PRACTICE FINAL/STUDY GUIDE SOLUTIONS

(Last edited December 9, 2013 at 4:33pm.)

Feel free to send me any feedback, including comments, typos, and mathematical errors.
Problem 1. Give the precise meaning of the following statements.
(i) ${ }^{\lim } x_{x \rightarrow a} f(x)=L "$
(ii) $" \lim _{x \rightarrow a^{+}} f(x)=L "$
(iii) " $\lim _{x \rightarrow+\infty} f(x)=L$ "
(iv) $" \lim _{x \rightarrow+\infty} f(x)=-\infty "$
(v) " $\lim _{x \rightarrow a^{-}} f(x)=-\infty "$

Solution. (i) For every $\epsilon>0$, there exists $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$.
(ii) For every $\epsilon>0$, there exists $\delta>0$ such that if $0<x-a<\delta$ then $|f(x)-L|<\epsilon$.
(iii) For every $\epsilon>0$, there exists $N>0$ such that if $x>N$ then $|f(x)-L|<\epsilon$.
(iv) For every $M<0$, there exists $N>0$ such that if $x>N$ then $f(x)<M$.
(v) For every $M<0$, there exists $\delta>0$ such that if $0<a-x<\delta$ then $f(x)<M$.

Problem 2. Prove the following statements using the limit definitions.
(i) " $\lim _{x \rightarrow 0} \frac{1}{x^{2}+1}=1 "$
(ii) ${ }^{\prime} \lim _{x \rightarrow 1} \frac{x^{2}-4 x+5}{x+4}=\frac{2}{5}{ }^{\prime}{ }^{1}$
(iii) " $\lim _{x \rightarrow+\infty} \frac{e^{x}}{e^{x}+x}=1$ "

Scratch work. (i) We want to prove the following statement: "for every $\epsilon>0$, there exists $\delta>0$ such that $0<|x-0|<\delta$ implies $\left|\frac{1}{x^{2}+1}-1\right|<\epsilon "$. We have $\left|\frac{1}{x^{2}+1}-1\right|=\frac{x^{2}}{x^{2}+1} \leq x^{2}$.
(ii) We want to prove the following statement: "for every $\epsilon>0$, there exists $\delta>0$ such that $0<|x-1|<\delta$ implies $\left|\frac{x^{2}-4 x+5}{x+4}-\frac{2}{5}\right|<\epsilon "$. We have

$$
\left|\frac{x^{2}-4 x+5}{x+4}-\frac{2}{5}\right|=\left|\frac{5 x^{2}-22 x+17}{5 x+20}\right|=\left|\frac{(5 x-17)(x-1)}{5 x+20}\right|
$$

we're going to work with the last expression. If $|x-1|$ is small (i.e. $x \approx 1$), then $5 x-17 \approx-12$ and $5 x+20 \approx 25$ (this is an inexact statement which needs to be made precise). I can ensure that $-13<5 x-12<-11$ if $|x-1|<\frac{1}{5}$, which is satisfied whenever $\delta \leq \frac{1}{5}$. Coincidentally, $|x-1|<\frac{1}{5}$ also ensures that $19<5 x+20<21$. Thus $|x-1|<\frac{1}{5}$ implies that $\left|\frac{5 x-12}{5 x+20}\right|<\frac{13}{19}$ (check this). If δ is less than $\frac{\epsilon}{13 / 19}$ (in addition to being less than or equal to $\frac{1}{3}$), then $\left|\frac{(5 x-12)(x-1)}{5 x+20}\right|<\epsilon$. Notice that the condition " $\delta<\frac{\epsilon}{13 / 19}$ and $\delta<\frac{1}{5}$ " is equivalent to the condition " $\delta<\min \left\{\frac{\epsilon}{13 / 19}, \frac{1}{5}\right\}$ ".
(iii) (This turned out to be harder than I expected.) We want to prove the following statement: "for every $\epsilon>0$, there exists $N>0$ such that $x>N$ implies $\left|\frac{e^{x}}{e^{x}+x}-1\right|<\epsilon "$. We have $\left|\frac{e^{x}}{e^{x}+x}-1\right|=\frac{x}{e^{x}+x}<\frac{x}{e^{x}}$ (as long as $x>0$, which we can force by taking $N \geq 0$). If $\frac{x}{e^{x}}<\epsilon$, then $\frac{x}{e^{x}+x}<\epsilon$, so we're going to look for an N such that $x>N$ implies $\frac{x}{e^{x}}<\epsilon$. We will show that $\lim _{n \rightarrow \infty} \frac{n}{e^{n}}=0$. We will also show that the function $f(x)=\frac{x}{e^{x}}$ is decreasing on the interval $(1, \infty)$. This will show that $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$.

