
PRACTICE FINAL/STUDY GUIDE SOLUTIONS

(Last edited December 9, 2013 at 4:33pm.)

Feel free to send me any feedback, including comments, typos, and mathematical errors.

Problem 1. Give the precise meaning of the following statements.

(i) “limx→a f(x) = L”

(ii) “limx→a+ f(x) = L”

(iii) “limx→+∞ f(x) = L”

(iv) “limx→+∞ f(x) = −∞”

(v) “limx→a− f(x) = −∞”

Solution. (i) For every ε > 0, there exists δ > 0 such that if 0 < |x− a| < δ then |f(x)− L| < ε.

(ii) For every ε > 0, there exists δ > 0 such that if 0 < x− a < δ then |f(x)− L| < ε.

(iii) For every ε > 0, there exists N > 0 such that if x > N then |f(x)− L| < ε.

(iv) For every M < 0, there exists N > 0 such that if x > N then f(x) < M .

(v) For every M < 0, there exists δ > 0 such that if 0 < a− x < δ then f(x) < M .

�

Problem 2. Prove the following statements using the limit definitions.

(i) “limx→0
1

x2+1 = 1”

(ii) “limx→1
x2−4x+5
x+4 = 2

5” 1

(iii) “limx→+∞
ex

ex+x = 1”

Scratch work. (i) We want to prove the following statement: “for every ε > 0, there exists δ > 0 such

that 0 < |x− 0| < δ implies | 1
x2+1 − 1| < ε”. We have | 1

x2+1 − 1| = x2

x2+1 ≤ x
2.

(ii) We want to prove the following statement: “for every ε > 0, there exists δ > 0 such that 0 < |x−1| < δ

implies |x
2−4x+5
x+4 − 2

5 | < ε”. We have∣∣∣∣x2 − 4x+ 5

x+ 4
− 2

5

∣∣∣∣ =

∣∣∣∣5x2 − 22x+ 17

5x+ 20

∣∣∣∣ =

∣∣∣∣ (5x− 17)(x− 1)

5x+ 20

∣∣∣∣ ;

we’re going to work with the last expression. If |x − 1| is small (i.e. x ≈ 1), then 5x − 17 ≈ −12

and 5x + 20 ≈ 25 (this is an inexact statement which needs to be made precise). I can ensure that

−13 < 5x− 12 < −11 if |x− 1| < 1
5 , which is satisfied whenever δ ≤ 1

5 . Coincidentally, |x− 1| < 1
5

also ensures that 19 < 5x + 20 < 21. Thus |x − 1| < 1
5 implies that | 5x−125x+20 | <

13
19 (check this). If δ

is less than ε
13/19 (in addition to being less than or equal to 1

3 ), then | (5x−12)(x−1)5x+20 | < ε. Notice that

the condition “δ < ε
13/19 and δ < 1

5” is equivalent to the condition “δ < min{ ε
13/19 ,

1
5}”.

(iii) (This turned out to be harder than I expected.) We want to prove the following statement: “for every

ε > 0, there exists N > 0 such that x > N implies | ex

ex+x − 1| < ε”. We have | ex

ex+x − 1| = x
ex+x <

x
ex

(as long as x > 0, which we can force by taking N ≥ 0). If x
ex < ε, then x

ex+x < ε, so we’re going to

look for an N such that x > N implies x
ex < ε. We will show that limn→∞

n
en = 0. We will also show

that the function f(x) = x
ex is decreasing on the interval (1,∞). This will show that limx→∞

x
ex = 0.

1Typo: the printed version said 1
5

.
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Solution. (i) Let ε > 0. Set δ >
√
ε. Assume 0 < |x− 0| < δ. Then x2 = |x|2 = |x− 0|2 < δ2 = ε. Since

x2 + 1 ≥ 1, we have x2

x2+1 < ε. Thus | 1
x2+1 − 1| = | x

2

x2+1 | < ε.

