PRACTICE MIDTERM 2 SOLUTIONS

(Last edited November 12, 2013 at 6:56pm.)

Problem 1. (i) Complete the sentence: "A function f is continuous at $x=a$ if \ldots " Give an example of a function f and some a in the domain of f such that f is not continuous at $x=a$.
(ii) Complete the sentence: "A function f is differentiable at $x=a$ if ..." Give an example of a function f and some a in the domain of f such that f is not differentiable at $x=a$.

Solution. (i) A function f is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$. (For the question of continuity to make sense, the domain of definition of f needs to contain an open interval around a.) The function

$$
f(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}
$$

is not continuous at $x=0$, since $\lim _{x \rightarrow 0^{+}} f(x)=1 \neq f(0)$ and $\lim _{x \rightarrow 0^{-}} f(x)=1 \neq f(0)$.
(ii) A function f is differentiable at $x=a$ if the limit $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists and is finite. (For the question of differentiability to make sense, the domain of definition of f needs to contain an open interval around a.) The function $f(x)=|x|$ is not differentiable at $x=0$, since $\frac{f(x+h)-f(x)}{h}$ is 1 if $h>0$ and -1 if $h<0$, so the two one-sided limits $\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}$ and $\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}$ do not agree.

Problem 2. (i) Find the equation of the tangent line to the curve $y=\frac{2 \ln x}{x^{3}}-\left(\sin ^{-1}(x)\right)^{5}$ at the point where $x=\frac{1}{2}$.
(ii) Find the tangent line to the graph $x^{2}+2 y^{4}=3$ at the point $(1,1)$.

Solution. (i) We have

$$
y\left(\frac{1}{2}\right)=\frac{2 \ln \frac{1}{2}}{\left(\frac{1}{2}\right)^{3}}-\left(\sin ^{-1} \frac{1}{2}\right)^{5}=-16 \ln 2-\left(\frac{\pi}{6}\right)^{5}
$$

and

$$
y^{\prime}(x)=\frac{2}{x^{4}}-\frac{6 \ln x}{x^{4}}-5\left(\sin ^{-1}(x)\right)^{4} \frac{1}{\sqrt{1-x^{2}}}
$$

so

$$
y^{\prime}\left(\frac{1}{2}\right)=32+96 \ln 2-5\left(\frac{\pi}{6}\right)^{4} \frac{2}{\sqrt{3}} .
$$

Thus the equation of the tangent line at $x=\frac{1}{2}$ is

$$
y-\left(-16 \ln 2-\left(\frac{\pi}{6}\right)^{5}\right)=\left(32+96 \ln 2-5\left(\frac{\pi}{6}\right)^{4} \frac{2}{\sqrt{3}}\right)\left(x-\frac{1}{2}\right)
$$

(ii) Use implicit differentiation:

$$
2 x+8 y^{3} y^{\prime}=0 \quad \Longrightarrow \quad y^{\prime}(x)=\frac{-2 x}{8 y^{3}}
$$

so $y^{\prime}(1)=\frac{-2(1)}{8(1)^{3}}=-\frac{1}{4}$. Thus the equation of the tangent line is

$$
y-1=-\frac{1}{4}(x-1)
$$

Problem 3. (i) Let $f(x)$ be a function of x such that $(f(x))^{x}=1$. Find $f^{\prime}(x)$ in terms of f.
(ii) Let f, g be differentiable functions such that $g(x)>0$ for all x. Set $h(x)=f\left(x^{g(x)}\right)$. Find h^{\prime} in terms of $f, g, f^{\prime}, g^{\prime}$.
(iii) Let $f(x)=3 x$. Find a function F whose derivative is f.

