PRACTICE FINAL/STUDY GUIDE SOLUTIONS

(Last edited December 9, 2013 at 4:33pm.)

Feel free to send me any feedback, including comments, typos, and mathematical errors.

Problem 1. Give the precise meaning of the following statements.

(i)
(if)
(iif)

)
)

Timy_yq f(z) = L7

“hmmﬁtfr f($) =L

Ym0 f(z) = I
(

(iv) “limg 400 fx) = —00”
(V “hmxﬁa* f(fE) = —00”
Solution. (i) For every € > 0, there exists § > 0 such that if 0 < | — a| < ¢ then |f(z) — L| <e.

(i)
(ii)
(iv)
(v)

For every € > 0, there exists § > 0 such that if 0 < x —a < § then |f(z) — L| < e.
For every € > 0, there exists N > 0 such that if > N then |f(z) — L| <.

For every M < 0, there exists N > 0 such that if z > N then f(z) < M.

For every M < 0, there exists § > 0 such that if 0 < a — 2z < ¢ then f(x) < M.

O
Problem 2. Prove the following statements using the limit definitions.
(i) “limg_g 2+1 =1
() “lim, y 25 = 201
(i) “lim, o0 9 = 17
Scratch work. (i) We want to prove the following statement‘ “for every e > 0, there exists 0 > 0 such
that 0 < [z — 0 < § implies |z — 1] < €. We have | i — 1| = & 2+1 <z

(i)

(iii)

We want to prove the following statement: “for every e > 0, there exists 6 > 0 such that 0 < |x—1| < §

2
: : z”—4x+5 2 9
implies |[*—37 z| < €. We have

T+ 4 5

22 —4x+5 2 )
5x + 20 5x + 20 ’

5% — 227 + 17' B ‘(5z —17)(z—1)

we're going to work with the last expression. If |z — 1] is small (i.e. x &~ 1), then 5z — 17 ~ —12
and 5z + 20 & 25 (this is an inexact statement which needs to be made precise). I can ensure that
—13 < bz —12 < =11 if |z — 1| < %, which is satisfied whenever § < 1. Coincidentally, |z — 1| < 1
also ensures that 19 < 5z + 20 < 21. Thus |z — 1| < 1 implies that \ggéa < 13 (check this). If §

| < e. Notice that

—12)(z—1)
and § < 17 is equivalent to the condition “6 < min{velg, P,

is less than in addition to being less than or equal to %), then |(5w 52120

13;19 (
the condition “6 < 13/19

(This turned out to be harder than I expected.) We want to prove the following statement' “for every
€ > 0, there exists N > 0 such that > N implies |e,+w - 1| < €’. We have | -1 = <=
(as long as x > 0, which we can force by taking N > 0). I

eT+x eTJrz

look for an N such that x > N implies e% < e. We will show that hmn_>OO o =0. We will also show

o
that the function f(z) = % is decreasing on the interval (1, 00). This will show that lim, ., 2% = 0.

eT

1Typo: the printed version said %
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Solution. (i) Let € > 0. Set § > /e. Assume 0 < |z — 0| < §. Then 2% = |z]? = |z — 02 < §? = €. Since
2?2 +1> 1, we have IQ—H < €. Thus |$2—+1—1|=\$2—+1| <e.

(ii) Let € > 0. Set 0 < min{ﬁ,%}. Assume 0 < |z — 1| < 4. Then |z — 1] < %, which implies

—13 < 5z — 12 < —11 and 19 < 5z + 20 < 21. Thus gﬁ_12| < :2. Also, we have |z — 1| <

+20
Thus

13/19

x2—4x—|—5_1 | (G —12)(x - 1) 13 €
x+4 5]

5 5r+20 | 19 13/19

(iii) 2 Let’s first show that lim, . 2+ = 0. We have lim,, o 5 = 0 by Problem 1 in http://math.

berkeley.edu/~shinms/FA13-1A/practice-problems-01.pdf. We have 2 < g& for all n since

2 < e. Let € > 0. Since limnﬁoo 2% = 0, there exists N > 0 such that z > N implies |27 -0/ <e
Assume x > N. Then —0=L <= — 0] < e. Thus lim, - = =0.

en en n 2 n en

Let’s show that if 1 <z < y, then f(x) > f(y). We have

*) -
ey*“’>1+(y—x)21+y z=¥
x X

where the inequality marked () follows from the fact that e* > 1 + z for all positive = (since
T = 1+x+§+%+-~-). Then e¥~% > £ implies f(x) > f(y).