(ii) Let ε > 0. Set δ < min{ ε
13/19 ,

1
5}. Assume 0 < |x − 1| < δ. Then |x − 1| < 1

5 , which implies

−13 < 5x − 12 < −11 and 19 < 5x + 20 < 21. Thus | 5x−125x+20 | <
13
19 . Also, we have |x − 1| < ε

13/19 .

Thus ∣∣∣∣x2 − 4x+ 5

x+ 4
− 1

5

∣∣∣∣ =

∣∣∣∣ (5x− 12)(x− 1)

5x+ 20

∣∣∣∣ < 13

19
· ε

13/19
= ε .

(iii) 2 Let’s first show that limn→∞
n
en = 0. We have limn→∞

n
2n = 0 by Problem 1 in http://math.

berkeley.edu/~shinms/FA13-1A/practice-problems-01.pdf. We have n
en < n

2n for all n since

2 < e. Let ε > 0. Since limn→∞
n
2n = 0, there exists N > 0 such that x > N implies | n2n − 0| < ε.

Assume x > N . Then | nen − 0| = n
en <

n
2n = | n2n − 0| < ε. Thus limn→∞

n
en = 0.

Let’s show that if 1 ≤ x < y, then f(x) > f(y). We have

ey−x
(∗)
> 1 + (y − x) ≥ 1 +

y − x
x

=
y

x

where the inequality marked (∗) follows from the fact that ex > 1 + x for all positive x (since

ex = 1 + x+ x2

2! + x3

3! + · · · ). Then ey−x > y
x implies f(x) > f(y).

We now show that limx→∞
x
ex = 0. Let ε > 0. Since limn→∞

n
en = 0, there exists a positive

integer N > 0 such that if n is a positive integer such that n ≥ N , then n
en = | nen − 0| < ε. Assume

that x is a real number such that x > N . Let n be an integer such that x > n ≥ N . Then

| xex − 0| = x
ex <

n
en < ε. Thus limx→∞

x
ex = 0.

We now prove that limx→∞
ex

ex+x = 1. Let ε > 0. Since limx→∞
x
ex = 0, there exists N > 0 such

that x > N implies x
ex = | xex − 0| < ε. Then | ex

ex+x − 1| = x
ex+x <

x
ex < ε. Thus limx→∞

ex

ex+x = 1.

�

Problem 3. (i) State and prove the Squeeze Theorem.

(ii) Use the Squeeze Theorem to compute

lim
x→0

x2(sinx)4(cosx)3 .

Justify your answer carefully.

Solution. (i) If f, g, h are real-valued functions such that

f(x) ≤ g(x) ≤ h(x) (1)

when x is near a (except possibly at a) and if limx→a f(x) = limx→a h(x) = L, then limx→a g(x) = L.

The precise meaning of “near a (except possibly at a)” is: “there exists some δ1 > 0 such that (1)

holds for all x satisfying 0 < |x− a| < δ1”.

Proof: Suppose f, g, h satisfy (1) when 0 < |x− a| < δ1 for some fixed δ1 > 0. Also suppose that

limx→a f(x) = limx→a h(x) = L.

Let ε > 0. Since limx→a f(x) = L, there exists δ2 > 0 such that if 0 < |x − a| < δ2, then

|f(x)− L| < ε. Also, since limx→a h(x) = L, there exists δ3 > 0 such that if 0 < |x− a| < δ3, then

|h(x)− L| < ε.

2We can also use L’Hospital’s rule, but the point was to compute the limit using the definitions.
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Put δ = min{δ1, δ2, δ3}. Suppose 0 < |x − a| < δ. Then (1), L − ε < f(x) < L + ε and

L − ε < h(x) < L + ε hold. Hence g(x) ≤ h(x) < L + ε. Also L − ε < f(x) ≤ g(x). Thus

L− ε < g(x) < L+ ε, so |g(x)− L| < ε. Hence limx→a g(x) = L.

