PRACTICE MIDTERM 2

Write in complete sentences and show all work.
Problem 1. (i) Complete the sentence: "A function f is continuous at $x=a$ if ..." Give an example of a function f and some a in the domain of f such that f is not continuous at $x=a$.
(ii) Complete the sentence: "A function f is differentiable at $x=a$ if ..." Give an example of a function f and some a in the domain of f such that f is not differentiable at $x=a$.

Problem 2. (i) Find the equation of the tangent line to the curve $y=\frac{2 \ln x}{x^{3}}-\left(\sin ^{-1}(x)\right)^{5}$ at the point where $x=\frac{1}{2}$.
(ii) Find the tangent line to the graph $x^{2}+2 y^{4}=3$ at the point $(1,1)$.

Problem 3. (i) Let $f(x)$ be a function of x such that $(f(x))^{x}=1$. Find $f^{\prime}(x)$ in terms of f.
(ii) Let f, g be differentiable functions such that $g(x)>0$ for all x. Set $h(x)=f\left(x^{g(x)}\right)$. Find h^{\prime} in terms of $f, g, f^{\prime}, g^{\prime}$.
(iii) Let $f(x)=3 x$. Find a function F whose derivative is f.

Problem 4. Strontium-90 has a half-life of 28 days. A sample has a mass of 50 mg initially.
(a) How much of the sample remains after t days?
(b) How long does it take the sample to decay to a mass of 2 mg ?

Problem 5. (i) State Rolle's Theorem.
(ii) Use Rolle's Theorem to prove the Mean Value Theorem.
(iii) Let $f(x)=\frac{1}{5} x^{5}-\frac{2}{3} x^{3}+x$. Prove that $f(\pi)>f(1)$.

Problem 6. Find $\lim _{x \rightarrow 0^{+}} x \ln x$.
Problem 7. A pitcher at $P=(0,2)$ throws a ball whose position at time t is $B(t)=(x(t), y(t))$ where $x(t)=t$ and $y(t)=-\frac{1}{32}(x(t))^{2}+2$. You are watching the ball from the point $A=(8,2)$. Let $\theta(t)$ be the angle $\angle P A B(t)$. How fast (in radians) is $\theta(t)$ changing when the ball hits home plate, i.e. when $B(t)=(8,0)$?

Problem 8. Consider the graph of the function $f(x)=x^{3}-x$.
(a) Find the regions of the graph where $f(x)$ is increasing. Find the regions of the graph where $f(x)$ is decreasing. Find all local extrema of f. Which of these are global extrema?
(b) Find the regions of the graph where $f(x)$ is concave up. Find the regions of the graph where $f(x)$ is concave down. Find all inflection points.

