MATH 1A WORKSHEET

FRI, OCT 10, 2013

(1) Find the derivative of the following functions.
(a) $f(x)=x^{\cos x}$, defined on the domain $(0, \infty)$
(b) $f(x)=\log _{5}\left(3 x^{2}-2\right)$, defined on the domain $(-\infty,-\sqrt{2 / 3}) \cup(\sqrt{2 / 3}, \infty)$
(c) $f(x)=(\sqrt{x})^{x}$, defined on the domain $(0, \infty)$
(2) Let f be the function $f(x)=\ln (x-1)$, defined on the domain $(1, \infty)$. Find $\frac{d^{n} f}{d x^{n}}$ for any positive integer n.
(3) Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $x^{3}+y^{3}=6 x y$
(b) $x \sin y+y \sin x=1$
(4) Find all points on the curve $x^{2} y^{2}+x y=2$ where the slope of the tangent line is -1 .
(5) Draw a graph of the curve $x^{2}-y^{2}=1$. Use implicit differentiation to find the tangent line at all points except $(-1,0)$ and $(1,0)$. What goes wrong for these points? What is the tangent line to the curve at the point $(1,0)$?
(6) Draw a graph of the curve $x^{2}-y^{2}=0$. Argue that there isn't a good way to define the "tangent line" to the curve at the point $(0,0)$.
(7) Draw a graph of the curve $y^{2}-x^{4}=0$. Use implicit differentiation to find the tangent line at all points except $(0,0)$. What goes wrong for $(0,0)$? Find the tangent line to the curve at $(0,0)$.