(ii) Let g(x) = x2(sinx)4(cosx)3, f(x) = −x2, h(x) = x2. Since −1 ≤ cosx ≤ 1 and −1 ≤ sinx ≤ 1 for

all x, we have

−1 ≤ (sinx)4(cosx)3 ≤ 1

for all x. Thus (1) holds. In addition, we have limx→0 f(x) = limx→0 h(x) = 0. Thus limx→0 g(x) =

0.

�

Problem 4. Let f and g be functions, and suppose limx→a f(x) = L and limx→a g(x) = K. Prove that

limx→a(f(x) + g(x)) = L+K.

Solution. Let f and g be functions, and suppose limx→a f(x) = L and limx→a g(x) = K. Let ε > 0. Since

limx→a f(x) = L, there exists δ1 > 0 such that if 0 < |x − a| < δ1, then |f(x) − L| < ε
2 . Also, since

limx→a g(x) = K, there exists δ2 > 0 such that if 0 < |x−a| < δ2, then |g(x)−K| < ε
2 . Put δ = min{δ1, δ2}.

Suppose 0 < |x− a| < δ. Then |f(x)− L| < ε
2 and |g(x)−K| < ε

2 . Hence

|(f(x) + g(x))− (L+K)| = |(f(x)− L) + (g(x)−K)|

≤ |f(x)− L|+ |g(x)−K|

=
ε

2
+
ε

2

= ε .

Hence limx→a(f(x) + g(x)) = L+K. �

Problem 5. Evaluate

lim
x→0

(
1√

1 + x
− 1

1 + x

)2

You should show your reasoning carefully; however you may use any of the limit laws without explanation

or proof.

Solution. We have

lim
x→0

(
1√

1 + x
− 1

1 + x

)2

=

(
lim
x→0

(
1√

1 + x
− 1

1 + x

))2

=

(
lim
x→0

(
1√

1 + x

)
− lim
x→0

(
1

1 + x

))2

=

(√
lim
x→0

(
1

1 + x

)
− lim
x→0

(
1

1 + x

))2

=

(√
1

1 + 0
− 1

1 + 0

)2

= 0 .

�

Problem 6. Indicate “true” if the statement is always true; indicate “false” if there exists a counterexample.
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(i) “If limx→a f(x) = L, then limx→a+ f(x) = L.”

(ii) “If limx→a+ f(x) = L, then limx→a f(x) = L.”

(iii) “If limx→∞ f(x) = 0, then limx→∞ f(x)ex = 0.”

(iv) “If limx→a(f(x))2 = 1, then limx→a f(x) = 1.”

Solution. (i) True. (Intuition: If the two-sided limit is L, then a one-sided limit is also L.) Proof:

Suppose limx→a f(x) = L. Let ε > 0. Then there exists δ > 0 such that 0 < |x − a| < δ implies

|f(x)− L| < ε. Thus if 0 < x− a < δ, then |f(x)− L| < ε. Thus limx→a+ f(x) = L.

(ii) False. Consider the function

f(x) =

1 if x > 0

−1 if x < 0
.

Then limx→0+ f(x) = 1 but limx→0 f(x) does not exist.

(iii) False. We have limx→∞
1
ex = 0 but limx→∞

1
ex e

x = limx→∞ 1 = 1 6= 0.

(iv) False. Consider the function f in the solution to (ii) again; then (f(x))2 is identically 1 on (−∞, 0)∪
(0,∞) so limx→0(f(x))2 = 1, but, as noted above, limx→0 f(x) does not exist.

�

Problem 7. (i) Give the precise meaning of the statement “f is continuous at x = a”.

(ii) Using the definition in (i), show that f(x) = x is continuous at x = 1.

Solution. (i) The statement “f is continuous at x = a” means “f is defined in some interval containing

a and limx→a f(x) = f(a)”.