We now show that lim, .o 2z = 0. Let € > 0. Since lim,, , 2z = 0, there exists a positive

— 0] < e. Assume

n

integer NV > 0 such that if n is a positive integer such that n > N, then % = [
that = is a real number such that * > N. Let n be an integer such that * > n > N. Then
S -0=%F< & <e Thushng_,OO % =0.

We now prove that limg o0 m‘—ﬂ = 1. Let € > 0. Since limg_, o e% = 0, there exists N > 0 such

that 2 > N implies % = |5 — 0| <e. Then | == — 1] = < 2 < e Thus limg o e —1.

erT+4x

er+x e*—‘—r

O

Problem 3. (i) State and prove the Squeeze Theorem.
(ii) Use the Squeeze Theorem to compute
lim z2(sinz)*(cos )3 .
z—0

Justify your answer carefully.

Solution. (i) If f, g, h are real-valued functions such that

f(@) < g(x) < h(z) (1)

when « is near a (except possibly at a) and if lim,_,, f(x) = lim,_, h(z) = L, then lim,_,, g(x) = L.

The precise meaning of “near a (except possibly at a)” is: “there exists some d; > 0 such that (1)
holds for all x satisfying 0 < |z — a| < &;”.

Proof: Suppose f, g, h satisfy (1) when 0 < |z — a|] < 07 for some fixed d; > 0. Also suppose that
lim,,, f(2z) = lim,_, h(x) = L.

Let € > 0. Since lim,_,, f(z) = L, there exists 62 > 0 such that if 0 < |z — a] < Ja, then
|f(z) — L| < e. Also, since lim,_,, h(z) = L, there exists d3 > 0 such that if 0 < |z — a| < d3, then
|h(z) — L| <e.

2We can also use L’Hospital’s rule, but the point was to compute the limit using the definitions.
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Put 6 = min{dq,02,03}. Suppose 0 < |z —a] < 6. Then (1), L — e < f(z) < L+ ¢ and
L —¢ < h(x) < L+ ¢ hold. Hence g(z) < h(r) < L+e. Also L —¢ < f(z) < g(z). Thus
L—e<g(x)<L+e, so|g(x) — L| <e. Hence lim,_,, g(x) = L.
(ii) Let g(x) = 22(sinx)*(cosx)3, f(x) = —a2, h(z) = 2. Since —1 < cosz < 1 and —1 < sinz < 1 for
all z, we have

—1 < (sinz)*(cosz)® < 1

for all z. Thus (1) holds. In addition, we have lim,_,¢ f(z) = lim, 0 h(xz) = 0. Thus lim,_,¢ g(z) =
0.
|

Problem 4. Let f and g be functions, and suppose lim,_,, f(z) = L and lim, ,, g(z) = K. Prove that
lim,q(f(z) +g(z)) =L+ K.

Solution. Let f and g be functions, and suppose lim,_,, f(z) = L and lim,_,, g(x) = K. Let ¢ > 0. Since
lim, o f(z) = L, there exists ; > 0 such that if 0 < |z — a] < 61, then |f(x) — L| < 5. Also, since
lim, 4 g(x) = K, there exists d2 > 0 such that if 0 < [z —a| < d2, then |g(z) — K| < §. Put § = min{d1, 2 }.
Suppose 0 < |z —a| <. Then |f(z) — L| < § and [g(x) — K| < §. Hence
[(f(z) +9(2)) = (L + K)| = [(f(x) = L) + (9(x) — K|

<|f(@) — LI +[g(z) — K]

_e €

202
=€.