[^0]Solution. (i) Let $\epsilon>0$. Set $\delta>\sqrt{\epsilon}$. Assume $0<|x-0|<\delta$. Then $x^{2}=|x|^{2}=|x-0|^{2}<\delta^{2}=\epsilon$. Since $x^{2}+1 \geq 1$, we have $\frac{x^{2}}{x^{2}+1}<\epsilon$. Thus $\left|\frac{1}{x^{2}+1}-1\right|=\left|\frac{x^{2}}{x^{2}+1}\right|<\epsilon$.
(ii) Let $\epsilon>0$. Set $\delta<\min \left\{\frac{\epsilon}{13 / 19}, \frac{1}{5}\right\}$. Assume $0<|x-1|<\delta$. Then $|x-1|<\frac{1}{5}$, which implies $-13<5 x-12<-11$ and $19<5 x+20<21$. Thus $\left|\frac{5 x-12}{5 x+20}\right|<\frac{13}{19}$. Also, we have $|x-1|<\frac{\epsilon}{13 / 19}$. Thus

$$
\left|\frac{x^{2}-4 x+5}{x+4}-\frac{1}{5}\right|=\left|\frac{(5 x-12)(x-1)}{5 x+20}\right|<\frac{13}{19} \cdot \frac{\epsilon}{13 / 19}=\epsilon
$$

(iii) ${ }^{2}$ Let's first show that $\lim _{n \rightarrow \infty} \frac{n}{e^{n}}=0$. We have $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0$ by Problem 1 in http://math. berkeley.edu/~shinms/FA13-1A/practice-problems-01.pdf. We have $\frac{n}{e^{n}}<\frac{n}{2^{n}}$ for all n since $2<e$. Let $\epsilon>0$. Since $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0$, there exists $N>0$ such that $x>N$ implies $\left|\frac{n}{2^{n}}-0\right|<\epsilon$. Assume $x>N$. Then $\left|\frac{n}{e^{n}}-0\right|=\frac{n}{e^{n}}<\frac{n}{2^{n}}=\left|\frac{n}{2^{n}}-0\right|<\epsilon$. Thus $\lim _{n \rightarrow \infty} \frac{n}{e^{n}}=0$.

Let's show that if $1 \leq x<y$, then $f(x)>f(y)$. We have

$$
e^{y-x} \stackrel{(*)}{>} 1+(y-x) \geq 1+\frac{y-x}{x}=\frac{y}{x}
$$

where the inequality marked $(*)$ follows from the fact that $e^{x}>1+x$ for all positive x (since $\left.e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)$. Then $e^{y-x}>\frac{y}{x}$ implies $f(x)>f(y)$.

We now show that $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$. Let $\epsilon>0$. Since $\lim _{n \rightarrow \infty} \frac{n}{e^{n}}=0$, there exists a positive integer $N>0$ such that if n is a positive integer such that $n \geq N$, then $\frac{n}{e^{n}}=\left|\frac{n}{e^{n}}-0\right|<\epsilon$. Assume that x is a real number such that $x>N$. Let n be an integer such that $x>n \geq N$. Then $\left|\frac{x}{e^{x}}-0\right|=\frac{x}{e^{x}}<\frac{n}{e^{n}}<\epsilon$. Thus $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$.

We now prove that $\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+x}=1$. Let $\epsilon>0$. Since $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$, there exists $N>0$ such that $x>N$ implies $\frac{x}{e^{x}}=\left|\frac{x}{e^{x}}-0\right|<\epsilon$. Then $\left|\frac{e^{x}}{e^{x}+x}-1\right|=\frac{x}{e^{x}+x}<\frac{x}{e^{x}}<\epsilon$. Thus $\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+x}=1$.