(ii) The function f(x) = x is defined everywhere, so it is defined in an interval containing a = 1. We

have limx→1 x = 1, so f(x) is continuous at x = 1.

�

Problem 8. (i) State the Intermediate Value Theorem.3

(ii) Prove that ex sinx = 40 has a solution in (0,∞).

Solution. (i) Let f be a continuous function on the interval [a, b]. Suppose f(a) 6= f(b) and let N be a

value strictly between f(a) and f(b). Then there exists some c ∈ (a, b) such that f(c) = N .

(Remark: f needs to be continuous on the closed interval [a, b], not just on the open interval

(a, b), and we can guarantee that such c exists in the open interval (a, b), not just the closed interval

[a, b].)

(ii) Let f(x) = ex sinx. Note that f(x) is continuous on R. We have f(0) = e0 sin 0 = 0 < 40. We have

f( 2013π
2 ) = e

2013π
2 sin 2013π

2 = e
2013π

2 sin(1006π + π
2 ) = e

2013π
2 > 2

2013π
2 > 22013 > 40. Since f(x) is

continuous on the closed interval [0, 2013π2 ], the IVT implies that there exists c ∈ (0, 2013π2 ) such that

f(c) = 40. Thus f(x) = 40 has a solution in (0, 2013π2 ). Thus f(x) = 40 has a solution in (0,∞).

�

Problem 9. (i) Give the precise meaning of the statement “f is differentiable at x = a”.

(ii) Using the definition in (i), show that f(x) = x is differentiable at x = 1.

Solution. (i) The statement “f is differentiable at x = a” means “f is defined in some interval containing

a and the limit limh→0
f(a+h)−f(a)

h exists (which we denote ‘f ′(a)’)”.4

3The paper version asked you to prove the IVT, too; it was a typo.
4It’s equivalent to say that the limit limx→a

f(x)−f(a)
x−a

exists.
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(ii) Let f(x) = x. Then f is defined on all of R, so it is defined on an interval containing 1. We

have limh→0
f(a+h)−f(a)

h = limh→0
(a+h)−(a)

h = limh→0 1, which exists (and is equal to 1), so f is

differentiable at x = 1.

�

Problem 10. (i) State Rolle’s Theorem.

(ii) State the Mean Value Theorem.

(iii) Prove the Mean Value Theorem using Rolle’s Theorem.

Solution. (i) Let f be a function continuous on [a, b] and differentiable on (a, b). Suppose f(a) = f(b).

Then there exists c ∈ (a, b) such that f ′(c) = 0.

(ii) Let f be a function continuous on [a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such

that f ′(c) = f(b)−f(a)
b−a .

(iii) Let f be a real-valued function that is continuous on [a, b] and differentiable on (a, b). Define

g(x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). Note that g is a real-valued function that is continuous on

[a, b] and differentiable on (a, b). Note that g(a) = g(b). Hence, by Rolle’s Theorem, there exists

c ∈ (a, b) such that g′(c) = 0. But g′(x) = f ′(x)− f(b)−f(a)
b−a . Hence f ′(c) = f(b)−f(a)

b−a .

�

Problem 11. In each of the following cases, evaluate dy
dx .

(i) y = 2x
x2+1

(ii) y = arctan((sinx)2)

(iii) y2 + 3xy + x2 = ex cosx

(iv) y = xx
x

Solution. (i) Use the quotient rule:

dy

dx
=

2(x2 + 1)− (2x)(2x)

(x2 + 1)2
=
−2x2 + 2

(x2 + 1)2
.

(ii) Use the chain rule:

dy

dx
=

1

1 + ((sinx)2)2
((sinx)2)′ =

2(sinx)(cosx)

1 + ((sinx)2)2
=

2 sinx cosx

1 + (sinx)4
.

(iii) Differentiate implicitly:

2y
dy

dx
+

(
3y + 3x

dy

dx

)
+ 2x = ex cosx− ex sinx .

