CHAPTER 3 REVIEW

(Last edited October 23, 2013 at 1:59pm.)
Problem 1 (Section 3.1 Exercise \#51). Find the points on the curve $y=2 x^{3}+3 x^{2}-12 x+1$ where the tangent line is horizontal.

Solution. The tangent line is horizontal if and only if the slope is 0 . The slope of the tangent line to the curve at (x, y) is $y^{\prime}(x)=6 x^{2}+6 x-12=6(x+2)(x-1)$, and this is 0 exactly when $x=-2$ or $x=1$.

Problem 2 (Section 3.1 Exercise \#53). Show that the curve $y=2 e^{x}+3 x+5 x^{3}$ has no tangent line with slope 2.

Solution. The slope of the tangent line at (x, y) is $y^{\prime}(x)=2 e^{x}+3+15 x^{2}$. So we want to show that $y^{\prime}(x) \neq 2$ for all x. In fact, we can show that the slope is always greater than 3: since $2 e^{x}>0$ for all x and $15 x^{2} \geq 0$ for all x, we have $y^{\prime}(x)=2 e^{x}+3+15 x^{2}>0+3+0=3$ for all x.

Problem 3 (Section 3.1 Exercise \#67). Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ x+1 & \text { if } x \geq 1\end{cases}
$$

Is f differentiable at $x=1$? Sketch the graphs of f and f^{\prime}.
Solution. Recall that f is differentiable at $x=1$ if and only if the limit $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$ exists. The function $\frac{f(x)-f(1)}{x-1}$ is equal to $x+1$ if $x<1$ and 1 if $x>1$, hence $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} x+1=2$ and $\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} 1=1$. Since the two one-sided limits do not agree, the (two-sided) limit does not exist, and f is not differentiable at $x=1$. For the graph, refer to figure 1 . The green solid line is the graph of f, and the red dashed line is the graph of f^{\prime}. Note that while f is defined on all of \mathbb{R}, f^{\prime} is not defined at $x=0$ (precisely because f is not differentiable at $x=0$).

Figure 1. Graphs of f and f^{\prime}

Problem 4 (Section 3.2 Exercise \#33). Find equations of the tangent line and normal line to the curve $y=2 x e^{x}$ at the point $(0,0)$.

Solution. The slope of the tangent line to the curve at $(0,0)$ is $y^{\prime}(0)=2 e^{0}+2(0) e^{0}=2$. So the tangent line at $(0,0)$ is $y-0=2(x-0)$, or just $y=2 x$. By definition, the normal line is perpendicular to the tangent line and passes through the tangent point, so its equation is $y=0=-\frac{1}{2}(x-0)$, or just $y=-\frac{1}{2} x$.

Problem 5 (Section 3.2 Exercise \#55). Find $R^{\prime}(0)$, where

$$
R(x)=\frac{x-3 x^{3}+5 x^{5}}{1+3 x^{3}+6 x^{6}+9 x^{9}}
$$

Solution. Set $f(x)=x-3 x^{3}+5 x^{5}$ and $g(x)=1+3 x^{3}+6 x^{6}+9 x^{9}$. Then $f^{\prime}(x)=1-9 x^{2}+25 x^{4}$ and $g^{\prime}(x)=9 x^{2}+36 x^{5}+81 x^{8}$. Thus we have

$$
\begin{aligned}
R^{\prime}(0) & =\frac{f^{\prime}(0) \cdot g(0)+f(0) \cdot g^{\prime}(0)}{(g(0))^{2}} \\
& =\frac{(1)(1)+(0)(0)}{(1)^{2}} \\
& =1
\end{aligned}
$$

Notice that I didn't have to compute the general formula for $R^{\prime}(x)$.
Problem 6 (Section 3.4 Exercise \#72). If g is a twice-differentiable function and $f(x)=x g\left(x^{2}\right)$, find $f^{\prime \prime}$ in terms of $g, g^{\prime}, g^{\prime \prime}$.

Solution. We have

$$
\begin{aligned}
f^{\prime}(x) & =(x)^{\prime} g\left(x^{2}\right)+x\left(g\left(x^{2}\right)\right)^{\prime} \\
& =g\left(x^{2}\right)+x \cdot g^{\prime}\left(x^{2}\right)(2 x) \\
& =g\left(x^{2}\right)+2 x^{2} g^{\prime}\left(x^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(g\left(x^{2}\right)\right)^{\prime}+\left(2 x^{2}\right)^{\prime} g^{\prime}\left(x^{2}\right)+2 x^{2}\left(g^{\prime}\left(x^{2}\right)\right)^{\prime} \\
& =g^{\prime}\left(x^{2}\right) 2 x+(4 x) g^{\prime}\left(x^{2}\right)+2 x^{2} g^{\prime \prime}\left(x^{2}\right) 2 x \\
& =6 x g^{\prime}\left(x^{2}\right)+4 x^{3} g^{\prime \prime}\left(x^{2}\right)
\end{aligned}
$$

