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The line y = L is called a horizontal asymptote of the curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L . (1)

The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements

is true:

lim
x→a+

f(x) =∞ or lim
x→a−

f(x) =∞ or lim
x→a+

f(x) = −∞ or lim
x→a−

f(x) = −∞ . (2)

The line y = mx+ b, for m 6= 0, is called a slant asymptote of the curve y = f(x) if either

lim
x→∞

(
f(x)− (mx+ b)

)
= 0 or lim

x→−∞

(
f(x)− (mx+ b)

)
= 0 . (3)

Exercise 1. Give an example of a function f which is continuous everywhere but has a horizontal asymptote.

Give an example of a function f which is continuous everywhere but has a slant asymptote.

Solution. The simplest example of a function with a horizontal asymptote is the function y = 0. More

interesting examples are y = 1
x2+1 and y = ex. The simplest example of a function with a horizontal

asymptote is the function y = mx + b for m 6= 0. More interesting examples are y = x(e−x + 1) and

y = x+ 1
x sinx.

Note that, if the curve y = f(x) has a slant asymptote mx+b, then, for any c, the curve y = f(x)−(mx+c)

has a horizontal asymptote at y = b− c.
A function can have two distinct horizontal asymptotes; consider the function f(x) = ex+2

ex+1 . What are

the asymptotes for this function? No curve defined as the graph of a function has more than two horizontal

asymptotes. (Why?) �

Exercise 2. Give a proof, using N and δ, of the following fact: If a function f(x) is continuous at x = a,

then f(x) cannot have a vertical asymptote at x = a.

Solution. (Note: I added “at x = a” to the end, since otherwise the statement is false.) Suppose that f is

continuous at x = a. Then limx→a f(x) = f(a). Suppose that f has a vertical asymptote at x = a. Then

at least one of (2) is true. By shifting the function by a, we can assume that a = 0. Also, by reflecting f

over the line x = 0 and/or y = 0, we can assume that limx→0+ f(x) = ∞. While one might be tempted to

conclude here that, since f(0) 6= ∞, we have a contradiction, there is more that needs to be said because

limits involving infinity have a different format: the statement “limx→0 f(x) = f(0)” means “for every ε > 0

there exists δ > 0 such that 0 < |x| < δ implies |f(x) − f(0)| < ε” and the statement “limx→0+ f(x) = ∞”

means “for every N > 0 there exists δ > 0 such that 0 < x < δ implies f(x) > N”. In particular, there exists

δ1 > 0 such that 0 < |x| < δ1 implies |f(x)− f(0)| < 1 (we’re taking ε = 1). There exists δ2 > 0 such that

0 < x < δ2 implies f(x) > f(0) + 1 (we’re taking N = f(0) + 1). Consider any x such that 0 < |x− 0| < δ1

and 0 < x < δ2 (i.e. 0 < x < min{δ1, δ2}). Then |f(x)− f(0)| < 1 and f(x) > f(0) + 1, contradiction.

(Regarding the Note: Let f(x) = 1
x on (−∞, 0) ∪ (0,∞) and a = 1. Then f is continuous at x = a and

still has a vertical asymptote at x = 0.) �
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Exercise 3. Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial with n ≥ 1 and an 6= 0. Prove

that limx→∞ f(x) =∞ if an > 0 and −∞ if an < 0. Use this to show that limx→−∞ f(x) =∞ if either (i)

n is even and an > 0 or (ii) n is odd and an < 0; show that limx→−∞ f(x) = −∞ if either (iii) n is odd and

an > 0 or (iv) n is even and an < 0.

Solution. Suppose an > 0. We prove the statement “limx→∞ f(x) = ∞”, which means “for every N > 0,

there exists M such that x > M implies f(x) > N”. Let N > 0. We’re done if we can find M such that

x > M implies f(x) > N . We’re done if we can find M such that x > M implies anx
n − |an−1xn−1| − · · · −

|a1x| − |a0| > N , because f(x) is even bigger than anx
n − |an−1xn−1| − · · · − |a1x| − |a0|. If x ≥ 1, then

anx
n−|an−1xn−1|−· · ·−|a1x|−|a0| ≥ anxn−(|an−1|+ · · ·+ |a1|+ |a0|)xn−1, so it suffices to find M ≥ 1 such

that x > M implies anx
n− (|an−1|+ · · ·+ |a1|+ |a0|)xn−1 > N . Choose M = max{ |an−1|+···+|a1|+|a0|+N

an
, 1}.

Suppose x > M . Then x > |an−1|+···+|a1|+|a0|+N
an

, so anx− (|an−1|+ · · ·+ |a1|+ |a0|) > N . Also, x > 1, so

xn−1 > 1, and thus anx
n − (|an−1|+ · · ·+ |a1|+ |a0|)xn−1 > N , which implies f(x) > N as above.

If an < 0, then note that the leading coefficient of the polynomial −f(x) is positive and apply the above

proof to −f(x), observing that limx→∞ f(x) =∞ if and only if limx→∞(−f(x)) = −∞.

If n is even and an > 0, then the leading coefficient of f(−x) = anx
n − an−1xn−1 + . . . − a1x + a0 is

positive and limx→−∞ f(x) = limx→∞ f(−x), so we have limx→−∞ f(x) =∞ as above. The other cases are

analogous; consider either −f(x), f(−x), or −f(−x). �

Exercise 4 (Section 4.4, #53). Find the limit limx→∞(x− lnx).

Solution. Note that x − lnx = ln( e
x

x ). We have limx→∞
ex

x = limx→∞
ex

1 = ∞ by L’Hospital. Thus

limx→∞(x − lnx) = limx→∞ ln( e
x

x ) = ∞, where the last step follows from the fact that if f, g are two

functions such that limx→∞ f(x) =∞ and limx→∞ g(x) =∞, then limx→∞ f(g(x)) =∞. �

Exercise 5 (Section 4.4, #61). Find the limit limx→∞ x1/x.