Thus

(2y + 3x)
dy

dx
= ex cosx− ex sinx− 3y − 2x

so

dy

dx
=
ex cosx− ex sinx− 3y − 2x

2y + 3x
.
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(iv) Let g(x) = xx = ex ln x. Then g′(x) = ex ln x(lnx+ x 1
x ) = xx(lnx+ 1). Then

dy

dx
= (xg(x))′

= (eg(x) ln x)′

= (eg(x) ln x)(g(x) lnx)′

= (eg(x) ln x)

(
g′(x) lnx+ g(x)

1

x

)
= xx

x

(
xx(lnx+ 1)(lnx) + xx

1

x

)
.

�

Problem 12. Alexander Coward’s youtube channel has 21 subscribers at time t = 0, and the number of

subscribers grows exponentially with respect to time. At time t = 4, he has 103 subscribers. After how long

will Alexander have 106 subscribers?

Solution. Let y(t) be the number of subscribers at time t. Since y(t) grows exponentially, we have y(t) =

y(0)eCt for some constant C. We’re given that y(0) = 21 and y(4) = 103. Thus 103 = 21e4C , so C =
ln 103

21

4 .

Let t0 be the time at which y(t0) = 106. Then 106 = 21eCt0 implies t0 =
ln 106

21

C =
4 ln 106

21

ln 103
21

. �

Problem 13. Which point on the graph of y = x2 is closest to the point (5,−1)?

Solution. An arbitrary point on the graph y = x2 is of the form (x, x2). The distance between (x, x2) and

(5,−1) is

d(x) =
√

(x− 5)2 + (x2 + 1)2 =
√
x4 + 3x2 − 10x+ 26 .

We have

d′(x) =
1/2√

x4 + 3x2 − 10x+ 26
(4x3 + 6x− 10) =

2x3 + 3x− 5√
x4 + 3x2 − 10x+ 26

.

Thus d′(x) = 0 if and only if 2x3 + 3x − 5 = 0. Since the coefficients of 2x3 + 3x − 5 sum to 0, a root of

2x3 + 3x− 5 is 1. Thus x− 1 divides 2x3 + 3x− 5, and

2x3 + 3x− 5 = (x− 1)(2x2 + 2x+ 5) . (2)

Since 2x2 + 2x+ 5 = x2 + (x+ 1)2 + 4, it is always positive. Thus 2x3 + 3x− 5 has exactly one root, namely

x = 1. Furthermore, by (2), we have 2x3 + 3x− 5 > 0 if x > 1 and 2x3 + 3x− 5 < 0 if x < 1. Thus d′(x) > 0

if x > 1 and d′(x) < 0 if x < 1. Thus x = 1 is a global minimum of d(x). Thus (1, 1) is the point on the

graph of y = x2 which is closest to (5,−1). �

Problem 14. The interior of a bowl is a “conic frustum”, where the top surface is a disk of radius 2 and the

bottom surface is a disk of radius 1 and the height of the cup is 3. A liquid is being poured into the bowl at

a constant rate of 4. How fast is the height of the water increasing when the bowl is full?

Solution. Let h(t), r(t), and V (t) be the height, radius (of the surface), and volume of the water in the bowl

at time t, respectively. The following is the side view of the bowl:
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4

2

2r(t)

3

3

3 + h(t)

h(t)

By similar triangles, we have

2

3
=

2r(t)

3 + h(t)
.

Thus

r(t) =
h(t) + 3

3
.

We have

V (t) =
1

3
(π · (r(t))2)(3 + h(t))− 1

3
(π · (1/2)2)(3)

=
1

3

(
π ·
(
h(t) + 3

3

)2
)

(3 + h(t))− π

4

=
π

27
(h(t) + 3)3 − π

4
.

Thus

V ′(t) =
π

9
(h(t) + 3)2(h′(t)) .

