CHAPTER 3 REVIEW

FRI, OCT 18, 2013

$$
\text { (Last edited October 23, } 2013 \text { at 1:53pm.) }
$$

Problem 1 (Section 3.1 Exercise \#51). Find the points on the curve $y=2 x^{3}+3 x^{2}-12 x+1$ where the tangent line is horizontal.

Problem 2 (Section 3.1 Exercise \#53). Show that the curve $y=2 e^{x}+3 x+5 x^{3}$ has no tangent line with slope 2.

Problem 3 (Section 3.1 Exercise \#67). Let

$$
f(x)=\left\{\begin{array}{ll}
x^{2}+1 & \text { if } x<1 \\
x+1 & \text { if } x \geq 1
\end{array} .\right.
$$

Is f differentiable at $x=1$? Sketch the graphs of f and f^{\prime}.
Problem 4 (Section 3.2 Exercise \#33). Find equations of the tangent line and normal line to the curve $y=2 x e^{x}$ at the point $(0,0)$.

Problem 5 (Section 3.2 Exercise \#55). Find $R^{\prime}(0)$, where

$$
R(x)=\frac{x-3 x^{3}+5 x^{5}}{1+3 x^{3}+6 x^{6}+9 x^{9}}
$$

Problem 6 (Section 3.4 Exercise \#72). If g is a twice-differentiable function and $f(x)=x g\left(x^{2}\right)$, find $f^{\prime \prime}$ in terms of $g, g^{\prime}, g^{\prime \prime}$.

Problem 7 (Section 3.5 Exercise \#21). If $f(x)+x^{2}(f(x))^{3}=10$ and $f(1)=2$, find $f^{\prime}(1)$.
Problem 8 (Section 3.6 Exercise \#51). Find y^{\prime} if $y=\ln \left(x^{2}+y^{2}\right)$.
Problem 9 (Section 3.6 Exercise \#54). Find $\frac{d^{9}}{d x^{9}}\left(x^{8} \ln x\right)$.
Problem 10 (Section 3.8 Exercise \#10). A sample of tritium-3 decayed to 94.5% of its original amount after a year. What is the half-life of tritium-3? How long would it take the sample to decay to 20% of its original amount?

Problem 11 (Section 3.9 Exercise \#7(a)). Suppose $y=\sqrt{2 x+1}$, where x and y are functions of t. If $\frac{d x}{d t}=3$, find $\frac{d y}{d t}$ when $x=4$.

Problem 12 (Section 3.9 Exercise \#31). The top of a ladder slides down a vertical wall at a rate of 0.15 m / s. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of $0.2 \mathrm{~m} / \mathrm{s}$. How long is the ladder?