Solution. Note that x1/x = e
1
x ln x. We have limx→∞

ln x
x = limx→∞

1/x
1 = 0 by L’Hospital. Thus limx→∞ x1/x =

limx→∞ e
1
x ln x = e0 = 1, where the last step follows from the fact that if f, g are two functions such that f

is continuous and limx→∞ g(x) = a, then limx→∞ f(g(x)) = f(a). �

Exercise 6 (Section 4.4, #67). Find the limit limx→∞(1+ 2
x )x. More generally, find the limit limx→∞(b+ a

x )x

where a is a real number and b is a positive real number.

Solution. Suppose that b = 1. Then (1 + a
x )x = ex ln(1+ a

x ), and limx→∞ x ln(1 + a
x ) = limx→∞

ln(1+ a
x )

1/x =

limx→∞
1/(1+ a

x )(−a/x2)

−1/x2 = limx→∞
a

1+ a
x

= a. Thus limx→∞(1 + a
x )x = limx→∞ ex ln(1+ a

x ) = ea, where the last

step follows from the fact that if f, g are two functions such that f is continuous and limx→∞ g(x) = a, then

limx→∞ f(g(x)) = f(a).

Suppose that b > 1. Then limx→∞(b+ a
x ) = b > 1, so limx→∞(b+ a

x )x =∞ (not an indeterminate form).

Suppose that b > 1. Then limx→∞(b+ a
x ) = b < 1, so limx→∞(b+ a

x )x = 0 (not an indeterminate form). �

Exercise 7 (Section 4.4, #71). Prove that limx→∞
ex

xn = ∞ for any positive integer n. (Intuition: The

exponential function grows faster than any large power of x.)

Solution. We have limx→∞
ex

1 = ∞. If we assume that limx→∞
ex

xn = ∞ and prove limx→∞
ex

xn+1 = ∞, we

will be done by induction. We have limx→∞
ex

xn+1 = limx→∞
ex

(n+1)xn = ∞, where the first step follows by

L’Hospital and the second by assumption. �
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Exercise 8 (Section 4.4, #72). Prove that limx→∞
ln x
xp = 0 for any p > 0. (Intuition: The natural logarithm

grows slower than any small power of x. Application to computer science: Many sorting algorithms have a

worst-case running time of O(n lnn), which is better than O(n1+p) for any p > 0. But it’s worse than O(n).

Wait, what?)

Solution. We have limx→∞
1
xp = 0 for any p > 0. Thus limx→∞

ln x
xp = limx→∞

1/x
pxp−1 = 1

p limx→∞
1
xp =

0. �

Exercise 9 (Section 4.4, #82). Let A(θ) be the area of the region between the chord PR and the arc PR.

Let B(θ) be the area of the triangle PQR. Find limθ→0+
A(θ)
B(θ) .

O
θ

P

Q R

A(θ)

B(θ)

Solution. The problem doesn’t specify lengths because it doesn’t matter; scaling everything by a constant

preserves ratios of areas. Let r = PO = OR. Then A(θ) = θ
2π (πr2) − 1

2 · r · (r sin θ), and B(θ) =
1
2 (r − r cos θ)(r sin θ). Then

A(θ)

B(θ)
=

θ
2π (πr2)− 1

2 · r · (r sin θ)
1
2 (r − r cos θ)(r sin θ)

=
θ − sin θ

(1− cos θ)(sin θ)

so

lim
θ→0

A(θ)

B(θ)
= lim
θ→0

θ − sin θ

(1− cos θ)(sin θ)

(1)
= lim

θ→0

1− cos θ

sin2 θ + (1− cos θ)(cos θ)

(2)
= lim

θ→0

sin θ

2 sin θ cos θ + sin θ cos θ + (1− cos θ)(− sin θ)

= lim
θ→0

1

2 cos θ + cos θ − (1− cos θ)

= lim
θ→0

1

4 cos θ − 1

=
1

3

where we used L’Hospital in the steps marked (1) and (2). �

Exercise 10 (Section 4.4, #84). Let f and g be functions such that f(x) > 0 for all x. Suppose that

limx→a f(x) = 0 and limx→a g(x) =∞. Show that limx→a(f(x))g(x) = 0. (Hint: This is not an indeterminate

form. Intuition: You are multiplying increasingly many copies of increasingly small numbers.)

Solution 1. Since limx→a f(x) = 0, we have limx→a ln(f(x)) = −∞. Thus limx→a ln(f(x))·g(x) = −∞. Thus

limx→a(f(x))g(x) = limx→a e
ln(f(x))·g(x) = 0. (Here, we’re using the following facts: (1) if limx→a f(x) =∞

and limx→a g(x) = −∞ then limx→a f(x)g(x) = −∞; (2) if limx→a f(x) = −∞ and limx→−∞ g(x) = 0, then

limx→a g(f(x)) = 0.) �
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Solution 2. Let ε > 0. Since limx→a f(x) = 0, there exists δ1 > 0 such that 0 < |x − a| < δ1 implies

|f(x)| < min{ε, 1}. Since limx→a g(x) =∞, there exists δ2 > 0 such that 0 < |x− a| < δ2 implies g(x) > 1.

Set δ = min{δ1, δ2} and suppose that 0 < |x − a| < δ. Then |f(x)| < ε and |f(x)| < 1 and g(x) > 1. Thus

|(f(x))g(x) − 0| = (f(x))g(x) < f(x) < ε. Hence limx→a(f(x))g(x) = 0. �


