
PRACTICE PROBLEMS FOR MATH 1A

MINSEON SHIN

Limits of sequences

Problem 1. Define the sequence an = n
2n for all n ≥ 1. Prove that limn→∞ an = 0.

Solution. We first prove that 0 < an < 2( 2
3 )n for n ≥ 4. First, a4 = 4

16 and

2( 2
3 )4 = 32

81 so we have a4 < 2( 2
3 )4. Assume n ≥ 4 and that 0 < an < 2( 2

3 )n. We

have n+1
2n < 2

3 , so an+1 = n+1
2n an <

2
3 ·2( 2

3 )n = 2( 2
3 )n+1. Thus 0 < an+1 < 2( 2

3 )n+1.

Now we proceed to the main argument. Let ε > 0. Set

N = max{dlog3/2 2/εe+ 1, 4} .

Then if n ≥ N , we have n > log3/2 2/ε, which is equivalent to ( 3
2 )n > 2

ε and to

2( 2
3 )n < ε. Since n ≥ 4, we have 0 < an < 2( 2

3 )n by the argument above. Thus
|an − 0| < ε.

(Intuition/scratch work: The numerator of an is n and that of an+1 is n + 1, so
the numerator increases by a factor of n+1

n . Meanwhile, the denominator increases

by a factor of 2. Since n+1
n approaches 1, we have an+1 ≈ 1

2an for large values of

n. In particular, for n > 3, we have an <
2
3an. So the sequence an is “squeezed”

between 0 and ( 2
3 )nc0 for some fixed constant c0.) �

Limits and continuity of functions

Problem 2. Let f(x) = x5 for all x. Prove that limx→0 f(x) = 0.

Solution. Let ε > 0. Set δ = 5
√
ε. If x is a real number such that 0 < |x− 0| < δ =

5
√
ε, then |x5 − 0| = |x|5 < ( 5

√
ε)5 = ε. Hence limx→0 f(x) = 0.

(How you might find δ: the condition |x5 − 0| < ε is equivalent to |x− 0| < 5
√
ε by

taking the 5th root of both sides.) �

Note: We can replace every instance of 5 in the above problem with any other
positive integer and obtain a valid solution.

Problem 3. Let f(x) = x2 − 1 for all x. Prove that limx→0 f(x) = −1.

Solution. Let ε > 0. Set δ = 2
√
ε. If x is a real number such that 0 < |x− 0| < δ =

2
√
ε, then |(x2 − 1)− (−1)| = |x|2 < ( 2

√
ε)2 = ε. Hence limx→0 f(x) = −1.

(How you might find δ: the condition |(x2−1)− (−1)| < ε is equivalent to |x| < 2
√
ε

by canceling the (−1)− (−1) and taking the square root of both sides.) �

Problem 4. Let f(x) = 1
x for all x > 0. Prove that limx→1 f(x) = 1.
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Solution. Let ε > 0. Choose δ > 0 so that δ < min{ 12 ,
ε
2}. If x is a real number

such that 0 < |x−1| < δ, then in particular |x−1| < 1
2 so 1

2 < x < 3
2 , which means

|x| > 1
2 , or 1

|x| < 2. Also, |x − 1| < ε
2 . Then multiplying |x − 1| < ε

2 and 1
|x| < 2

gives |x−1||x| < ε
2 · 2, which is equivalent to | 1x − 1| < ε.

(Alternate solution) Let ε > 0. Choose δ > 0 so that δ < ε
1+ε . If x is a real number

such that 0 < |x − 1| < δ, then |x − 1| < ε
1+ε ⇐⇒ − ε

1+ε < x − 1 < ε
1+ε ⇐⇒

1
1+ε < x < 1+2ε

1+ε ⇐⇒ 1+ε
1+2ε <

1
x < 1 + ε ⇐⇒ −ε

1+2ε <
1
x − 1 < ε. The last

condition implies that | 1x − 1| < max{| −ε1+2ε |, |ε|} = ε.