Solution. (i) Taking natural logarithm of both sides, we have

$$
x \ln (f(x))=0
$$

Taking the derivative with respect to x gives

$$
\ln (f(x))+x \frac{1}{f(x)} f^{\prime}(x)=0
$$

Thus

$$
f^{\prime}(x)=-\frac{f(x) \ln (f(x))}{x} .
$$

(ii) Define $k(x)=x^{g(x)}$. Then $h(x)=f(k(x))$. We have

$$
\ln (k(x))=g(x) \ln x
$$

so

$$
\frac{1}{k(x)} k^{\prime}(x)=g^{\prime}(x) \ln x+g(x) \frac{1}{x}
$$

and

$$
k^{\prime}(x)=x^{g(x)}\left(g^{\prime}(x) \ln x+g(x) \frac{1}{x}\right)
$$

thus

$$
\begin{aligned}
h^{\prime}(x) & =f^{\prime}(k(x)) \cdot k^{\prime}(x) \\
& =f^{\prime}\left(x^{g(x)}\right) \cdot x^{g(x)}\left(g^{\prime}(x) \ln x+g(x) \frac{1}{x}\right) .
\end{aligned}
$$

(iii) An example is $F(x)=\frac{3}{2} x^{2}$.

Problem 4. Strontium-90 has a half-life of 28 days. A sample has a mass of 50 mg initially.
(a) How much of the sample remains after t days?
(b) How long does it take the sample to decay to a mass of 2 mg ?

Solution. (a) Let $y(t)$ be the quantity which remains after t days. Then there exists a constant C such that $y(t)=y(0) e^{C t}$. We know $y(0)=50$ so $y(t)=50 e^{C t}$. Since the half-life is 28 days, we have $y(28)=\frac{1}{2} y(0)=25$. Thus $y(28)=y(0) e^{28 C}$ implies $e^{28 C}=\frac{1}{2}$, or $C=\frac{1}{28} \ln \frac{1}{2}$. We have $e^{C t}=\left(e^{\frac{1}{28} \ln \frac{1}{2}}\right)^{t}=\left(\frac{1}{2}\right)^{\frac{t}{28}}$ so $y(t)=50\left(\frac{1}{2}\right)^{\frac{t}{28}}$.
(b) Let t_{0} be the amount of time it takes for the sample to decay to 2 mg . We have $2=y\left(t_{0}\right)=50\left(\frac{1}{2} \frac{t_{0}}{28}\right.$ so $\left(\frac{1}{2}\right)^{\frac{t_{0}}{28}}=\frac{1}{25}$, which means $\frac{t_{0}}{28}=\frac{\ln \frac{1}{25}}{\ln \frac{1}{2}}=\frac{\ln 25}{\ln 2}$, and $t_{0}=\frac{28 \ln 25}{\ln 2}$.

Problem 5. (i) State Rolle's Theorem.

(ii) Use Rolle's Theorem to prove the Mean Value Theorem.
(iii) Let $f(x)=\frac{1}{5} x^{5}-\frac{2}{3} x^{3}+x$. Prove that $f(\pi)>f(1)$.

Solution. (i) The statement of Rolle's Theorem is:
Theorem 1. Let f be a function which is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=$ $f(b)$, then there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$.
(ii) We use Rolle's Theorem to prove the Mean Value Theorem:

Theorem 2. Let f be a function which is continuous on $[a, b]$ and differentiable on (a, b). Then there exists some $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Proof. Define the function $g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$. Then g is a function which is continuous on $[a, b]$ and differentiable on (a, b). We also have $g(a)=g(b)$. By Rolle's Theorem, there exists some $c \in(a, b)$ such that $g^{\prime}(c)=0$. We have $g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$. Thus $f^{\prime}(c)=$ $\frac{f(b)-f(a)}{b-a}$.
(iii) We have

$$
f^{\prime}(x)=x^{4}-2 x^{2}+1=\left(x^{2}-1\right)^{2} .
$$

Since f is a polynomial, it is continuous on $[1, \pi]$ and differentiable on $(1, \pi)$. By the Mean Value Theorem, there exists some $c \in(1, \pi)$ such that $f^{\prime}(c)=\frac{f(\pi)-f(1)}{\pi-1}$. But $f^{\prime}(c)=\left(c^{2}-1\right)^{2}>0$ since $c>1$ (it's important that $\left(c^{2}-1\right)^{2}>0$ is a strict inequality). Thus $\frac{f(\pi)-f(1)}{\pi-1}>0$ and $f(\pi)-f(1)>0$ and $f(\pi)>f(1)$.