Problem 3. (i) State and prove the Squeeze Theorem.
(ii) Use the Squeeze Theorem to compute

$$
\lim _{x \rightarrow 0} x^{2}(\sin x)^{4}(\cos x)^{3}
$$

Justify your answer carefully.
Solution. (i) If f, g, h are real-valued functions such that

$$
\begin{equation*}
f(x) \leq g(x) \leq h(x) \tag{1}
\end{equation*}
$$

when x is near a (except possibly at a) and if $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.
The precise meaning of "near a (except possibly at a)" is: "there exists some $\delta_{1}>0$ such that (1) holds for all x satisfying $0<|x-a|<\delta_{1}$ ".

Proof: Suppose f, g, h satisfy (1) when $0<|x-a|<\delta_{1}$ for some fixed $\delta_{1}>0$. Also suppose that $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$.

Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$, then $|f(x)-L|<\varepsilon$. Also, since $\lim _{x \rightarrow a} h(x)=L$, there exists $\delta_{3}>0$ such that if $0<|x-a|<\delta_{3}$, then $|h(x)-L|<\varepsilon$.

[^1]Put $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Suppose $0<|x-a|<\delta$. Then (1), $L-\varepsilon<f(x)<L+\varepsilon$ and $L-\varepsilon<h(x)<L+\varepsilon$ hold. Hence $g(x) \leq h(x)<L+\varepsilon$. Also $L-\varepsilon<f(x) \leq g(x)$. Thus $L-\varepsilon<g(x)<L+\varepsilon$, so $|g(x)-L|<\varepsilon$. Hence $\lim _{x \rightarrow a} g(x)=L$.
(ii) Let $g(x)=x^{2}(\sin x)^{4}(\cos x)^{3}, f(x)=-x^{2}, h(x)=x^{2}$. Since $-1 \leq \cos x \leq 1$ and $-1 \leq \sin x \leq 1$ for all x, we have

$$
-1 \leq(\sin x)^{4}(\cos x)^{3} \leq 1
$$

for all x. Thus (1) holds. In addition, we have $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} h(x)=0$. Thus $\lim _{x \rightarrow 0} g(x)=$ 0 .

Problem 4. Let f and g be functions, and suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=K$. Prove that $\lim _{x \rightarrow a}(f(x)+g(x))=L+K$.

Solution. Let f and g be functions, and suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=K$. Let $\epsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\frac{\epsilon}{2}$. Also, since $\lim _{x \rightarrow a} g(x)=K$, there exists $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$, then $|g(x)-K|<\frac{\epsilon}{2}$. Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Suppose $0<|x-a|<\delta$. Then $|f(x)-L|<\frac{\epsilon}{2}$ and $|g(x)-K|<\frac{\epsilon}{2}$. Hence

$$
\begin{aligned}
|(f(x)+g(x))-(L+K)| & =|(f(x)-L)+(g(x)-K)| \\
& \leq|f(x)-L|+|g(x)-K| \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Hence $\lim _{x \rightarrow a}(f(x)+g(x))=L+K$.
Problem 5. Evaluate

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sqrt{1+x}}-\frac{1}{1+x}\right)^{2}
$$

You should show your reasoning carefully; however you may use any of the limit laws without explanation or proof.

Solution. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{1}{\sqrt{1+x}}-\frac{1}{1+x}\right)^{2} & =\left(\lim _{x \rightarrow 0}\left(\frac{1}{\sqrt{1+x}}-\frac{1}{1+x}\right)\right)^{2} \\
& =\left(\lim _{x \rightarrow 0}\left(\frac{1}{\sqrt{1+x}}\right)-\lim _{x \rightarrow 0}\left(\frac{1}{1+x}\right)\right)^{2} \\
& =\left(\sqrt{\lim _{x \rightarrow 0}\left(\frac{1}{1+x}\right)}-\lim _{x \rightarrow 0}\left(\frac{1}{1+x}\right)\right)^{2} \\
& =\left(\sqrt{\frac{1}{1+0}}-\frac{1}{1+0}\right)^{2} \\
& =0
\end{aligned}
$$

Problem 6. Indicate "true" if the statement is always true; indicate "false" if there exists a counterexample.
(i) "If $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a^{+}} f(x)=L$."
(ii) "If $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a} f(x)=L$."
(iii) "If $\lim _{x \rightarrow \infty} f(x)=0$, then $\lim _{x \rightarrow \infty} f(x) e^{x}=0$."
(iv) "If $\lim _{x \rightarrow a}(f(x))^{2}=1$, then $\lim _{x \rightarrow a} f(x)=1$."

