MATH 1A MIDTERM 2 (8 AM VERSION) SOLUTION

(Last edited November 15, 2013 at 8:38pm.)
Problem 1. (i) State Rolle's Theorem.
(ii) State the Mean Value Theorem.
(iii) Prove the Mean Value Theorem. You may assume Rolle's Theorem.

Solution. (i) Let f be a function continuous on $[a, b]$ and differentiable on (a, b). Suppose $f(a)=f(b)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
(ii) Let f be a function continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(iii) Let f be a real-valued function that is continuous on $[a, b]$ and differentiable on (a, b). Define $g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$. Note that g is a real-valued function that is continuous on $[a, b]$ and differentiable on (a, b). Note that $g(a)=g(b)$. Hence, by Rolle's Theorem, there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. But $g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$. Hence $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Problem 2. In each of the following cases, evaluate $\frac{d y}{d x}$.
(i) $y=\sin (x) \ln |x|$.
(ii) $y=\frac{x^{2}}{\cos x}$
(iii) $y=\left(10 x^{4}-5\right)^{20}$
(iv) $y=\sin (x \sin x)$
(v) $y=\tan \left(x^{2}\right) e^{x^{3}}$
(vi) $y^{4} x-3 y=e^{2 x}$ (you should leave your answer in terms of y and x)

Solution. (i) Use the product rule:

$$
\frac{d y}{d x}=\cos (x) \ln |x|+\sin (x) \frac{1}{x} .
$$

(A common mistake was to say that $\frac{d}{d x}(\ln |x|)=\frac{1}{|x|}$ instead of $\frac{1}{x}$. Notice that the domain of definition for the function $\sin (x) \ln |x|$ is $(-\infty, 0) \cup(0, \infty)$, so $\cos (x) \ln |x|+\sin (x) \frac{1}{x}$ and $\cos (x) \ln |x|+\sin (x) \frac{1}{|x|}$ are actually different functions on $(-\infty, 0) \cup(0, \infty)$. A sanity check that you can use is that the derivative of an odd function should be even, and vice versa.)
(ii) Use the quotient rule:

$$
\frac{d y}{d x}=\frac{(\cos x)(2 x)-(-\sin x)\left(x^{2}\right)}{(\cos x)^{2}} .
$$

(iii) Use the chain rule and the power rule:

$$
\frac{d y}{d x}=20\left(10 x^{4}-5\right)^{19}\left(40 x^{3}\right) .
$$

(iv) Use the chain rule and the product rule:

$$
\frac{d y}{d x}=\cos (x \sin x) \cdot(\sin x+x \cos x)
$$

(v) Use the product and chain rules:

$$
\frac{d y}{d x}=\sec ^{2}\left(x^{2}\right)(2 x) e^{x^{3}}+\tan \left(x^{2}\right) e^{x^{3}}\left(3 x^{2}\right)
$$

(vi) Differentiate implicitly:

$$
\begin{equation*}
4 y^{3} \frac{d y}{d x} x+y^{4}-3 \frac{d y}{d x}=2 e^{2 x} \tag{1}
\end{equation*}
$$

which implies

$$
\frac{d y}{d x} \cdot\left(4 y^{3} x-3\right)=2 e^{2 x}-y^{4}
$$

So

$$
\frac{d y}{d x}=\frac{2 e^{2 x}-y^{4}}{4 y^{3} x-3}
$$

(A common mistake was to forget the " x " hiding behind the " $\frac{d y}{d x}$ " in the first term of (1), so that the final answer became $\frac{2 e^{2 x}-y^{4}}{4 y^{3}-3}$ instead.)

Problem 3. Showing your working carefully, calculate $\frac{d y}{d x}$ when $y=x^{e^{x}}$. Give your answer in terms of just x.

Solution. We have $y=x^{e^{x}}$. Then $\ln (y(x))=\ln \left(x^{e^{x}}\right)=e^{x} \ln x$. Differentiating both sides with respect to x gives $\frac{1}{y} \frac{d y}{d x}=e^{x} \ln x+e^{x} \frac{1}{x}$. Thus

$$
\frac{d y}{d x}=x^{e^{x}}\left(e^{x} \ln x+e^{x} \frac{1}{x}\right)
$$

Problem 4. I start with 5 ties to wear on special occasions. My hair-dresser tells me that my separation anxiety is because I don't have enough nice clothes. Taking the advice to heart, I start shopping and my tie collection starts to grow exponentially. After 3 days I have 12 ties. How long will it be before I have 100 ties? You do not need to simplify or evaluate your answer.