Hence lim, o (f(z) + g(x)) = L+ K. O

Problem 5. Evaluate
_ 1 1 \?
Im | —m— — ——
z=0\+\/14+2 1+=x

You should show your reasoning carefully; however you may use any of the limit laws without explanation

or proof.

Solution. We have

O

Problem 6. Indicate “true” if the statement is always true; indicate “false” if there exists a counterexample.
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(i) “If limg o f(x) = L, then lim,_, .+ f(z) = L.V
(ii) “If limg_ o+ f(z) = L, then lim,_, f(z) = L.”
(iil) “If limg— 00 f(x) = 0, then lim, o f(x)e® =0.”
(iv) “If lim, o (f(2))? = 1, then lim,_, f(z) = 1.7

Solution. (i) True. (Intuition: If the two-sided limit is L, then a one-sided limit is also L.) Proof:
Suppose lim,_,, f(z) = L. Let € > 0. Then there exists § > 0 such that 0 < |z — a| < § implies
|f(z) — L| <e. Thusif 0 <z —a < 4§, then |f(x) — L| < e. Thus lim,_,,+ f(z) = L.

(ii) False. Consider the function

1 ifz>0
f(z) = :
-1 ifx<0

Then lim,_,¢+ f(z) = 1 but lim,_,¢ f(x) does not exist.
(iii) False. We have lim,_, e% =0 but limg,_, ﬁe” =lim, ,oo 1 =1#0.
(iv) False. Consider the function f in the solution to (ii) again; then (f(z))? is identically 1 on (—o0,0)U

(0,0) so lim,_,(f(x))? = 1, but, as noted above, lim,_,o f(z) does not exist.

O
Problem 7. (i) Give the precise meaning of the statement “f is continuous at x = a”.
(ii) Using the definition in (i), show that f(z) = x is continuous at x = 1.
Solution. (i) The statement “f is continuous at x = a” means “f is defined in some interval containing

a and lim,_,, f(x) = f(a)”.
(ii) The function f(x) = z is defined everywhere, so it is defined in an interval containing a = 1. We

have lim,_,; 2 = 1, so f(z) is continuous at = 1.

]
Problem 8. (i) State the Intermediate Value Theorem.?
(ii) Prove that e” sinz = 40 has a solution in (0, 00).
Solution. (i) Let f be a continuous function on the interval [a, b]. Suppose f(a) # f(b) and let N be a

value strictly between f(a) and f(b). Then there exists some ¢ € (a,b) such that f(c¢) = N.
(Remark: f needs to be continuous on the closed interval [a,b], not just on the open interval

(a,b), and we can guarantee that such ¢ exists in the open interval (a, b), not just the closed interval

[a,b].)
(i) Let f(z) = e®sinx. Note that f(z) is continuous on R. We have f(0) = e%sin0 = 0 < 40. We have
f(25ET) = e sin 20137 — e*'2" sin(10067 + )= e > 2% > 92013 5 40, Since f(z) is

continuous on the closed interval [0, 20;3”], the IVT implies that there exists ¢ € (0, 205’”) such that

f(e) =40. Thus f(z) = 40 has a solution in (0, 223%). Thus f(z) = 40 has a solution in (0, c0).

d
Problem 9. (i) Give the precise meaning of the statement “f is differentiable at x = a”.
(ii) Using the definition in (i), show that f(z) = z is differentiable at z = 1.
Solution. (i) The statement “f is differentiable at * = a” means “f is defined in some interval containing

a and the limit limy w exists (which we denote ‘f'(a)’)”.4

3The paper version asked you to prove the IVT, too; it was a typo.

A1ps equivalent to say that the limit limg—q w exists.
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(ii) Let f(z) = x. Then f is defined on all of R, so it is defined on an interval containing 1. We

flath)—f(a)
h

have limy,_,q = limp_o W = limp_,0 1, which exists (and is equal to 1), so f is

differentiable at x = 1.