Let t0 be the time at which the bowl is full. Then h(t0) = 3. Since V ′(t) = 4 for all t by assumption, we

have

h′(t0) =
36

π(h(t0) + 3)2
=

36

π · 62
=

1

π
.

�

Problem 15. Showing your work carefully, evaluate the limit

lim
x→0

(1 + sinx)2 − (cosx)2

x2
.

Solution. We have

lim
x→0

(1 + sinx)2 − (cosx)2

x2
= lim
x→0

2(1 + sinx)(cosx)− 2(cosx)(− sinx)

2x

by L’Hospital’s Rule. The second limit does not exist since

lim
x→0+

2(1 + sinx)(cosx)− 2(cosx)(− sinx)

2x
= +∞ (3)
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and

lim
x→0−

2(1 + sinx)(cosx)− 2(cosx)(− sinx)

2x
= −∞ .

(Notice that we cannot apply L’Hospital’s Rule to (3) since it is not an indeterminate form: limx→0+ 2(1 +

sinx)(cosx)− 2(cosx)(− sinx) = 2 while limx→0+ 2x = 0.) Thus the desired limit does not exist. �

Problem 16. (i) Give the precise definition of the definite integral using Riemann sums.

(ii) What’s the difference between a definite integral and an indefinite integral?

(iii) Using the definition in (i), compute
∫ 2

0
x2 dx.

Solution. (i) Let f : [a, b] → R be a function. For each n ∈ N (recall that N is the set of positive

integers), pick a collection of sample points x∗1, . . . , x
∗
n so that x∗i lies in [a + (i − 1) b−an , a + i b−an ].

The definite integral of f from a to b is defined as∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )

(
b− a
n

)
,

provided this limit exists and gives the same value for all possible choices of sample points.

(ii) A definite integral is a number, while an indefinite integral (i.e. antiderivative) is a function.

(iii) Let f(x) = x2, a = 0, and b = 2. For convenience, let’s choose x∗i = a + i b−an for all i, n (we’re

computing the right-hand Riemann sums). We have∫ 2

0

x2 dx = lim
n→∞

n∑
i=1

(
i
2

n

)2
2

n

= lim
n→∞

8

n3

n∑
i=1

i2

= lim
n→∞

8

n3
n(n+ 1)(2n+ 1)

6

= lim
n→∞

8

3
· n+ 1

n
· n+ 1/2

n

=
8

3
.

�

Problem 17. (i) State the Fundamental Theorem of Calculus.

(ii) Let f : R → R be a differentiable function. Prove that if g is an antiderivative of f ′, then there

exists a constant C such that f(x) = g(x) + C for all x.

(iii) Are all continuous functions differentiable?

(iv) Do all continuous functions have antiderivatives?

Solution. (i) Let f be a continuous real-valued function on [a, b]. Let g : [a, b]→ R be defined by

g(x) =

∫ x

a

f(t) dt .

Then g(x) is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x). Furthermore, if F is

any antiderivative of f , then

F (b)− F (a) =

∫ b

a

f(t) dt .

(By letting b vary, this implies, in particular, that F (x)− F (a) =
∫ x
a
f(t) dt for all x ∈ [a, b].)
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(ii) Notice that f and g are functions defined on R. Choose an interval [a, b]. Notice that both f and

g are antiderivatives of f ′. The second part of the FTC states that f(x) − f(a) = g(x) − g(a) for

all x ∈ [a, b]. This implies that f(x)− g(x) = f(a)− g(a) for all x ∈ [a, b]. Let C = f(a)− g(a). If

x 6∈ [a, b], then we can repeat the above argument to any closed interval I = [a′, b′] which contains

[a, b] and x (which will yield the conclusion that f(x)− g(x) = f(a′)− g(a′) for all x ∈ [a′, b′]). Thus

f(x)− g(x) = C for all x ∈ R.

(iii) Not all continuous functions are differentiable. For example, f(x) = |x| is not differentiable at x = 0.

