EXPONENTIAL GROWTH AND DECAY; RELATED RATES

(Last edited October 16, 2013 at 3:32pm.)

Problem 1 (Section 3.8 Exercise \#9). The half-life of cesium-137 is 30 years. Suppose we have a 100-mg sample.
(a) Find the mass that remains after t years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

Solution. Let $y(t)$ be the quantity of the sample at time t. Since cesium undergoes radioactive decay, we know that $y(t)$ is of the form

$$
y(t)=y(0) e^{C t}
$$

for some constant C. We know that $y(t+30)=\frac{1}{2} y(t)$, so $y(0) e^{C(t+30)}=\frac{1}{2} y(0) e^{C t}$, which implies $e^{30 C}=\frac{1}{2}$. Thus $C=\frac{\ln \frac{1}{2}}{30}$. We also know that $y(0)=100$. Thus

$$
y(t)=100 e^{\frac{\ln \frac{1}{2}}{30} t}=100\left(\frac{1}{2}\right)^{\frac{t}{30}}
$$

The quantity of cesium remaining after 100 years is $y(100)=100\left(\frac{1}{2}\right)^{\frac{100}{30}} \approx 9.92 \mathrm{mg}$. (Intuitively, more than 3 but less than 4 half-lives have passed, so there should be less than $\frac{1}{8}$ and more than $\frac{1}{16}$ of the original amount remaining.) To find out at what time only 1 mg will remain, we set $y(t)=1$ and solve for t : $1=100\left(\frac{1}{2}\right)^{\frac{t}{30}} \Longleftrightarrow \frac{1}{100}=\left(\frac{1}{2}\right)^{\frac{t}{30}} \Longleftrightarrow 100=2^{\frac{t}{30}} \Longleftrightarrow \ln 100=\frac{t}{30} \ln 2 \Longleftrightarrow t=\frac{30 \ln 100}{\ln 2}$.

Problem 2 (Section 3.8 Exercise $\# 12$). A curve passes through the point $(0,5)$ and has the property that the slope of the curve at every point P is twice the y-coordinate of P. What is the equation of the curve?

Solution. Let $y(t)$ be the equation of the curve. Since the curve passes through the point $(0,5)$, we have $y(0)=5$. The condition "the slope of the curve at every point P is twice the y-coordinate at P " is just saying that $\frac{d y}{d t}=2 y(t)$. We proved in lecture that $y(t)=y(0) e^{2 t}$ is the unique solution to this equation. Thus $y(t)=5 e^{2 t}$.

Problem 3 (Section 3.9 Exercise \#6). The radius of a sphere is increasing at the rate of $4 \mathrm{~mm} / \mathrm{s}$. How fast is the volume increasing when the diameter is 80 mm ?

Solution. Let $V(t)$ and $r(t)$ be the volume and radius of the sphere at time t, respectively. Then we have

$$
V(t)=\frac{4 \pi}{3}(r(t))^{3}
$$

Taking the derivative with respect to t gives

$$
V^{\prime}(t)=4 \pi(r(t))^{2} r^{\prime}(t)
$$

We are given that $r^{\prime}(t)=4$ for all t and that for some t_{0} we have $2 r\left(t_{0}\right)=80$, so $r\left(t_{0}\right)=40$. Thus $V^{\prime}\left(t_{0}\right)=4 \pi\left(r\left(t_{0}\right)\right)^{2} r^{\prime}\left(t_{0}\right)=4 \pi(40)^{2}(4)=25600 \pi$.

Problem 4 (Section 3.9 Exercise \#9). If $x^{2}+y^{2}+z^{2}=9, \frac{d x}{d t}=5$, and $\frac{d y}{d t}=4$, find $\frac{d z}{d t}$ when $(x, y, z)=$ $(2,2,1)$.