]
Problem 10. (i) State Rolle’s Theorem.
(ii) State the Mean Value Theorem.
(iii) Prove the Mean Value Theorem using Rolle’s Theorem.
Solution. (i) Let f be a function continuous on [a, b] and differentiable on (a,b). Suppose f(a) = f(b).

Then there exists ¢ € (a,b) such that f'(c) = 0.

(ii) Let f be a function continuous on [a, b] and differentiable on (a,b). Then there exists ¢ € (a, b) such
that f/(c) = W

(iii) Let f be a real-valued function that is continuous on [a,b] and differentiable on (a,b). Define
g(z) = f(x) — f(a) — W(m —a). Note that g is a real-valued function that is continuous on
[a,b] and differentiable on (a,b). Note that g(a) = g(b). Hence, by Rolle’s Theorem, there exists
¢ € (a,b) such that ¢'(c) = 0. But ¢'(z) = f'(x) — W. Hence f'(c) = w.

d

Problem 11. In each of the following cases, evaluate %'

(1) Yy= 2+1
(i) y = arctan((sin z)?%)
(iii) y? Sxy +2? =e%cosx
(iv) y =
Solution. (i) Use the quotient rule:
dy 2(2? +1) — (22)(22)  —22% 42
de (x2 4 1)2 S (224 1)2

(ii) Use the chain rule:

y_ 1 sinx)?) =
dx 1+ ((sinz)?)? (( )

2(sinx)(cosx)  2sinzcosw
1+ ((sinz)?2)2 1+ (sinz)*

(iii) Differentiate implicitly:

dy d
Qy——i- 3y+3m—y +2x =e®cosx —e“sinx .
dx dx

Thus
y _ o v
(2y+3x)d—:e cosx —e’sinx — 3y — 2z
x

SO
dy e“cosz—e’sinx — 3y — 2z
dr 2y 4 3z
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(iv) Let g(z) = 2® = e*™™*. Then ¢'(z) = e*™*(Inz + 1) = 2%(Inz + 1). Then

dy

— (p9()y
7 = @)

_ (eg(m) lnm)/

= (/1) (g() Inx)’

= () (o) + gl )

=z <xw(lnx +1)(Inx) + x"”l) .
x

O

Problem 12. Alexander Coward’s youtube channel has 21 subscribers at time ¢ = 0, and the number of
subscribers grows exponentially with respect to time. At time ¢ = 4, he has 103 subscribers. After how long

will Alexander have 10% subscribers?

Solution. Let y(t) be the number of subscribers at time ¢. Since y(t) grows exponentially, we have y(t) =

103
y(0)e“* for some constant C. We're given that y(0) = 21 and y(4) = 103. Thus 103 = 21e*“, so C = I =
In 208 41n20%

= 103 -
C In 53

O

Let to be the time at which y(to) = 105. Then 10% = 21e“*0 implies ¢y =
Problem 13. Which point on the graph of y = 22 is closest to the point (5, —1)?

Solution. An arbitrary point on the graph y = 2?2 is of the form (z,2?). The distance between (z,2?) and
(5,—1) is

d(z) = /(x =52+ (22 + 1)2 = V/x* + 322 — 10z + 26 .
We have
1/2 223 + 3z — 5
- / (423 + 62 — 10) = ———on 27 .
Vat + 322 — 10z + 26 Vat + 322 — 10 + 26
Thus d'(z) = 0 if and only if 223 4+ 3z — 5 = 0. Since the coefficients of 223 + 3z — 5 sum to 0, a root of
223 4+ 32 — 5is 1. Thus z — 1 divides 223 + 3z — 5, and

d'(x)

203 + 3z —5= (v —1)(22% + 22 +5) . (2)

Since 222 + 2z +5 = 22 + (v +1)% + 4, it is always positive. Thus 223 + 3z — 5 has exactly one root, namely
x = 1. Furthermore, by (2), we have 22° +3x —5 > 0 if # > 1 and 223 + 32 —5 < 0 if # < 1. Thus d’'(z) > 0
ife>1and d(z) <0if z < 1. Thus z = 1 is a global minimum of d(z). Thus (1,1) is the point on the
graph of y = x? which is closest to (5, —1). |

Problem 14. The interior of a bowl is a “conic frustum”, where the top surface is a disk of radius 2 and the
bottom surface is a disk of radius 1 and the height of the cup is 3. A liquid is being poured into the bowl at

a constant rate of 4. How fast is the height of the water increasing when the bowl is full?