Solution. (i) True. (Intuition: If the two-sided limit is L, then a one-sided limit is also L.) Proof: Suppose $\lim _{x \rightarrow a} f(x)=L$. Let $\epsilon>0$. Then there exists $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$. Thus if $0<x-a<\delta$, then $|f(x)-L|<\epsilon$. Thus $\lim _{x \rightarrow a^{+}} f(x)=L$.
(ii) False. Consider the function

$$
f(x)= \begin{cases}1 & \text { if } x>0 \\ -1 & \text { if } x<0\end{cases}
$$

Then $\lim _{x \rightarrow 0^{+}} f(x)=1$ but $\lim _{x \rightarrow 0} f(x)$ does not exist.
(iii) False. We have $\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0$ but $\lim _{x \rightarrow \infty} \frac{1}{e^{x}} e^{x}=\lim _{x \rightarrow \infty} 1=1 \neq 0$.
(iv) False. Consider the function f in the solution to (ii) again; then $(f(x))^{2}$ is identically 1 on $(-\infty, 0) \cup$ $(0, \infty)$ so $\lim _{x \rightarrow 0}(f(x))^{2}=1$, but, as noted above, $\lim _{x \rightarrow 0} f(x)$ does not exist.

Problem 7. (i) Give the precise meaning of the statement " f is continuous at $x=a$ ".
(ii) Using the definition in (i), show that $f(x)=x$ is continuous at $x=1$.

Solution. (i) The statement " f is continuous at $x=a$ " means " f is defined in some interval containing a and $\lim _{x \rightarrow a} f(x)=f(a) "$.
(ii) The function $f(x)=x$ is defined everywhere, so it is defined in an interval containing $a=1$. We have $\lim _{x \rightarrow 1} x=1$, so $f(x)$ is continuous at $x=1$.

Problem 8. (i) State the Intermediate Value Theorem. ${ }^{3}$
(ii) Prove that $e^{x} \sin x=40$ has a solution in $(0, \infty)$.

Solution. (i) Let f be a continuous function on the interval $[a, b]$. Suppose $f(a) \neq f(b)$ and let N be a value strictly between $f(a)$ and $f(b)$. Then there exists some $c \in(a, b)$ such that $f(c)=N$.
(Remark: f needs to be continuous on the closed interval $[a, b]$, not just on the open interval (a, b), and we can guarantee that such c exists in the open interval (a, b), not just the closed interval $[a, b]$.
(ii) Let $f(x)=e^{x} \sin x$. Note that $f(x)$ is continuous on \mathbb{R}. We have $f(0)=e^{0} \sin 0=0<40$. We have $f\left(\frac{2013 \pi}{2}\right)=e^{\frac{2013 \pi}{2}} \sin \frac{2013 \pi}{2}=e^{\frac{2013 \pi}{2}} \sin \left(1006 \pi+\frac{\pi}{2}\right)=e^{\frac{2013 \pi}{2}}>2^{\frac{2013 \pi}{2}}>2^{2013}>40$. Since $f(x)$ is continuous on the closed interval $\left[0, \frac{2013 \pi}{2}\right]$, the IVT implies that there exists $c \in\left(0, \frac{2013 \pi}{2}\right)$ such that $f(c)=40$. Thus $f(x)=40$ has a solution in $\left(0, \frac{2013 \pi}{2}\right)$. Thus $f(x)=40$ has a solution in $(0, \infty)$.

Problem 9. (i) Give the precise meaning of the statement " f is differentiable at $x=a$ ".
(ii) Using the definition in (i), show that $f(x)=x$ is differentiable at $x=1$.

Solution. (i) The statement " f is differentiable at $x=a$ " means " f is defined in some interval containing a and the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ exists (which we denote ' $f^{\prime}(a)^{\prime}$)". ${ }^{4}$

[^2](ii) Let $f(x)=x$. Then f is defined on all of \mathbb{R}, so it is defined on an interval containing 1 . We have $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{(a+h)-(a)}{h}=\lim _{h \rightarrow 0} 1$, which exists (and is equal to 1), so f is differentiable at $x=1$.

Problem 10. (i) State Rolle's Theorem.

(ii) State the Mean Value Theorem.
(iii) Prove the Mean Value Theorem using Rolle's Theorem.

