MATH 1A WORKSHEET SOLUTIONS

(Last edited October 12, 2013 at 12:22am.)

Notation: " $f^{\prime}(x)$ " is the same thing as " $\frac{d f}{d x}$ ", and " $f(n)(x)$ " is the same thing as " $\frac{d^{n} f}{d x^{n}}$ ". Whenever I say "the curve $F(x, y)=0$ ", what I really mean is "the set of points (x, y) in the plane satisfying the condition $F(x, y)=0 "$.

Problem 1. Find the derivative of the following functions.
(a) $f(x)=x^{\cos x}$, defined on the domain $(0, \infty)$
(b) $f(x)=\log _{5}\left(3 x^{2}-2\right)$, defined on the domain $(-\infty,-\sqrt{2 / 3}) \cup(\sqrt{2 / 3}, \infty)$
(c) $f(x)=(\sqrt{x})^{x}$, defined on the domain $(0, \infty)$

Solution. (a) Take the natural log of both sides to get

$$
\ln (f(x))=\cos x \cdot \ln x
$$

Take the derivative with respect to x of both sides (using the chain rule on the left hand side and the product rule on the right hand side) to get

$$
\frac{1}{f(x)} f^{\prime}(x)=(-\sin x)(\ln x)+(\cos x)\left(\frac{1}{x}\right)
$$

so that

$$
\begin{aligned}
f^{\prime}(x) & =f(x)\left((-\sin x)(\ln x)+(\cos x)\left(\frac{1}{x}\right)\right) \\
& =x^{\cos x}\left((-\sin x)(\ln x)+(\cos x)\left(\frac{1}{x}\right)\right)
\end{aligned}
$$

(b) Write $f(x)$ as

$$
f(x)=x^{\frac{1}{2} x}=e^{\frac{1}{2} x \ln x}
$$

so that we have, by the chain rule,

$$
f^{\prime}(x)=e^{\frac{1}{2} x \ln x} \cdot\left(\frac{1}{2} x \ln x\right)^{\prime}=x^{\frac{1}{2} x} \cdot\left(\frac{1}{2} \ln x+\frac{1}{2}\right)
$$

Alternatively, take the natural \log of both sides to get

$$
\ln (f(x))=\frac{1}{2} x \ln x
$$

and differentiate both sides (using the chain rule on the left hand side) to get

$$
\frac{1}{f(x)} f^{\prime}(x)=\frac{1}{2} \ln x+\frac{1}{2} x \cdot \frac{1}{x}
$$

so that

$$
f^{\prime}(x)=x^{\frac{1}{2} x}\left(\frac{1}{2} \ln x+\frac{1}{2}\right)
$$

(c) Remember that, in general, $\log _{x} y=\frac{\ln y}{\ln x}$ (but these expressions are not equivalent to $\ln \left(\frac{x}{y}\right)$, which equals $\ln (x)-\ln (y))$. So we can write $f(x)$ as

$$
f(x)=\frac{\ln \left(3 x^{2}-2\right)}{\ln 5}=\frac{1}{\ln 5} \cdot \ln \left(3 x^{2}-2\right)
$$

so that

$$
f^{\prime}(x)=\frac{1}{\ln 5} \cdot \frac{1}{3 x^{2}-2} \cdot 6 x
$$

Problem 2. Let f be the function $f(x)=\ln (x-1)$, defined on the domain $(1, \infty)$. Find $\frac{d^{n} f}{d x^{n}}$ for any positive integer n.

Solution. We have

$$
\begin{aligned}
f^{(1)}(x) & =(x-1)^{-1} \\
f^{(2)}(x) & =(-1) \cdot(x-1)^{-2} \\
f^{(3)}(x) & =(-1)(-2) \cdot(x-1)^{-3} \\
f^{(4)}(x) & =(-1)(-2)(-3) \cdot(x-1)^{-4} \\
& \vdots \\
f^{(n)}(x) & =(-1)(-2) \cdots(-(n-1)) \cdot(x-1)^{-n}
\end{aligned}
$$

so that

$$
f^{(n)}(x)=(-1)^{n-1} \cdot(n-1)!\cdot(x-1)^{-n}
$$

for all positive integers n.
Problem 3. Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $x^{3}+y^{3}=6 x y$
(b) $x \sin y+y \sin x=1$

Solution. (a) We differentiate implicitly to get

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x}
$$

Solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x}
$$

(b) We differentiate implicitly to get

$$
\sin y+x(\cos y) \frac{d y}{d x}+(\sin x) \frac{d y}{d x}+y \cos x=0
$$

Solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{-y \cos x-\sin y}{x \cos y+\sin x}
$$

Problem 4. Find all points on the curve C defined by

$$
\begin{equation*}
x^{2} y^{2}+x y=2 \tag{1}
\end{equation*}
$$

where the slope of the tangent line is -1 .

