x) = \frac{e^x + 2}{e^x + 1}$. What are the asymptotes for this function? No curve defined as the graph of a function has more than two horizontal asymptotes. (Why?)

Exercise 2. Give a proof, using N and δ , of the following fact: If a function f(x) is continuous at x = a, then f(x) cannot have a vertical asymptote at x = a.

Solution. (Note: I added "at x=a" to the end, since otherwise the statement is false.) Suppose that f is continuous at x=a. Then $\lim_{x\to a} f(x) = f(a)$. Suppose that f has a vertical asymptote at x=a. Then at least one of (2) is true. By shifting the function by a, we can assume that a=0. Also, by reflecting f over the line x=0 and/or y=0, we can assume that $\lim_{x\to 0^+} f(x) = \infty$. While one might be tempted to conclude here that, since $f(0) \neq \infty$, we have a contradiction, there is more that needs to be said because limits involving infinity have a different format: the statement " $\lim_{x\to 0} f(x) = f(0)$ " means "for every $\epsilon>0$ there exists $\delta>0$ such that $0<|x|<\delta$ implies $|f(x)-f(0)|<\epsilon$ " and the statement " $\lim_{x\to 0^+} f(x)=\infty$ " means "for every N>0 there exists $\delta>0$ such that $0< x<\delta$ implies f(x)>N". In particular, there exists $\delta_1>0$ such that $0<|x|<\delta_1$ implies |f(x)-f(0)|<1 (we're taking $\epsilon=1$). There exists $\epsilon=1$ 0 such that $\epsilon=1$ 1. There exists $\epsilon=1$ 2 and $\epsilon=1$ 3 and $\epsilon=1$ 3. Then $\epsilon=1$ 4 and $\epsilon=1$ 5 and $\epsilon=1$ 5. Then $\epsilon=1$ 5 and $\epsilon=1$ 6 and $\epsilon=1$ 6 and $\epsilon=1$ 7 and $\epsilon=1$ 8 and $\epsilon=1$ 9. Then $\epsilon=1$ 9 and $\epsilon=1$ 9 and

(Regarding the Note: Let $f(x) = \frac{1}{x}$ on $(-\infty, 0) \cup (0, \infty)$ and a = 1. Then f is continuous at x = a and still has a vertical asymptote at x = 0.)

Exercise 3. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with $n \ge 1$ and $a_n \ne 0$. Prove that $\lim_{x\to\infty} f(x) = \infty$ if $a_n > 0$ and $-\infty$ if $a_n < 0$. Use this to show that $\lim_{x\to-\infty} f(x) = \infty$ if either (i) n is even and $a_n > 0$ or (ii) n is odd and $a_n < 0$; show that $\lim_{x\to-\infty} f(x) = -\infty$ if either (iii) n is odd and $a_n > 0$ or (iv) n is even and $a_n < 0$.

Solution. Suppose $a_n>0$. We prove the statement " $\lim_{x\to\infty} f(x)=\infty$ ", which means "for every N>0, there exists M such that x>M implies f(x)>N". Let N>0. We're done if we can find M such that x>M implies $a_nx^n-|a_{n-1}x^{n-1}|-\cdots-|a_1x|-|a_0|>N$, because f(x) is even bigger than $a_nx^n-|a_{n-1}x^{n-1}|-\cdots-|a_1x|-|a_0|$. If $x\geq 1$, then $a_nx^n-|a_{n-1}x^{n-1}|-\cdots-|a_1x|-|a_0|\geq a_nx^n-(|a_{n-1}|+\cdots+|a_1|+|a_0|)x^{n-1}$, so it suffices to find $M\geq 1$ such that x>M implies $a_nx^n-(|a_{n-1}|+\cdots+|a_1|+|a_0|)x^{n-1}>N$. Choose $M=\max\{\frac{|a_{n-1}|+\cdots+|a_1|+|a_0|+N}{a_n},1\}$. Suppose x>M. Then $x>\frac{|a_{n-1}|+\cdots+|a_1|+|a_0|+N}{a_n}$, so $a_nx-(|a_{n-1}|+\cdots+|a_1|+|a_0|)>N$. Also, x>1, so $x^{n-1}>1$, and thus $a_nx^n-(|a_{n-1}|+\cdots+|a_1|+|a_0|)x^{n-1}>N$, which implies f(x)>N as above.