Solution. (i) Let f be a function continuous on $[a, b]$ and differentiable on (a, b). Suppose $f(a)=f(b)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
(ii) Let f be a function continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(iii) Let f be a real-valued function that is continuous on $[a, b]$ and differentiable on (a, b). Define $g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$. Note that g is a real-valued function that is continuous on $[a, b]$ and differentiable on (a, b). Note that $g(a)=g(b)$. Hence, by Rolle's Theorem, there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. But $g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$. Hence $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Problem 11. In each of the following cases, evaluate $\frac{d y}{d x}$.
(i) $y=\frac{2 x}{x^{2}+1}$
(ii) $y=\arctan \left((\sin x)^{2}\right)$
(iii) $y^{2}+3 x y+x^{2}=e^{x} \cos x$
(iv) $y=x^{x^{x}}$

Solution. (i) Use the quotient rule:

$$
\frac{d y}{d x}=\frac{2\left(x^{2}+1\right)-(2 x)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-2 x^{2}+2}{\left(x^{2}+1\right)^{2}}
$$

(ii) Use the chain rule:

$$
\frac{d y}{d x}=\frac{1}{1+\left((\sin x)^{2}\right)^{2}}\left((\sin x)^{2}\right)^{\prime}=\frac{2(\sin x)(\cos x)}{1+\left((\sin x)^{2}\right)^{2}}=\frac{2 \sin x \cos x}{1+(\sin x)^{4}}
$$

(iii) Differentiate implicitly:

$$
2 y \frac{d y}{d x}+\left(3 y+3 x \frac{d y}{d x}\right)+2 x=e^{x} \cos x-e^{x} \sin x .
$$

Thus

$$
(2 y+3 x) \frac{d y}{d x}=e^{x} \cos x-e^{x} \sin x-3 y-2 x
$$

so

$$
\frac{d y}{d x}=\frac{e^{x} \cos x-e^{x} \sin x-3 y-2 x}{2 y+3 x}
$$

(iv) Let $g(x)=x^{x}=e^{x \ln x}$. Then $g^{\prime}(x)=e^{x \ln x}\left(\ln x+x \frac{1}{x}\right)=x^{x}(\ln x+1)$. Then

$$
\begin{aligned}
\frac{d y}{d x} & =\left(x^{g(x)}\right)^{\prime} \\
& =\left(e^{g(x) \ln x}\right)^{\prime} \\
& =\left(e^{g(x) \ln x}\right)(g(x) \ln x)^{\prime} \\
& =\left(e^{g(x) \ln x}\right)\left(g^{\prime}(x) \ln x+g(x) \frac{1}{x}\right) \\
& =x^{x^{x}}\left(x^{x}(\ln x+1)(\ln x)+x^{x} \frac{1}{x}\right) .
\end{aligned}
$$

Problem 12. Alexander Coward's youtube channel has 21 subscribers at time $t=0$, and the number of subscribers grows exponentially with respect to time. At time $t=4$, he has 103 subscribers. After how long will Alexander have 10^{6} subscribers?

Solution. Let $y(t)$ be the number of subscribers at time t. Since $y(t)$ grows exponentially, we have $y(t)=$ $y(0) e^{C t}$ for some constant C. We're given that $y(0)=21$ and $y(4)=103$. Thus $103=21 e^{4 C}$, so $C=\frac{\ln \frac{103}{21}}{4}$. Let t_{0} be the time at which $y\left(t_{0}\right)=10^{6}$. Then $10^{6}=21 e^{C t_{0}}$ implies $t_{0}=\frac{\ln \frac{10^{6}}{21}}{C}=\frac{4 \ln \frac{10^{6}}{21}}{\ln \frac{103}{21}}$.

Problem 13. Which point on the graph of $y=x^{2}$ is closest to the point $(5,-1)$?

Solution. An arbitrary point on the graph $y=x^{2}$ is of the form $\left(x, x^{2}\right)$. The distance between $\left(x, x^{2}\right)$ and $(5,-1)$ is

$$
d(x)=\sqrt{(x-5)^{2}+\left(x^{2}+1\right)^{2}}=\sqrt{x^{4}+3 x^{2}-10 x+26}
$$

We have

$$
d^{\prime}(x)=\frac{1 / 2}{\sqrt{x^{4}+3 x^{2}-10 x+26}}\left(4 x^{3}+6 x-10\right)=\frac{2 x^{3}+3 x-5}{\sqrt{x^{4}+3 x^{2}-10 x+26}}
$$