Figure 1. The curve $x^{2} y^{2}+x y=2$

Solution 1. We differentiate (1) implicitly to get

$$
2 x y^{2}+2 x^{2} y \frac{d y}{d x}+y+x \frac{d y}{d x}=0
$$

solving for $\frac{d y}{d x}$ gives

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{2 x y^{2}+y}{2 x^{2} y+x} \tag{2}
\end{equation*}
$$

Thus if the slope of the tangent line to the curve at a point $\left(x_{0}, y_{0}\right)$ is -1 , then we must have

$$
-\frac{2 x_{0} y_{0}^{2}+y_{0}}{2 x_{0}^{2} y_{0}+x_{0}}=-1
$$

or

$$
2 x_{0} y_{0}^{2}+y_{0}=2 x_{0}^{2} y_{0}+x_{0}
$$

which rearranges to

$$
\left(x_{0}-y_{0}\right)\left(2 x_{0} y_{0}+1\right)=0 .
$$

This means that either $x_{0}-y_{0}=0$ or $2 x_{0} y_{0}+1=0$.
Suppose that $2 x_{0} y_{0}+1=0$; thus $x_{0} y_{0}=-\frac{1}{2}$. Substituting into (1), we get

$$
x_{0}^{2} y_{0}^{2}+x_{0} y_{0}-2=\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)-2 \neq 0
$$

which is a contradiction.
Thus we must have $x_{0}-y_{0}=0$, which implies that $x_{0}=y_{0}$. Thus $x_{0}^{4}+x_{0}^{2}-2=0$. This factors as $\left(x_{0}^{2}+2\right)\left(x_{0}^{2}-1\right)=0$. Since $x_{0}^{2}+2$ is always nonzero, we must have $x_{0}^{2}-1=0$, or $x_{0}= \pm 1$. So $(-1,-1)$ and $(1,1)$ are the two desired points. We can check this, by substituting $(x, y)=(-1,-1)$ and $(x, y)=(1,1)$
into (2), obtaining

$$
\frac{d y}{d x}=-\frac{2(-1)(-1)^{2}+(-1)}{2(-1)^{2}(-1)+(-1)}=-1 \quad \text { and } \quad \frac{d y}{d x}=-\frac{2(1)(1)^{2}+(1)}{2(1)^{2}(1)+(1)}=-1
$$

respectively.
Solution 2. The following is true in general: when a curve is given implicitly by an equation of the form $(y-f(x))(y-g(x))=0$, then it is the union of the graphs of $y=f(x)$ and $y=g(x)$. This is because, if x is fixed, then y must equal either $f(x)$ or $g(x)$ in order to satisfy $(y-f(x))(y-g(x))=0$.

How does this help us? Let $\left(x_{0}, y_{0}\right)$ be a point on the curve such that the tangent line at $\left(x_{0}, y_{0}\right)$ has slope -1 . The given equation is equivalent to $(x y)^{2}+(x y)-2=0$, which factors as

$$
\begin{equation*}
(x y+2)(x y-1)=0 . \tag{3}
\end{equation*}
$$

If $x=0$, then $x^{2} y^{2}+x y-2 \neq 0$, so C does not contain any points of the form $(0, y)$. Thus we can divide by x^{2} in (3) to get

$$
\left(y+\frac{2}{x}\right)\left(y-\frac{1}{x}\right)=0
$$

This is the union of the two hyperbolas $y=-\frac{2}{x}$ and $y=\frac{1}{x}$. Their derivatives are $y^{\prime}=\frac{2}{x^{2}}$ and $y^{\prime}=\frac{-1}{x^{2}}$, respectively. We can never have $\frac{2}{x_{0}^{2}}=-1$ since x_{0}^{2} is always nonnegative. So the point $\left(x_{0}, y_{0}\right)$ must be on the hyperbola $y=\frac{1}{x}$, and we must have $\frac{-1}{x_{0}^{2}}=-1$. This implies $x_{0}= \pm 1$. Since $y_{0}=\frac{1}{x_{0}}$, the two desired points are $(-1,-1)$ and $(1,1)$.

Problem 5. (a) Draw a graph of the curve $x^{2}-y^{2}=1$. Use implicit differentiation to find the tangent line at all points except $(-1,0)$ and $(1,0)$. What goes wrong for these points? What is the tangent line to the curve at the point $(1,0)$?
(b) Draw a graph of the curve $x^{2}-y^{2}=0$. Argue that there isn't a good way to define the "tangent line" to the curve at the point $(0,0)$.
(c) Draw a graph of the curve $y^{2}-x^{4}=0$. Use implicit differentiation to find the tangent line at all points except $(0,0)$. What goes wrong for $(0,0)$? Find the tangent line to the curve at $(0,0)$.