Solution. Let h(t), r(t), and V() be the height, radius (of the surface), and volume of the water in the bowl

at time ¢, respectively. The following is the side view of the bowl:



PRACTICE FINAL/STUDY GUIDE SOLUTIONS

4

3+ h(t)

By similar triangles, we have

2 2r(t)
3 3+n()
Thus
t) = h(t)3+ 3
We have
V(t) = %(W (r()*) B+ h(t) — (- (1/2)*)(3)
_;(ﬁ <h(t)3+3) >(3+h( T
= 5= (h(®) +3)* = 7.
Thus
V(1) = 5 (h(t) +3)°(W(1))

Let to be the time at which the bowl is full. Then h(ty) = 3. Since V'/(¢) = 4 for all ¢ by assumption, we
have
36 36

, B _ 1
) = ) 13w @

Problem 15. Showing your work carefully, evaluate the limit

(1 +sinz)? — (cosx)?

lim 5

x—0 x

Solution. We have
i (1 + sin x)22— (cosx)? — lim 2(1 + sinz)(cos z) — 2(cos z)(— sinx)
z—0 x x—0 2x

by L'Hospital’s Rule. The second limit does not exist since

lim 2(1 +sinz)(cosx) — 2(cos z)(—sinx) ~ oo 3)
z—0+ 2z
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and
lim 2(1 4+ sinz)(cosz) — 2(cos x)(— sinx)
z—0— 2z
(Notice that we cannot apply L’Hospital’s Rule to (3) since it is not an indeterminate form: lim,_,o+ 2(1 +
sinz)(cos z) — 2(cos x)(—sinz) = 2 while lim,_,y+ 2z = 0.) Thus the desired limit does not exist. O

= —0.

Problem 16. (i) Give the precise definition of the definite integral using Riemann sums.
(ii) What’s the difference between a definite integral and an indefinite integral?
(iii) Using the definition in (i), compute f02 22 da.
Solution. (i) Let f : [a,b] — R be a function. For each n € N (recall that N is the set of positive
integers), pick a collection of sample points z7,...,z} so that x} lies in [a + (i — 1)“7’1, a+ zbfT“]

The definite integral of f from a to b is defined as
b n
h—
[ s i = i S ) (=)

provided this limit exists and gives the same value for all possible choices of sample points.
(ii) A definite integral is a number, while an indefinite integral (i.e. antiderivative) is a function.

(iii) Let f(z) = 22, a = 0, and b = 2. For convenience, let’s choose z} = a + i%=% for all i,n (we're

computing the right-hand Riemann sums). We have

2 n 2 2 9

2 . .
de = lim Y (=) =
A X X nlm : <Zn> n

=1

n
. 8 9
= lim — E )
n—oo N,
i=1

1 1
~ lim 8 n(n+1)(2n+1)

8 n+1 n+1/2
=lm - —  ——
n—oo 3 n n
_8
-~ 3
O
Problem 17. (i) State the Fundamental Theorem of Calculus.

(ii) Let f : R — R be a differentiable function. Prove that if g is an antiderivative of f’, then there
exists a constant C such that f(z) = g(z) + C for all z.
(iii) Are all continuous functions differentiable?

(iv) Do all continuous functions have antiderivatives?

Solution. (i) Let f be a continuous real-valued function on [a,b]. Let g : [a,b] — R be defined by

o) = [ " fe) dt

Then g(z) is continuous on [a, b] and differentiable on (a,b), and ¢’'(z) = f(x). Furthermore, if F is

any antiderivative of f, then
b
ﬂ@—ﬂ@z/f@ﬁ.