(How you might find δ: First, deal with the case ε ≥ 1 separately. Now suppose
ε < 1. Find the points where the lines y = 1 + ε and y = 1 − ε intersect the
graph of f(x); they are ( 1

1+ε , 1 + ε) and ( 1
1−ε , 1 − ε), respectively. Since f(x)

is strictly decreasing where we defined it, we have that if 1
1+ε < x < 1

1−ε then

1− ε < f(x) < 1 + ε. In other words, if we want f(x) to be within ε of 1, x better
be between 1

1+ε and 1
1−ε . Since we want our interval centered around x = 1, we

can take δ = min{| 1
1+ε − 1|, | 1

1−ε − 1|} = min{ ε
1+ε ,

ε
1−ε} = ε

1+ε .) �

In order to understand objects with property P , it helps to see some examples of
objects which do not have property P . We now see two examples of functions which
are not continuous at a particular point.

Problem 5. Let

f(x) =

{
1
x for x 6= 0

0 for x = 0
.

Prove that limx→0 f(x) does not exist (i.e. f(x) is not continuous at x = 0).

Solution. We argue by contradiction. Suppose that limx→0 f(x) does exist and is
equal to some L. Thus, taking ε = 1 in the definition, there exists some δ > 0
such that |f(x) − L| < 1 for every real number x satisfying 0 < |x − 0| < δ. Let
x0 = min{ 1

|L|+1 ,
δ
2}. Since |x0| ≤ δ

2 < δ, we have |f(x0)−L| < 1, and we substitute

f(x0) = 1
x0

to get | 1x0
− L| < 1. Since x0 ≤ 1

|L|+1 , we have |L| + 1 ≤ 1
x0

and

|L| − L+ 1 ≤ 1
x0
− L. But this contradicts | 1x0

− L| < 1 since 1 ≤ |L| − L+ 1.

(Intuition/scratch work: we can see easily that f(x)→ +∞ as x→ 0+ and f(x)→
−∞ as x → 0−, and since the left/right limits are different the limit should not
exist at 0.) �

Recall that a real number x is rational if there exist integers p and q such that
x = p

q .

Problem 6. Let

f(x) =

{
1 if x is a rational number

−1 if x is an irrational number
.

Prove that f(x) is not continuous at x = 0.

Solution. Fact 1: For any δ > 0, there exists a rational number x1 such that
0 < x1 < δ. For example, we can take x1 = 1

d 1δ e+1
: we have 1

x1
= d 1δ e + 1 > 1

δ
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which means x1 < δ. Also, x1 is nonzero, and it is a rational number since we can
set p = 1 and q = d 1δ e+ 1.

Fact 2: For any δ > 0, there exists an irrational number x2 such that 0 < x2 < δ.

For example, we can take x2 =
√
2
2 x1: since

√
2
2 < 1, we have x2 < x1 which means

x2 < δ. Also, x2 is nonzero, and it is an irrational number since
√

2 is irrational.

Now we proceed to the main argument. We show that f(x) is not continuous at
0 by contradiction. So suppose that f(x) is continuous at 0. By definition, this
means that there exists δ > 0 such that 0 < |x − 0| < δ implies |f(x) − f(0)| < 1
(we took ε = 1 in the definition). By Fact 1, there exists a rational number x1
between 0 and δ. By Fact 2, there exists an irrational number x2 between 0 and δ.
So f(x1) = 1 and f(x2) = −1. Since 0 < |x1− 0| < δ and 0 < |x2− 0| < δ, we have
|f(x1)− f(0)| < 1 and |f(x2)− f(0)| < 1. By the Triangle Inequality1, we have

|f(x1)− f(x2)| ≤ |f(x1)− f(0)|+ |f(x2)− f(0)| . (1)

But the left hand side in (1) is 2, and each of the summands in the right hand side
is less than 1, so (1) implies 2 < 2, which is a contradiction. Hence f(x) is not
continuous at x = 0. �

(By the way, this is a perfectly good function. The graph of f(x) looks like the
union of two horizontal lines y = 1 and y = −1, except that the line y = 1 is
punctured at (x, 1) for every irrational x and the line y = 2 is punctured at (x,−1)
for every rational x. It’s really messed up in the sense that it’s not continuous at
any point of its domain. As an exercise, adapt the solution above to prove that the
function is not continuous at any other x, either.)

1The Triangle Inequality says that for any real numbers a, b, c, we have |a−c| ≤ |a−b|+ |c−b|.


