MATH 1A WORKSHEET

MON, OCT 14, 2013

Exponential Growth and Decay

Consider the equation

$$
\begin{equation*}
\frac{d y}{d t}=C y \tag{1}
\end{equation*}
$$

where C is a constant. The question we are interested in is: given a real number k, does there exist a function $y(t)$ such that $y(0)=k$ and y satisfies equation (1)? The answer is yes: the unique solution to (1) is

$$
\begin{equation*}
y(t)=k e^{C t} \tag{2}
\end{equation*}
$$

In exponential growth, the constant C is positive. In exponential decay, the constant C is negative.
A "half-life" is a length of time, and different radioactive substances have different half-lives. Let's say the half-life of substance A is 20 years. Then $y(t+20)$ is half of $y(t)$ for all $t: y(23.5)=\frac{1}{2} \cdot y(3.5)$, $y(10029)=\frac{1}{2} \cdot y(10009)$, etc. In general, if the half-life of a substance is λ, then $C=\frac{\ln \frac{1}{2}}{\lambda}$. Be careful to use the same units for λ and t.

Problem 1 (Section 3.8 Exercise \#9). The half-life of cesium-137 is 30 years. Suppose we have a 100-mg sample.
(a) Find the mass that remains after t years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

Problem 2 (Section 3.8 Exercise $\# 12$). A curve passes through the point $(0,5)$ and has the property that the slope of the curve at every point P is twice the y-coordinate of P. What is the equation of the curve?

Related Rates

In related rates problems, you're usually given at least two quantities (say x and y) which are functions of a third variable (say t), and an equation

$$
\begin{equation*}
F(x(t), y(t))=0 \tag{3}
\end{equation*}
$$

relating the two quantities. Differentiate (3) with respect to t, and you get an equation involving $x(t), y(t)$, $\frac{d x}{d t}$, and $\frac{d y}{d t}$.
Problem 3 (Section 3.9 Exercise \#6). The radius of a sphere is increasing at the rate of $4 \mathrm{~mm} / \mathrm{s}$. How fast is the volume increasing when the diameter is 80 mm ?

Problem 4 (Section 3.9 Exercise \#9). If $x^{2}+y^{2}+z^{2}=9$, $\frac{d x}{d t}=5$, and $\frac{d y}{d t}=4$, find $\frac{d z}{d t}$ when $(x, y, z)=$ (2, 2, 1).

Problem 5 (Section 3.9 Exercise \#22). A particle moves along the curve $y=2 \sin (\pi x / 2)$. As the particle passes through the point $\left(\frac{1}{3}, 1\right)$, its x-coordinate increases at a rate of $\sqrt{10} \mathrm{~cm} / \mathrm{s}$. How fast is the distance from the particle to the origin changing at this instant?

Problem 6 (Section 3.9 Exercise \#23). Water is leaking out of an inverted conical tank at a rate of 10, 000 cm^{3} / \min at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and the diameter at the top is 4 m . If the water level is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$ when the height of the water is 2 m , find the rate at which water is being pumped into the tank.