(By letting b vary, this implies, in particular, that F(z) — F(a) = [ f(t) dt for all z € [a,].)
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(ii) Notice that f and g are functions defined on R. Choose an interval [a,b]. Notice that both f and
g are antiderivatives of f’. The second part of the FTC states that f(z) — f(a) = g(z) — g(a) for
all € [a,b]. This implies that f(x) — g(z) = f(a) — g(a) for all © € [a,b]. Let C = f(a) — g(a). If
x & [a,b], then we can repeat the above argument to any closed interval I = [a/,}’] which contains
[a,b] and x (which will yield the conclusion that f(x)—g(x) = f(a') — g(a’) for all € [a/,b]). Thus
f(z) —g(x) =C for all z € R.

(iii) Not all continuous functions are differentiable. For example, f(z) = |z| is not differentiable at = = 0.

(iv) All continuous functions have antiderivatives, by the first part of FTC: if f is continuous on [a, b],
then the function g(z f f(t) dt is an antiderivative of f.

]

Problem 18. Compute an antiderivative of the following functions.

(i) f(x) = 8z3 + 322

)
(i) f(z) = (Vo +1)?
(iii) f(z) =av1+4 a2
(iv) f(z) = tan(arcsin(z))
) fl@) = o7&

/(8x3+33§2)dm: §x4+§x3+022x4+x3+0.
(ii) We have
/(\5/54—1)2d:c:/(x2/5—|—2x1/5—|—1)da:—i 754 65 6/5 4 x4+ C
(ili) Use the substitution u = 1+ 22. Then 2* = 2z. We have

1
/x\/1+x2dx:/§\/aﬁd ()/ fdu—f 8240 = (1—|—x)3/2+C’

where we have used the Substitution Rule in the step marked (x).

(iv) Write tan(arcsin(z)) = and use the substitution v = 1 — 2. Thus

i?
/ arcsm

))dx:/\/%dx
- [ AR

H [ 2
—/\/ﬂdu
= —Vu+C
—-V1-224C

(v) Write
3 3
x o +x T T
= - =zvat+l- ————.
Viz+1 V241 Va2+1 2 +1
We compute antiderivatives of z+v/z2 + 1 and \/TQST separately. An antiderivative of zv/z2 + 1 is
3(1+22)3/2 + Cy by (iii). We use the same substitution v = 1+ 22 to compute an antiderivative of
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Then d—; = 2x. We have

T 11 du ( )
——=du Ci=V1+22+C
/\ru /Q\fd:c /2\F SV G =V G
where we have used the Substitution Rule in the step marked (x). Hence

1
———dr= (1422?1422 +C .
/\/x2+1 3

et

O

Problem 19. (i) Find the volume of the solid obtained by rotating the region {(x,y) : 0 <z <e¥,1<

(i)

y < 2} about the y-axis.

Find the volume of the solid obtained by rotating about the y-axis the region between y = y/z and

y =22

Solution. (i) The intersection of the solid with the plane y = yo is a circle of radius e¥. Thus the

infinitesimal cross-section of the solid has volume 7(e¥0)2dy where dy is the thickness of the cross-

section. Thus the volume of the solid is
2 2 T 2 T
/ m(e¥)? dy = / e dy = —e?| = —(e' —e?).
1 1 2 1 2

The curves y = /7 and y = 22 intersect at (0,0) and (1,1) and they are strictly increasing, so the
region they bound is contained in the box {(z,y) : 0 <z < 1,0 <y < 1}. The intersection of the
solid with the plane y = yo is an annulus (a disk with a smaller concentric disk removed from it)

2

of inner radius y2 and outer radius /7, which has area 7(,/70)?> — m(y3)?. Thus the volume of the

! 1 1 1 1 37
2 (2)2 g A - 2 = 2P =
/0 m(Vy)® —7m(y")" dy /0 m(y —y~) dy ﬂ(2y =Y ) ’0 0

solid is

Problem 20. Simplify log),, ¢(log, 2).

Solution. We have

loglogs 9(10g4 2) = 10g2(1/2) =-1.