Problem 7 (Section 3.5 Exercise \#21). If $f(x)+x^{2}(f(x))^{3}=10$ and $f(1)=2$, find $f^{\prime}(1)$.
Solution. Differentiate implicitly:

$$
f^{\prime}(x)+2 x(f(x))^{3}+x^{2} \cdot 3(f(x))^{2} f^{\prime}(x)=0
$$

At $x=1$, we have

$$
f^{\prime}(1)+2 \cdot 1(f(1))^{3}+1^{2} \cdot 3(f(1))^{2} f^{\prime}(1)=0
$$

or

$$
f^{\prime}(1)+16+12 f^{\prime}(1)=0
$$

which implies $f^{\prime}(1)=-\frac{16}{13}$.
Problem 8 (Section 3.6 Exercise \#51). Find y^{\prime} if $y=\ln \left(x^{2}+y^{2}\right)$.
Solution. We have $e^{y}=x^{2}+y^{2}$; differentiate implicitly to get $e^{y} y^{\prime}=2 x+2 y y^{\prime}$. We thus have $y^{\prime}=\frac{2 x}{e^{y}-2 y}$.
Problem 9 (Section 3.6 Exercise \#54). Find $\frac{d^{9}}{d x^{9}}\left(x^{8} \ln x\right)$.
Solution. For any integer n, define

$$
f_{n}(x)=\frac{d^{n+1}}{d x^{n+1}}\left(x^{n} \ln x\right)
$$

Then we have

$$
\begin{aligned}
f_{n}(x) & =\frac{d^{n}}{d x^{n}}\left(\frac{d}{d x}\left(x^{n} \ln x\right)\right) \\
& =\frac{d^{n}}{d x^{n}}\left(n x^{n-1} \ln x+x^{n-1}\right) \\
& =\frac{d^{n}}{d x^{n}}\left(n x^{n-1} \ln x\right)+\frac{d^{n}}{d x^{n}}\left(x^{n-1}\right) \\
& \stackrel{(*)}{=} \frac{d^{n}}{d x^{n}}\left(n x^{n-1} \ln x\right) \\
& =n f_{n-1}(x)
\end{aligned}
$$

where, in the step labeled $(*)$, I used the fact that the nth derivative of any polynomial of degree less than n is 0 (this is just a repeated application of the Power Rule). We're asked to find $f_{8}(x)$. We have

$$
\begin{aligned}
f_{8}(x)= & 8 \cdot f_{7}(x) \\
= & 8 \cdot 7 \cdot f_{6}(x) \\
= & 8 \cdot 7 \cdot 6 \cdot f_{5}(x) \\
& \vdots \\
= & 8 \cdot 7 \cdots 2 \cdot 1 \cdot f_{0}(x) \\
= & 8!\frac{d^{1}}{d x^{1}}\left(x^{0} \ln x\right) \\
= & \frac{8!}{x}
\end{aligned}
$$

Problem 10 (Section 3.8 Exercise \#10). A sample of tritium-3 decayed to 94.5% of its original amount after a year. What is the half-life of tritium-3? How long would it take the sample to decay to 20% of its original amount?

Solution. Let $y(t)$ be the quantity left at time t, in years. Then $y(t)=y(0) e^{C t}$ for some C. Let's determine C. We are given that $y(1)=0.925 y(0)$, so $0.945 y(0)=y(0) e^{C \cdot 1}$ implies $0.945=e^{C}$ implies $C=\ln (0.945)$.

Let λ be the half-life of tritium-3. For any t, we have $y(t+\lambda)=\frac{1}{2} y(t)$. In particular, $y(\lambda)=\frac{1}{2} y(0)$ so $\frac{1}{2} y(0)=y(0) e^{\ln (0.945) \lambda}$, which implies $\frac{1}{2}=e^{\ln (0.945) \lambda}$, or $\lambda=\frac{\ln \frac{1}{2}}{\ln (0.945)}$. Notice that both $\frac{1}{2}$ and 0.945 are less than 1 , so $\ln \frac{1}{2}$ and $\ln (0.945)$ are both negative, so λ is positive.

Let t_{0} be the time required for the sample to decay to 20% of its original amount. Then $y\left(t_{0}\right)=0.20 y(0)$. Thus $0.20 y(0)=y(0) e^{\ln (0.945) t_{0}}$. Thus $0.20=e^{\ln (0.945) t_{0}}$, or $t_{0}=\frac{\ln (0.20)}{\ln (0.945)}$.

Problem 11 (Section 3.9 Exercise \#7(a)). Suppose $y=\sqrt{2 x+1}$, where x and y are functions of t. If $\frac{d x}{d t}=3$, find $\frac{d y}{d t}$ when $x=4$.

Solution. Differentiate both sides of $y=\sqrt{2 x+1}$ with respect to t to get $\frac{d y}{d t}=\frac{1 / 2}{\sqrt{2 x+1}} \cdot 2 \cdot \frac{d x}{d t}$. Suppose that $\frac{d x}{d t}\left(t_{0}\right)=3$ and $x\left(t_{0}\right)=4$. Then $\frac{d y}{d t}\left(t_{0}\right)=\frac{1}{\sqrt{2 x\left(t_{0}\right)+1}} \cdot \frac{d x}{d t}\left(t_{0}\right)=\frac{1}{\sqrt{2 \cdot 4+1}} \cdot 3=1$.

Problem 12 (Section 3.9 Exercise \#31). The top of a ladder slides down a vertical wall at a rate of 0.15 m / s. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of $0.2 \mathrm{~m} / \mathrm{s}$. How long is the ladder?

Solution. Let ℓ be the length of the ladder. (Using common sense, we're going to assume that it stays constant over time.) Let $y(t)$ be the distance from the top of the ladder to the floor, and $x(t)$ the distance from the bottom of the ladder to the base of the wall. We have $\ell^{2}=(x(t))^{2}+(y(t))^{2}$ for all t. By differentiating implicitly, we have $0=2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)$. We're also given that $y^{\prime}(t)=-0.15$ for all t. Suppose that $x\left(t_{0}\right)=3$ and $x^{\prime}\left(t_{0}\right)=0.2$. Thus $0=2(3)(0.2)+2 y\left(t_{0}\right)(-0.15)$, which implies $y\left(t_{0}\right)=4$. This implies $\ell^{2}=(3)^{2}+(4)^{2}=25$, or that $\ell=5$.