Thus $d^{\prime}(x)=0$ if and only if $2 x^{3}+3 x-5=0$. Since the coefficients of $2 x^{3}+3 x-5$ sum to 0 , a root of $2 x^{3}+3 x-5$ is 1 . Thus $x-1$ divides $2 x^{3}+3 x-5$, and

$$
\begin{equation*}
2 x^{3}+3 x-5=(x-1)\left(2 x^{2}+2 x+5\right) \tag{2}
\end{equation*}
$$

Since $2 x^{2}+2 x+5=x^{2}+(x+1)^{2}+4$, it is always positive. Thus $2 x^{3}+3 x-5$ has exactly one root, namely $x=1$. Furthermore, by (2), we have $2 x^{3}+3 x-5>0$ if $x>1$ and $2 x^{3}+3 x-5<0$ if $x<1$. Thus $d^{\prime}(x)>0$ if $x>1$ and $d^{\prime}(x)<0$ if $x<1$. Thus $x=1$ is a global minimum of $d(x)$. Thus $(1,1)$ is the point on the graph of $y=x^{2}$ which is closest to $(5,-1)$.

Problem 14. The interior of a bowl is a "conic frustum", where the top surface is a disk of radius 2 and the bottom surface is a disk of radius 1 and the height of the cup is 3 . A liquid is being poured into the bowl at a constant rate of 4 . How fast is the height of the water increasing when the bowl is full?

Solution. Let $h(t), r(t)$, and $V(t)$ be the height, radius (of the surface), and volume of the water in the bowl at time t, respectively. The following is the side view of the bowl:

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

By similar triangles, we have

$$
\frac{2}{3}=\frac{2 r(t)}{3+h(t)}
$$

Thus

$$
r(t)=\frac{h(t)+3}{3} .
$$

We have

$$
\begin{aligned}
V(t) & =\frac{1}{3}\left(\pi \cdot(r(t))^{2}\right)(3+h(t))-\frac{1}{3}\left(\pi \cdot(1 / 2)^{2}\right)(3) \\
& =\frac{1}{3}\left(\pi \cdot\left(\frac{h(t)+3}{3}\right)^{2}\right)(3+h(t))-\frac{\pi}{4} \\
& =\frac{\pi}{27}(h(t)+3)^{3}-\frac{\pi}{4} .
\end{aligned}
$$

Thus

$$
V^{\prime}(t)=\frac{\pi}{9}(h(t)+3)^{2}\left(h^{\prime}(t)\right) .
$$

Let t_{0} be the time at which the bowl is full. Then $h\left(t_{0}\right)=3$. Since $V^{\prime}(t)=4$ for all t by assumption, we have

$$
h^{\prime}\left(t_{0}\right)=\frac{36}{\pi\left(h\left(t_{0}\right)+3\right)^{2}}=\frac{36}{\pi \cdot 6^{2}}=\frac{1}{\pi} .
$$

Problem 15. Showing your work carefully, evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{(1+\sin x)^{2}-(\cos x)^{2}}{x^{2}}
$$

Solution. We have

$$
\lim _{x \rightarrow 0} \frac{(1+\sin x)^{2}-(\cos x)^{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{2(1+\sin x)(\cos x)-2(\cos x)(-\sin x)}{2 x}
$$

by L'Hospital's Rule. The second limit does not exist since

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{2(1+\sin x)(\cos x)-2(\cos x)(-\sin x)}{2 x}=+\infty \tag{3}
\end{equation*}
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{2(1+\sin x)(\cos x)-2(\cos x)(-\sin x)}{2 x}=-\infty .
$$

(Notice that we cannot apply L'Hospital's Rule to (3) since it is not an indeterminate form: $\lim _{x \rightarrow 0^{+}} 2(1+$ $\sin x)(\cos x)-2(\cos x)(-\sin x)=2$ while $\lim _{x \rightarrow 0^{+}} 2 x=0$.) Thus the desired limit does not exist.

Problem 16. (i) Give the precise definition of the definite integral using Riemann sums.
(ii) What's the difference between a definite integral and an indefinite integral?
(iii) Using the definition in (i), compute $\int_{0}^{2} x^{2} d x$.