Problem 6. Find $\lim _{x \rightarrow 0^{+}} x \ln x$.
Solution. Rewrite the limit as $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}$. As $x \rightarrow 0^{+}$, we have $\ln x \rightarrow-\infty$ and $\frac{1}{x} \rightarrow \infty$ so $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}$ is an indeterminate form. Thus we have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} \quad \text { by L'Hospital's Rule } \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

Problem 7. A pitcher at $P=(0,2)$ throws a ball whose position at time t is $B(t)=(x(t), y(t))$ where $x(t)=t$ and $y(t)=-\frac{1}{32}(x(t))^{2}+2$. You are watching the ball from the point $A=(8,2)$. Let $\theta(t)$ be the angle $\angle P A B(t)$. How fast (in radians) is $\theta(t)$ changing when the ball hits home plate, i.e. when $B(t)=(8,0)$?

Solution. We have to express $\theta(t)$ in terms of $x(t)$ and $y(t)$ somehow. Consider the following diagram:

where $C=(8, y(t))$. Then we have

$$
\cot (\theta(t))=\frac{8-x(t)}{2-y(t)}=\frac{8-t}{2-\left(-\frac{1}{32} t^{2}+2\right)}=\frac{32(8-t)}{t^{2}}
$$

We have $B(t)=(8,0)$ if $t=8$. Differentiating with respect to t gives

$$
-\csc ^{2}(\theta(t)) \theta^{\prime}(t)=\frac{32(-1)\left(t^{2}\right)-32(8-t)(2 t)}{\left(t^{2}\right)^{2}}
$$

and at $t=8$ we have $\theta(8)=\frac{\pi}{2}$ and $\csc \left(\frac{\pi}{2}\right)=1$ so

$$
-\csc ^{2}(\theta(8)) \theta^{\prime}(8)=\frac{32(-1)\left(8^{2}\right)-32(8-8)(2 \cdot 8)}{\left(8^{2}\right)^{2}}
$$

implies

$$
\theta^{\prime}(8)=\frac{1}{2} \text {. }
$$

Problem 8. Consider the graph of the function $f(x)=x^{3}-x$.
(a) Find the regions of the graph where $f(x)$ is increasing. Find the regions of the graph where $f(x)$ is decreasing. Find all local extrema of f. Which of these are global extrema?
(b) Find the regions of the graph where $f(x)$ is concave up. Find the regions of the graph where $f(x)$ is concave down. Find all inflection points.

Solution. (a) We have

$$
f^{\prime}(x)=3 x^{2}-1
$$

Thus $f^{\prime}(x)>0$ on $\left(-\infty,-\frac{1}{\sqrt{3}}\right) \cup\left(\frac{1}{\sqrt{3}}, \infty\right)$ and $f^{\prime}(x)<0$ on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. So f is increasing on $\left(-\infty,-\frac{1}{\sqrt{3}}\right)$, decreasing on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, and increasing on $\left(\frac{1}{\sqrt{3}}, \infty\right)$. ${ }^{1}$ The critical points of f are at $x= \pm \frac{1}{\sqrt{3}}$. The point $\left(-\frac{1}{\sqrt{3}}, f\left(-\frac{1}{\sqrt{3}}\right)\right)$ is a local maximum and $\left(\frac{1}{\sqrt{3}}, f\left(\frac{1}{\sqrt{3}}\right)\right)$ is a local minimum by the First Derivative Test, since f^{\prime} changes from positive to negative at $x=-\frac{1}{\sqrt{3}}$ and from negative to positive at $x=\frac{1}{\sqrt{3}}$.
(b) We have

$$
f^{\prime \prime}(x)=6 x
$$

so f is concave down on the interval $(-\infty, 0)$ and concave up on the interval $(0, \infty)$. The unique inflection point is at $x=0$.

Figure 1. Graph of $f(x)=x^{3}-x$

[^0]
[^0]: ${ }^{1}$ But f is not increasing on $\left(-\infty,-\frac{1}{\sqrt{3}}\right) \cup\left(\frac{1}{\sqrt{3}}, \infty\right)$, because $f\left(-\frac{2}{3}\right)>f\left(\frac{2}{3}\right)$. See the definition on page 19 .