Solution. We have $T(t)=T(0) e^{k t}$ where k is constant. We know $T(0)=3$. So $T(t)=3 e^{k t}$. Also, $T(3)=12$. Hence $12=T(3)=3 e^{k 3}$, which implies $k=\frac{1}{3} \ln 4$. So $T(t)=3 e^{\left(\frac{1}{3} \ln 4\right) t}$. Let t_{0} be the time at which I have 100 ties, i.e. $T\left(t_{0}\right)=100$. Then $100=T\left(t_{0}\right)=3 e^{\left(\frac{1}{3} \ln 4\right) t_{0}}$. Solving for t_{0} gives $t_{0}=\frac{3 \ln \left(\frac{100}{3}\right)}{\ln 4}$ days.

Problem 5. Which point on the graph of $y=\sqrt{x}$ is closest to the point $(4,0)$?

Solution. Let $D(x)$ be the distance between $(4,0)$ and (x, \sqrt{x}). We have $(D(x))^{2}=(x-4)^{2}+(\sqrt{x}-0)^{2}=$ $(x-4)^{2}+x$. Differentiating with respect to x gives

$$
2 D(x) D^{\prime}(x)=2(x-4)+1
$$

so

$$
D^{\prime}(x)=\frac{2(x-4)+1}{\sqrt{(x-4)^{2}+x}}
$$

Suppose that $D(x)$ takes a minimum at $x=x_{0}$. Then $D^{\prime}\left(x_{0}\right)=0$. This requires $2\left(x_{0}-4\right)+1=0$, or $x_{0}=\frac{7}{2}$. We have

$$
\begin{aligned}
D^{\prime \prime}(x) & =\frac{2 \sqrt{(x-4)^{2}+x}-(2(x-4)+1) \frac{1}{2 \sqrt{(x-4)^{2}+x}}(2(x-4)+1)}{\left(\sqrt{(x-4)^{2}+x}\right)^{2}} \\
& =\frac{4\left((x-4)^{2}+x\right)-(2(x-4)+1)^{2}}{2\left(\sqrt{(x-4)^{2}+x}\right)^{3 / 2}} \\
& =\frac{17}{2\left(\sqrt{(x-4)^{2}+x}\right)^{3 / 2}}
\end{aligned}
$$

which is positive at $x_{0}=\frac{7}{2}$, so by the Second Derivative Test (page 295) we have that $D\left(x_{0}\right)$ is a local minimum. It's a global minimum since $D^{\prime}(x)>0$ on $\left(\frac{7}{2}, \infty\right)$ and $D^{\prime}(x)<0$ on $\left(0, \frac{7}{2}\right)$. So the closest point is $\left(\frac{7}{2}, \sqrt{\frac{7}{2}}\right)$.

Problem 6. A salt crystal is growing in a super-saturated solution of salt. It is a perfect cube and its length, width and height are all growing at a rate of 1 mm per day. What is the rate of increase of the volume of the cube when its length, width and height all equal 10 mm ?

Solution. Let $V(t)$ and $w(t)$ be the volume and width of the cube at time t, respectively. We have $V(t)=$ $(w(t))^{3}$. So $V^{\prime}(t)=3(w(t))^{2} w^{\prime}(t)$, and $w^{\prime}(t)=1$ for all t. So when $w(t)=10$, we have $V^{\prime}(t)=3\left(10^{2}\right)(1)=$ $300 \mathrm{~mm}^{3}$ /day.

Problem 7. Showing your working carefully, evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{4 x^{2}}
$$

If you use a rule to change the limit, then you should name that rule each time you use it.
Solution. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{4 x^{2}} & =\lim _{x \rightarrow 0} \frac{2(\sin x)(\cos x)}{8 x} \quad \text { by L'Hospital's Rule } \\
& =\lim _{x \rightarrow 0} \frac{2 \cos ^{2}(x)-2 \sin ^{2}(x)}{8} \quad \text { by L'Hospital's Rule } \\
& =\frac{1}{4}
\end{aligned}
$$

Problem 8. What is $9^{\log _{49} 7}$?
Solution. We have $\log _{49} 7=\frac{\ln 7}{\ln 49}=\frac{\ln 7}{2 \ln 7}=\frac{1}{2}$ so $9^{\log _{49} 7}=9^{1 / 2}= \pm 3$.