Solution. (a) Let C be the curve $x^{2}-y^{2}=1$.

Figure 2. The curve $x^{2}-y^{2}=1$

Differentiate the given equation $x^{2}-y^{2}=1$ implicitly to get

$$
2 x-2 y \frac{d y}{d x}=0
$$

and solve for $\frac{d y}{d x}$ to get

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x}{y} \tag{4}
\end{equation*}
$$

This is valid for all points $\left(x_{0}, y_{0}\right)$ on C where $y_{0} \neq 0$ (otherwise you end up dividing by 0 in (4)), and the only points of the form $\left(x_{0}, 0\right)$ on C are $(-1,0)$ and $(1,0)$. Thus the tangent line to C at $\left(x_{0}, y_{0}\right)$, where $\left(x_{0}, y_{0}\right) \notin\{(-1,0),(1,0)\}$, is given by $\frac{y-y_{0}}{x-x_{0}}=\frac{x_{0}}{y_{0}}$, or $y-y_{0}=\frac{x_{0}}{y_{0}}\left(x-x_{0}\right)$.

In order to find the tangent lines at $(-1,0)$ and $(1,0)$, view x as a function of y and differentiate implicitly:

$$
2 x \frac{d x}{d y}-2 y=0
$$

so that

$$
\frac{d x}{d y}=\frac{y}{x}
$$

At $(-1,0)$, we have $\frac{d x}{d y}=\frac{0}{-1}=0$ so the tangent line is $\frac{x-(-1)}{y-(0)}=0$, which is just $x=-1$. Similarly, at $(1,0)$, we have $\frac{d x}{d y}=\frac{0}{1}=0$ so the tangent line is $\frac{x-(1)}{y-(0)}=0$, which is just $x=1$.
(b) Let C be the curve $x^{2}-y^{2}=0$. Since the condition $x^{2}-y^{2}=0$ is equivalent to $(x+y)(x-y)=0$, C is just the union of the two lines $x=y$ and $x=-y$.

Figure 3. The curve $x^{2}-y^{2}=0$

Informal argument: At $(0,0)$, two lines of slope 1 and -1 cross each other. The tangent line to each point on the line $y=x$ has slope 1 , and the tangent line to each point on the line $y=-x$ has slope -1 ; but a line cannot have slope equal to both 1 and -1 .

Attempt to formalize the informal argument: For any $\epsilon>0$, there exist points $P_{1}, P_{2} \in C$ (with $\left.P_{i}=\left(x_{i}, y_{i}\right)\right)$ such that
(i) $P_{1} \neq(0,0)$ and $P_{2} \neq(0,0)$;
(ii) for each i, the distance between P_{i} and $(0,0)$ is less than ϵ (i.e. $\sqrt{\left(x_{i}-0\right)^{2}+\left(y_{i}-0\right)^{2}}<\epsilon$);
(iii) P_{1} is on the line $y=x$ and P_{2} is on the line $y=-x$.

Then the slope of the line containing $(0,0)$ and P_{1} has slope 1 , and the slope of the line containing $(0,0)$ and P_{2} has slope -1 .
(c) Let C be the curve $y^{2}-x^{4}=0$. Since the condition $y^{2}-x^{4}=0$ is equivalent to $\left(y-x^{2}\right)\left(y+x^{2}\right)=0$, C is just the union of the two parabolas $y=x^{2}$ and $y=-x^{2}$.

Figure 4. The curve $y^{2}-x^{4}=0$

Differentiate implicitly to get

$$
2 y \frac{d y}{d x}-4 x^{3}=0
$$

so that

$$
\frac{d y}{d x}=\frac{4 x^{3}}{y}
$$

So that tangent line to C at the point $\left(x_{0}, y_{0}\right) \in C$ has slope $\frac{4 x_{0}^{3}}{y_{0}}$ (as long as $\left.y_{0} \neq 0\right)$, and its equation is $y-y_{0}=\frac{4 x_{0}^{3}}{y_{0}}\left(x-x_{0}\right)$.

You can use any method you like to check that the tangent line to $y=x^{2}$ at $(0,0)$ has slope 0 and that the tangent line to $y=-x^{2}$ at $(0,0)$ has slope 0 . Thus the tangent line to C at $(0,0)$ is $y-0=0(x-0)$, which is just $y=0$.

