MATH 1A WORKSHEET

MON, OCT 14, 2013

EXPONENTIAL GROWTH AND DECAY

Consider the equation

$$\frac{dy}{dt} = Cy \tag{1}$$

where C is a constant. The question we are interested in is: given a real number k, does there exist a function y(t) such that y(0) = k and y satisfies equation (1)? The answer is yes: the unique solution to (1) is

$$y(t) = ke^{Ct} . (2)$$

In exponential growth, the constant C is positive. In exponential decay, the constant C is negative.

A "half-life" is a length of time, and different radioactive substances have different half-lives. Let's say the half-life of substance A is 20 years. Then y(t + 20) is half of y(t) for all t: $y(23.5) = \frac{1}{2} \cdot y(3.5)$, $y(10029) = \frac{1}{2} \cdot y(10009)$, etc. In general, if the half-life of a substance is λ , then $C = \frac{\ln \frac{1}{2}}{\lambda}$. Be careful to use the same units for λ and t.

Problem 1 (Section 3.8 Exercise #9). The half-life of cesium-137 is 30 years. Suppose we have a 100-mg sample.

- (a) Find the mass that remains after t years.
- (b) How much of the sample remains after 100 years?
- (c) After how long will only 1 mg remain?

Problem 2 (Section 3.8 Exercise #12). A curve passes through the point (0,5) and has the property that the slope of the curve at every point P is twice the y-coordinate of P. What is the equation of the curve?

Related Rates

In related rates problems, you're usually given at least two quantities (say x and y) which are functions of a third variable (say t), and an equation

$$F(x(t), y(t)) = 0 \tag{3}$$

relating the two quantities. Differentiate (3) with respect to t, and you get an equation involving x(t), y(t), $\frac{dx}{dt}$, and $\frac{dy}{dt}$.

Problem 3 (Section 3.9 Exercise #6). The radius of a sphere is increasing at the rate of 4 mm/s. How fast is the volume increasing when the diameter is 80 mm?

Problem 4 (Section 3.9 Exercise #9). If $x^2 + y^2 + z^2 = 9$, $\frac{dx}{dt} = 5$, and $\frac{dy}{dt} = 4$, find $\frac{dz}{dt}$ when (x, y, z) = (2, 2, 1).

Problem 5 (Section 3.9 Exercise #22). A particle moves along the curve $y = 2\sin(\pi x/2)$. As the particle passes through the point $(\frac{1}{3}, 1)$, its x-coordinate increases at a rate of $\sqrt{10}$ cm/s. How fast is the distance from the particle to the origin changing at this instant?

Problem 6 (Section 3.9 Exercise #23). Water is leaking out of an inverted conical tank at a rate of 10,000 cm^3/min at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and the diameter at the top is 4 m. If the water level is rising at a rate of 20 cm/min when the height of the water is 2 m, find the rate at which water is being pumped into the tank.