Solution. (i) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function. For each $n \in \mathbb{N}$ (recall that \mathbb{N} is the set of positive integers), pick a collection of sample points $x_{1}^{*}, \ldots, x_{n}^{*}$ so that x_{i}^{*} lies in $\left[a+(i-1) \frac{b-a}{n}, a+i \frac{b-a}{n}\right]$. The definite integral of f from a to b is defined as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(\frac{b-a}{n}\right)
$$

provided this limit exists and gives the same value for all possible choices of sample points.
(ii) A definite integral is a number, while an indefinite integral (i.e. antiderivative) is a function.
(iii) Let $f(x)=x^{2}, a=0$, and $b=2$. For convenience, let's choose $x_{i}^{*}=a+i \frac{b-a}{n}$ for all i, n (we're computing the right-hand Riemann sums). We have

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(i \frac{2}{n}\right)^{2} \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \\
& =\lim _{n \rightarrow \infty} \frac{8}{3} \cdot \frac{n+1}{n} \cdot \frac{n+1 / 2}{n} \\
& =\frac{8}{3}
\end{aligned}
$$

Problem 17. (i) State the Fundamental Theorem of Calculus.
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that if g is an antiderivative of f^{\prime}, then there exists a constant C such that $f(x)=g(x)+C$ for all x.
(iii) Are all continuous functions differentiable?
(iv) Do all continuous functions have antiderivatives?

Solution. (i) Let f be a continuous real-valued function on $[a, b]$. Let $g:[a, b] \rightarrow \mathbb{R}$ be defined by

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Then $g(x)$ is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$. Furthermore, if F is any antiderivative of f, then

$$
F(b)-F(a)=\int_{a}^{b} f(t) d t
$$

(By letting b vary, this implies, in particular, that $F(x)-F(a)=\int_{a}^{x} f(t) d t$ for all $x \in[a, b]$.)
(ii) Notice that f and g are functions defined on \mathbb{R}. Choose an interval $[a, b]$. Notice that both f and g are antiderivatives of f^{\prime}. The second part of the FTC states that $f(x)-f(a)=g(x)-g(a)$ for all $x \in[a, b]$. This implies that $f(x)-g(x)=f(a)-g(a)$ for all $x \in[a, b]$. Let $C=f(a)-g(a)$. If $x \notin[a, b]$, then we can repeat the above argument to any closed interval $I=\left[a^{\prime}, b^{\prime}\right]$ which contains $[a, b]$ and x (which will yield the conclusion that $f(x)-g(x)=f\left(a^{\prime}\right)-g\left(a^{\prime}\right)$ for all $x \in\left[a^{\prime}, b^{\prime}\right]$). Thus $f(x)-g(x)=C$ for all $x \in \mathbb{R}$.
(iii) Not all continuous functions are differentiable. For example, $f(x)=|x|$ is not differentiable at $x=0$.
(iv) All continuous functions have antiderivatives, by the first part of FTC: if f is continuous on $[a, b]$, then the function $g(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of f.

Problem 18. Compute an antiderivative of the following functions.
(i) $f(x)=8 x^{3}+3 x^{2}$
(ii) $f(x)=(\sqrt[5]{x}+1)^{2}$
(iii) $f(x)=x \sqrt{1+x^{2}}$
(iv) $f(x)=\tan (\arcsin (x))$
(v) $f(x)=\frac{x^{3}}{\sqrt{x^{2}+1}}$

Solution. (i) We have

$$
\int\left(8 x^{3}+3 x^{2}\right) d x=\frac{8}{4} x^{4}+\frac{3}{3} x^{3}+C=2 x^{4}+x^{3}+C .
$$

(ii) We have

$$
\int(\sqrt[5]{x}+1)^{2} d x=\int\left(x^{2 / 5}+2 x^{1 / 5}+1\right) d x=\frac{5}{7} x^{7 / 5}+\frac{2 \cdot 5}{6} x^{6 / 5}+x+C
$$

(iii) Use the substitution $u=1+x^{2}$. Then $\frac{d u}{d x}=2 x$. We have

$$
\int x \sqrt{1+x^{2}} d x=\int \frac{1}{2} \sqrt{u} \frac{d u}{d x} d x \stackrel{(*)}{=} \int \frac{1}{2} \sqrt{u} d u=\frac{1}{3} u^{3 / 2}+C=\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C
$$

where we have used the Substitution Rule in the step marked ($*$).
(iv) Write $\tan (\arcsin (x))=\frac{x}{\sqrt{1-x^{2}}}$ and use the substitution $u=1-x^{2}$. Thus

$$
\begin{aligned}
\int \tan (\arcsin (x)) d x & =\int \frac{x}{\sqrt{1-x^{2}}} d x \\
& =\int \frac{-\frac{1}{2}}{\sqrt{u}} \frac{d u}{d x} d x \\
& \stackrel{(*)}{=} \int \frac{-\frac{1}{2}}{\sqrt{u}} d u \\
& =-\sqrt{u}+C \\
& =-\sqrt{1-x^{2}}+C
\end{aligned}
$$