If $a_n < 0$, then note that the leading coefficient of the polynomial -f(x) is positive and apply the above proof to -f(x), observing that $\lim_{x\to\infty} f(x) = \infty$ if and only if $\lim_{x\to\infty} (-f(x)) = -\infty$.

If n is even and $a_n > 0$, then the leading coefficient of $f(-x) = a_n x^n - a_{n-1} x^{n-1} + \dots - a_1 x + a_0$ is positive and $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(-x)$, so we have $\lim_{x \to -\infty} f(x) = \infty$ as above. The other cases are analogous; consider either -f(x), f(-x), or -f(-x).

Exercise 4 (Section 4.4, #53). Find the limit $\lim_{x\to\infty} (x - \ln x)$.

Solution. Note that $x - \ln x = \ln(\frac{e^x}{x})$. We have $\lim_{x \to \infty} \frac{e^x}{x} = \lim_{x \to \infty} \frac{e^x}{1} = \infty$ by L'Hospital. Thus $\lim_{x \to \infty} (x - \ln x) = \lim_{x \to \infty} \ln(\frac{e^x}{x}) = \infty$, where the last step follows from the fact that if f, g are two functions such that $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} f(g(x)) = \infty$.

Exercise 5 (Section 4.4, #61). Find the limit $\lim_{x\to\infty} x^{1/x}$.

Solution. Note that $x^{1/x} = e^{\frac{1}{x} \ln x}$. We have $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$ by L'Hospital. Thus $\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{1}{x} \ln x} = e^0 = 1$, where the last step follows from the fact that if f, g are two functions such that f is continuous and $\lim_{x \to \infty} g(x) = a$, then $\lim_{x \to \infty} f(g(x)) = f(a)$.

Exercise 6 (Section 4.4, #67). Find the limit $\lim_{x\to\infty} (1+\frac{2}{x})^x$. More generally, find the limit $\lim_{x\to\infty} (b+\frac{a}{x})^x$ where a is a real number and b is a positive real number.

Solution. Suppose that b=1. Then $(1+\frac{a}{x})^x=e^{x\ln(1+\frac{a}{x})}$, and $\lim_{x\to\infty}x\ln(1+\frac{a}{x})=\lim_{x\to\infty}\frac{\ln(1+\frac{a}{x})}{1/x}=\lim_{x\to\infty}\frac{1/(1+\frac{a}{x})(-a/x^2)}{-1/x^2}=\lim_{x\to\infty}\frac{a}{1+\frac{a}{x}}=a$. Thus $\lim_{x\to\infty}(1+\frac{a}{x})^x=\lim_{x\to\infty}e^{x\ln(1+\frac{a}{x})}=e^a$, where the last step follows from the fact that if f,g are two functions such that f is continuous and $\lim_{x\to\infty}g(x)=a$, then $\lim_{x\to\infty}f(g(x))=f(a)$.

Suppose that b > 1. Then $\lim_{x \to \infty} (b + \frac{a}{x}) = b > 1$, so $\lim_{x \to \infty} (b + \frac{a}{x})^x = \infty$ (not an indeterminate form). Suppose that b > 1. Then $\lim_{x \to \infty} (b + \frac{a}{x}) = b < 1$, so $\lim_{x \to \infty} (b + \frac{a}{x})^x = 0$ (not an indeterminate form). \square

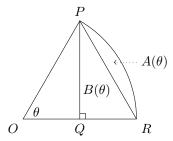
Exercise 7 (Section 4.4, #71). Prove that $\lim_{x\to\infty} \frac{e^x}{x^n} = \infty$ for any positive integer n. (Intuition: The exponential function grows faster than any large power of x.)

Solution. We have $\lim_{x\to\infty}\frac{e^x}{1}=\infty$. If we assume that $\lim_{x\to\infty}\frac{e^x}{x^n}=\infty$ and prove $\lim_{x\to\infty}\frac{e^x}{x^{n+1}}=\infty$, we will be done by induction. We have $\lim_{x\to\infty}\frac{e^x}{x^{n+1}}=\lim_{x\to\infty}\frac{e^x}{(n+1)x^n}=\infty$, where the first step follows by L'Hospital and the second by assumption.

Exercise 8 (Section 4.4, #72). Prove that $\lim_{x\to\infty} \frac{\ln x}{x^p} = 0$ for any p > 0. (Intuition: The natural logarithm grows slower than any small power of x. Application to computer science: Many sorting algorithms have a worst-case running time of $O(n \ln n)$, which is better than $O(n^{1+p})$ for any p > 0. But it's worse than O(n). Wait, what?)

