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Proposition 1. Let C be a constant. Suppose there exists a differentiable function
y : R→ R such that

dy

dt
= Cy . (1)

Then y(t) = y(0)eCt.1

Proof. We’ll prove that y(t) = y(0)eCt. We have

dy

dt
− Cy = 0 . (2)

Multiplying (2) by e−Ct gives2

e−Ct · dy
dt
− Ce−Cty = 0 . (3)

Note that (applying the product rule backwards)

e−Ct · dy
dt
− Ce−Cty =

d

dt
(ye−Ct) . (4)

Combining (3) and (4), we have that ye−Ct is a function whose derivative is 0
everywhere. Then Lemma 2 implies that ye−Ct is a constant.3 Thus there exists a
constant k such that y(t) · e−Ct = k for all t. Multiplying both sides by eCt gives

y(t) = keCt .

Now we solve for k: substituting t = 0 into (5) gives y(0) = keC·0, which means
k = y(0). Thus

y(t) = y(0)eCt . (5)

�
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1Notice that (1) is an equality of functions: the LHS is the derivative of y (namely, the value

of the function dy
dt

at t is the number limh→0
y(t+h)−y(h)

h
), and the RHS is a constant multiple

of y.
2This trick may seem unmotivated. Why do we do this? This works because multiplying by

e−Ct puts the LHS of (3) into a form to which we can apply the product rule backwards. This is

called the “integrating factor” trick. You might ask, “can we solve all differential equations using
this method?” The answer is “in general, no.” For Math 1A, you’ll only have to know how to
solve (1), which has a very special, simple form. Take a course on differential equations if you’re
interested in learning how to solve other kinds of differential equations.

3This makes sense intuitively (the slope of the function is zero everywhere) but we should
prove it.
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Another argument. You may have seen a trick called “separation of variables” be-
fore. We rearrange (1) to get

1

y
· dy
dt

= C .

Fix two real numbers a < b; then we have4∫ b

a

1

y
· dy
dt

dt =

∫ b

a

C dt . (6)

By the Substitution Rule (substituting u = y), we have∫ y(b)

y(a)

1

u
du =

∫ b

a

1

y
· dy
dt

dt . (7)

Combining (6) and (7) gives

ln(y(b))− ln(y(a)) = C(b− a)

so

y(b) = y(a)eC(b−a) .

In particular, this is true when b = t, a variable, and a = 0, so we have

y(t) = y(0)eCt .

�

Lemma 2. Let f : [a, b] → R be a function which is continuous on [a, b] and
differentiable on (a, b). Suppose that f ′(x) = 0 for all x ∈ (a, b). Then f is
constant, i.e. f(x) = f(y) for any x, y ∈ [a, b].

Proof. Let x, y ∈ [a, b] be two real numbers such that x < y. Note that f is
continuous on [x, y] and differentiable on (x, y). Thus, by the Mean Value Theorem,

there exists c ∈ (x, y) such that f ′(c) = f(y)−f(x)
y−x . Since f ′(c) = 0, we must have

f(y)− f(x) = 0, or f(x) = f(y). �

4This says that the area under the graph of the function 1
y
· dy
dt

between t = a and t = b is the

same as the area under the graph of the constant function C between t = a and t = b.