(v) Write

$$
\frac{x^{3}}{\sqrt{x^{2}+1}}=\frac{x^{3}+x}{\sqrt{x^{2}+1}}-\frac{x}{\sqrt{x^{2}+1}}=x \sqrt{x^{2}+1}-\frac{x}{\sqrt{x^{2}+1}}
$$

We compute antiderivatives of $x \sqrt{x^{2}+1}$ and $\frac{x}{\sqrt{x^{2}+1}}$ separately. An antiderivative of $x \sqrt{x^{2}+1}$ is $\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C_{1}$ by (iii). We use the same substitution $u=1+x^{2}$ to compute an antiderivative of
$\frac{x}{\sqrt{x^{2}+1}}$. Then $\frac{d u}{d x}=2 x$. We have

$$
\int \frac{x}{\sqrt{x^{2}+1}} d x=\int \frac{1}{2} \frac{1}{\sqrt{u}} \frac{d u}{d x} d x \stackrel{(*)}{=} \int \frac{1}{2} \frac{1}{\sqrt{u}} d u=\sqrt{u}+C_{1}=\sqrt{1+x^{2}}+C_{2}
$$

where we have used the Substitution Rule in the step marked (*). Hence

$$
\int \frac{x^{3}}{\sqrt{x^{2}+1}} d x=\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}-\sqrt{1+x^{2}}+C
$$

Problem 19. (i) Find the volume of the solid obtained by rotating the region $\left\{(x, y): 0 \leq x \leq e^{y}, 1 \leq\right.$ $y \leq 2\}$ about the y-axis.
(ii) Find the volume of the solid obtained by rotating about the y-axis the region between $y=\sqrt{x}$ and $y=x^{2}$.

Solution. (i) The intersection of the solid with the plane $y=y_{0}$ is a circle of radius $e^{y_{0}}$. Thus the infinitesimal cross-section of the solid has volume $\pi\left(e^{y_{0}}\right)^{2} d y$ where $d y$ is the thickness of the crosssection. Thus the volume of the solid is

$$
\int_{1}^{2} \pi\left(e^{y}\right)^{2} d y=\int_{1}^{2} \pi e^{2 y} d y=\left.\frac{\pi}{2} e^{2 y}\right|_{1} ^{2}=\frac{\pi}{2}\left(e^{4}-e^{2}\right)
$$

(ii) The curves $y=\sqrt{x}$ and $y=x^{2}$ intersect at $(0,0)$ and $(1,1)$ and they are strictly increasing, so the region they bound is contained in the box $\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$. The intersection of the solid with the plane $y=y_{0}$ is an annulus (a disk with a smaller concentric disk removed from it) of inner radius y_{0}^{2} and outer radius $\sqrt{y_{0}}$, which has area $\pi\left(\sqrt{y_{0}}\right)^{2}-\pi\left(y_{0}^{2}\right)^{2}$. Thus the volume of the solid is

$$
\int_{0}^{1} \pi(\sqrt{y})^{2}-\pi\left(y^{2}\right)^{2} d y=\int_{0}^{1} \pi\left(y-y^{4}\right) d y=\left.\pi\left(\frac{1}{2} y^{2}-\frac{1}{5} y^{5}\right)\right|_{0} ^{1}=\frac{3 \pi}{10}
$$

Problem 20. Simplify $\log _{\log _{3} 9}\left(\log _{4} 2\right)$.
Solution. We have

$$
\log _{\log _{3} 9}\left(\log _{4} 2\right)=\log _{2}(1 / 2)=-1
$$

[^0]: ${ }^{1}$ Typo: the printed version said $\frac{1}{5}$.

[^1]: ${ }^{2}$ We can also use L'Hospital's rule, but the point was to compute the limit using the definitions.

[^2]: ${ }^{3}$ The paper version asked you to prove the IVT, too; it was a typo.
 ${ }^{4}$ It's equivalent to say that the $\operatorname{limit}^{\lim } \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists.