Solution. We have $\lim_{x\to\infty}\frac{1}{x^p}=0$ for any p>0. Thus $\lim_{x\to\infty}\frac{\ln x}{x^p}=\lim_{x\to\infty}\frac{1/x}{px^{p-1}}=\frac{1}{p}\lim_{x\to\infty}\frac{1}{x^p}=0$.

Exercise 9 (Section 4.4, #82). Let $A(\theta)$ be the area of the region between the chord PR and the arc PR. Let $B(\theta)$ be the area of the triangle PQR. Find $\lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$.



Solution. The problem doesn't specify lengths because it doesn't matter; scaling everything by a constant preserves ratios of areas. Let r = PO = OR. Then $A(\theta) = \frac{\theta}{2\pi}(\pi r^2) - \frac{1}{2} \cdot r \cdot (r \sin \theta)$, and $B(\theta) = \frac{1}{2}(r - r \cos \theta)(r \sin \theta)$. Then

$$\frac{A(\theta)}{B(\theta)} = \frac{\frac{\theta}{2\pi}(\pi r^2) - \frac{1}{2} \cdot r \cdot (r \sin \theta)}{\frac{1}{2}(r - r \cos \theta)(r \sin \theta)} = \frac{\theta - \sin \theta}{(1 - \cos \theta)(\sin \theta)}$$

so

$$\lim_{\theta \to 0} \frac{A(\theta)}{B(\theta)} = \lim_{\theta \to 0} \frac{\theta - \sin \theta}{(1 - \cos \theta)(\sin \theta)}$$

$$\stackrel{(1)}{=} \lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin^2 \theta + (1 - \cos \theta)(\cos \theta)}$$

$$\stackrel{(2)}{=} \lim_{\theta \to 0} \frac{\sin \theta}{2 \sin \theta \cos \theta + \sin \theta \cos \theta + (1 - \cos \theta)(-\sin \theta)}$$

$$= \lim_{\theta \to 0} \frac{1}{2 \cos \theta + \cos \theta - (1 - \cos \theta)}$$

$$= \lim_{\theta \to 0} \frac{1}{4 \cos \theta - 1}$$

$$= \frac{1}{3}$$

where we used L'Hospital in the steps marked (1) and (2).

Exercise 10 (Section 4.4, #84). Let f and g be functions such that f(x) > 0 for all x. Suppose that $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$. Show that $\lim_{x\to a} (f(x))^{g(x)} = 0$. (Hint: This is not an indeterminate form. Intuition: You are multiplying increasingly many copies of increasingly small numbers.)

Solution 1. Since $\lim_{x\to a} f(x) = 0$, we have $\lim_{x\to a} \ln(f(x)) = -\infty$. Thus $\lim_{x\to a} \ln(f(x)) \cdot g(x) = -\infty$. Thus $\lim_{x\to a} (f(x))^{g(x)} = \lim_{x\to a} e^{\ln(f(x)) \cdot g(x)} = 0$. (Here, we're using the following facts: (1) if $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = -\infty$ then $\lim_{x\to a} f(x)g(x) = -\infty$; (2) if $\lim_{x\to a} f(x) = -\infty$ and $\lim_{x\to -\infty} g(x) = 0$, then $\lim_{x\to a} g(f(x)) = 0$.)

GRAPHS OF FUNCTIONS; L'HOSPITAL'S RULE

Solution 2. Let $\epsilon > 0$. Since $\lim_{x \to a} f(x) = 0$, there exists $\delta_1 > 0$ such that $0 < |x - a| < \delta_1$ implies $|f(x)| < \min\{\epsilon, 1\}$. Since $\lim_{x \to a} g(x) = \infty$, there exists $\delta_2 > 0$ such that $0 < |x - a| < \delta_2$ implies g(x) > 1. Set $\delta = \min\{\delta_1, \delta_2\}$ and suppose that $0 < |x - a| < \delta$. Then $|f(x)| < \epsilon$ and |f(x)| < 1 and g(x) > 1. Thus $|(f(x))^{g(x)} - 0| = (f(x))^{g(x)} < f(x) < \epsilon$. Hence $\lim_{x \to a} (f(x))^{g(x)} = 0$.