Solution. Differentiating with respect to t, we have

$$
2 x(t) \frac{d x}{d t}(t)+2 y(t) \frac{d y}{d t}(t)+2 z(t) \frac{d z}{d t}(t)=0 .
$$

At some time t_{0}, we have $\frac{d x}{d t}\left(t_{0}\right)=5, \frac{d y}{d t}\left(t_{0}\right)=4, x\left(t_{0}\right)=2, y\left(t_{0}\right)=2$, and $z\left(t_{0}\right)=1$. Thus

$$
2(2)(5)+2(2)(4)+2(1) \frac{d z}{d t}\left(t_{0}\right)=0
$$

which implies $\frac{d z}{d t}\left(t_{0}\right)=-18$.
Problem 5 (Section 3.9 Exercise \#22). A particle moves along the curve $y=2 \sin (\pi x / 2)$. As the particle passes through the point $\left(\frac{1}{3}, 1\right)$, its x-coordinate increases at a rate of $\sqrt{10} \mathrm{~cm} / \mathrm{s}$. How fast is the distance from the particle to the origin changing at this instant?

Solution. Let $(x(t), y(t))$ be the position of the particle at time t. Let $d(t)$ be the distance from the particle to the origin at time t. We have

$$
\begin{array}{rlrl}
d(t)^{2} & =x(t)^{2}+y(t)^{2} & 2 d(t) d^{\prime}(t) & =2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t) \\
y(t) & =2 \sin \left(\frac{\pi}{2} x(t)\right) & y^{\prime}(t) & =2 \cos \left(\frac{\pi}{2} x(t)\right) \frac{\pi}{2} x^{\prime}(t)
\end{array}
$$

Let "this instant" refer to time $t=t_{0}$. Then $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)=\left(\frac{1}{3}, 1\right)$ and $x^{\prime}\left(t_{0}\right)=\sqrt{10}$. Thus

$$
\begin{aligned}
d\left(t_{0}\right) d^{\prime}\left(t_{0}\right) & =x\left(t_{0}\right) x^{\prime}\left(t_{0}\right)+y\left(t_{0}\right) y^{\prime}\left(t_{0}\right) \\
\sqrt{(1 / 3)^{2}+1^{2}} \cdot d^{\prime}\left(t_{0}\right) & =\frac{1}{3} \cdot \sqrt{10}+1 \cdot\left(2 \cos \left(\frac{\pi}{2} \cdot \frac{1}{3}\right) \cdot \frac{\pi}{2} \cdot \sqrt{10}\right) \\
\frac{\sqrt{10}}{3} d^{\prime}\left(t_{0}\right) & =\frac{\sqrt{10}}{3}+\left(2 \frac{\sqrt{3}}{2} \cdot \frac{\pi}{2} \cdot \sqrt{10}\right) \\
d^{\prime}\left(t_{0}\right) & =1+\frac{3 \pi \sqrt{3}}{2}
\end{aligned}
$$

Problem 6 (Section 3.9 Exercise \#23). Water is leaking out of an inverted conical tank at a rate of 10, 000 $\mathrm{cm}^{3} /$ min at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and the diameter at the top is 4 m . If the water level is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$ when the height of the water is 2 m , find the rate at which water is being pumped into the tank.

Solution. I'll convert everything into meters. Let $h(t), r(t), V(t)$ be the height of the water level, the radius at the top of the water, and the volume of the water at time t. Let $t=t_{0}$ be the instant of time we are interested in. We have $h\left(t_{0}\right)=2$ and $h^{\prime}\left(t_{0}\right)=0.2$. By similar triangles, we have $\frac{r(t)}{h(t)}=\frac{2}{6}$ so $r(t)=$ $\frac{1}{3} h(t)$. Since $V(t)=\frac{1}{3}\left(\pi\left(r(t)^{2}\right) h(t)=\frac{\pi}{27} \cdot h(t)^{3}\right.$, thus $V^{\prime}(t)=\frac{\pi}{9} h(t)^{2} h^{\prime}(t)$. Substituting $t=t_{0}$, we have $V^{\prime}\left(t_{0}\right)=\frac{\pi}{9}(2)^{2}(0.2)=\frac{4 \pi}{45}$. Let C be the rate (in $\mathrm{m}^{3} / \mathrm{min}$) at which water is being pumped into the tank. Then $V^{\prime}(t)=-\frac{10,000}{(100)^{3}}+C$ (we divide by 100^{3} since the units changed from $\mathrm{cm}^{3} / \mathrm{min}$ to $\mathrm{m}^{3} / \mathrm{min}$). Thus $C=V^{\prime}\left(t_{0}\right)+\frac{1}{100}=\frac{4 \pi}{45}+\frac{1}{100}$.

