PRACTICE FINAL/STUDY GUIDE

Write in complete sentences and show all work.

Problem 1. Give the precise meaning of the following statements.

- (i) " $\lim_{x\to a} f(x) = L$ "
- (ii) " $\lim_{x \to a^+} f(x) = L$ "
- (iii) " $\lim_{x\to+\infty} f(x) = L$ "
- (iv) " $\lim_{x\to+\infty} f(x) = -\infty$ "
- (v) " $\lim_{x\to a^-} f(x) = -\infty$ "

Problem 2. Prove the following statements using the limit definitions.

- $\begin{array}{ll} \text{(i)} & \text{``lim}_{x\to 0}\,\frac{1}{x^2+1}=1\text{''}\\ \text{(ii)} & \text{``lim}_{x\to 1}\,\frac{x^2-4x+5}{x+4}=\frac{2}{5}\text{''}\\ \text{(iii)} & \text{``lim}_{x\to +\infty}\,\frac{e^x}{e^x+x}=1\text{''} \end{array}$

(i) State and prove the Squeeze Theorem. Problem 3.

(ii) Use the Squeeze Theorem to compute

$$\lim_{x\to 0} x^2 (\sin x)^4 (\cos x)^3 .$$

Justify your answer carefully.

Problem 4. Let f and g be functions, and suppose $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = K$. Prove that $\lim_{x \to a} (f(x) + g(x)) = L + K.$

Problem 5. Evaluate

$$\lim_{x \to 0} \left(\frac{1}{\sqrt{1+x}} - \frac{1}{1+x} \right)^2$$

You should show your reasoning carefully; however you may use any of the limit laws without explanation or proof.

Problem 6. Indicate "true" if the statement is always true; indicate "false" if there exists a counterexample.

- (i) "If $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a^+} f(x) = L$."
- (ii) "If $\lim_{x\to a^+} f(x) = L$, then $\lim_{x\to a} f(x) = L$."
- (iii) "If $\lim_{x\to\infty} f(x) = 0$, then $\lim_{x\to\infty} f(x)e^x = 0$."
- (iv) "If $\lim_{x\to a} (f(x))^2 = 1$, then $\lim_{x\to a} f(x) = 1$."

(i) Give the precise meaning of the statement "f is continuous at x = a".

(ii) Using the definition in (i), show that f(x) = x is continuous at x = 1.

Problem 8. (i) State and prove the Intermediate Value Theorem.

(ii) Prove that $e^x \sin x = 40$ has a solution in $(0, \infty)$.

(i) Give the precise meaning of the statement "f is differentiable at x = a". Problem 9.

(ii) Using the definition in (i), show that f(x) = x is differentiable at x = 1.

Problem 10. (i) State Rolle's Theorem.

- (ii) State the Mean Value Theorem.
- (iii) Prove the Mean Value Theorem using Rolle's Theorem.

Problem 11. In each of the following cases, evaluate $\frac{dy}{dx}$.

- (i) $y = \frac{2x}{x^2 + 1}$
- (ii) $y = \arctan((\sin x)^2)$
- (iii) $y^2 + 3xy + x^2 = e^x \cos x$
- (iv) $y = x^{x^x}$

Problem 12. Alexander Coward's youtube channel has 21 subscribers at time t=0, and the number of subscribers grows exponentially with respect to time. At time t = 4, he has 103 subscribers. After how long will Alexander have 10⁶ subscribers?

Problem 13. Which point on the graph of $y = x^2$ is closest to the point (5, -1)?

Problem 14. The interior of a bowl is a "conic frustum", where the top surface is a disk of radius 2 and the bottom surface is a disk of radius 1 and the height of the cup is 3. A liquid is being poured into the bowl at a constant rate of 4. How fast is the height of the water increasing when the bowl is full?

Problem 15. Showing your work carefully, evaluate the limit

$$\lim_{x \to 0} \frac{(1 + \sin x)^2 - (\cos x)^2}{x^2} \ .$$

Problem 16. (i) Give the precise definition of the definite integral using Riemann sums.

- (ii) What's the difference between a definite integral and an indefinite integral?
- (iii) Using the definition in (i), compute $\int_0^2 x^2 dx$.

Problem 17. (i) State the Fundamental Theorem of Calculus.

- (ii) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that if g is an antiderivative of f', then there exists a constant C such that f(x) = g(x) + C for all x.
- (iii) Are all continuous functions differentiable?
- (iv) Do all continuous functions have antiderivatives?

Problem 18. Compute an antiderivative of the following functions.

- (i) $f(x) = 8x^3 + 3x^2$
- (ii) $f(x) = (\sqrt[5]{x} + 1)^2$
- (iii) $f(x) = x\sqrt{1+x^2}$
- (iv) $f(x) = \tan(\arcsin(x))$ (v) $f(x) = \frac{x^3}{\sqrt{x^2+1}}$

(i) Find the volume of the solid obtained by rotating the region $\{(x,y):0\leq x\leq e^y,1\leq$ Problem 19. $y \leq 2$ about the y-axis.

(ii) Find the volume of the solid obtained by rotating about the y-axis the region between $y = \sqrt{x}$ and $y=x^2$.

Problem 20. Simplify $\log_{\log_3 9}(\log_4 2)$.