(iv) All continuous functions have antiderivatives, by the first part of FTC: if f is continuous on [a, b],

then the function g(x) =
∫ x
a
f(t) dt is an antiderivative of f .

�

Problem 18. Compute an antiderivative of the following functions.

(i) f(x) = 8x3 + 3x2

(ii) f(x) = ( 5
√
x+ 1)2

(iii) f(x) = x
√

1 + x2

(iv) f(x) = tan(arcsin(x))

(v) f(x) = x3
√
x2+1

Solution. (i) We have ∫
(8x3 + 3x2) dx =

8

4
x4 +

3

3
x3 + C = 2x4 + x3 + C .

(ii) We have ∫
( 5
√
x+ 1)2 dx =

∫
(x2/5 + 2x1/5 + 1) dx =

5

7
x7/5 +

2 · 5
6
x6/5 + x+ C

(iii) Use the substitution u = 1 + x2. Then du
dx = 2x. We have∫

x
√

1 + x2 dx =

∫
1

2

√
u
du

dx
dx

(∗)
=

∫
1

2

√
u du =

1

3
u3/2 + C =

1

3
(1 + x2)3/2 + C

where we have used the Substitution Rule in the step marked (∗).
(iv) Write tan(arcsin(x)) = x√

1−x2
and use the substitution u = 1− x2. Thus∫

tan(arcsin(x)) dx =

∫
x√

1− x2
dx

=

∫ − 1
2√
u

du

dx
dx

(∗)
=

∫ − 1
2√
u
du

= −
√
u+ C

= −
√

1− x2 + C

(v) Write

x3√
x2 + 1

=
x3 + x√
x2 + 1

− x√
x2 + 1

= x
√
x2 + 1− x√

x2 + 1
.

We compute antiderivatives of x
√
x2 + 1 and x√

x2+1
separately. An antiderivative of x

√
x2 + 1 is

1
3 (1 + x2)3/2 +C1 by (iii). We use the same substitution u = 1 + x2 to compute an antiderivative of
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x√
x2+1

. Then du
dx = 2x. We have∫
x√

x2 + 1
dx =

∫
1

2

1√
u

du

dx
dx

(∗)
=

∫
1

2

1√
u
du =

√
u+ C1 =

√
1 + x2 + C2

where we have used the Substitution Rule in the step marked (∗). Hence∫
x3√
x2 + 1

dx =
1

3
(1 + x2)3/2 −

√
1 + x2 + C .

�

Problem 19. (i) Find the volume of the solid obtained by rotating the region {(x, y) : 0 ≤ x ≤ ey, 1 ≤
y ≤ 2} about the y-axis.

(ii) Find the volume of the solid obtained by rotating about the y-axis the region between y =
√
x and

y = x2.

Solution. (i) The intersection of the solid with the plane y = y0 is a circle of radius ey0 . Thus the

infinitesimal cross-section of the solid has volume π(ey0)2dy where dy is the thickness of the cross-

section. Thus the volume of the solid is∫ 2

1

π(ey)2 dy =

∫ 2

1

πe2y dy =
π

2
e2y
∣∣∣2
1

=
π

2
(e4 − e2) .

(ii) The curves y =
√
x and y = x2 intersect at (0, 0) and (1, 1) and they are strictly increasing, so the

region they bound is contained in the box {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The intersection of the

solid with the plane y = y0 is an annulus (a disk with a smaller concentric disk removed from it)

of inner radius y20 and outer radius
√
y0, which has area π(

√
y0)2 − π(y20)2. Thus the volume of the

solid is ∫ 1

0

π(
√
y)2 − π(y2)2 dy =

∫ 1

0

π(y − y4) dy = π

(
1

2
y2 − 1

5
y5
) ∣∣∣1

0
=

3π

10
.

�

Problem 20. Simplify loglog3 9(log4 2).

Solution. We have

loglog3 9(log4 2) = log2(1/2) = −1 .

�


