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Uncertainty in Optimization

Decisions must be taken before the facts are all in

@ A bridge must be built to withstand floods, wind storms or
earthquakes

@ A portfolio must be purchased with incomplete knowledge of
how it will perform

@ A product’s design constraints must be viewed in terms of
“safety margins”

What are the consequences for optimization?
How may this affect the way problems are formulated and solved?

How can “risk” properly be taken into account, with attention paid
to the attitudes of the optimizer?



The Fundamental Difficulty Caused by Uncertainty

A standard form of optimization problem without uncertainty:

minimize co(x) over all x € S satisfying ¢i(x) <0, i=1,...,m J

Incorporation of future states w € Q in the model:

Choosing x € S no longer fixes numerical values ¢;j(x), but only ’

fixes functions on Q:  ¢;(x) :w— ci(x,w), i=0,1,....,m

Optimization objectives and constraints must be reconstrued in
terms of such function, but how? There is no universal answer. ..

Adaptations to attitudes about “risk”?



Example: Linear Programming Context

Problem without uncertainty:
minimize apixi + -+ aonxn — bo over x = (xq,...,%x,) €S
subject to ajix1 + - ajppxn — by <0 fori=1,...,m,
where S = {x ‘ x1 > 0,...,x, > 0 & other conditions?}

Effect of uncertainty:

Portfolio illustration with financial instruments j =1,...,n

rj(w) = rate of return, x; = weight in the portfolio

portfolio rate of return = xyri(w) + - - - + Xpra(w)
Constraints: x € S = {(xl,...,x,,) ‘xj >0, X1+ +Xx,= 1}
Uncertain ingredients to incorporate in optimization model:

(conversion to “cost” orientation for minimization)

(shortfall below benchmark, desired outcome < 0)




Probabilistic Framework — Random Variables

Future state space Q2 modeled with a probability structure:
(Q, A, P), P =probability measure

Functions X : Q — R interpreted then as random variables:
cumulative distribution function Fx : (—oo, 00) — [0, 1]

expected value EX = mean value =p(X)
variance 02(X) = E[(X — u(X))?], standard deviation o(X)

Technical restriction imposed:
Corresponding convergence criterion as k = 1,2, ... 00:

The functions ¢ ;(x) : w — c¢j(x,w) are placed now in this picture:
choosing x € S yields random variables ¢ y(x), c1(x),..., ¢ n(x)



No-Distinction Principle for Objectives and Constraints

Is there an intrinsic reason why uncertainty/risk in an objective
should be treated differently than uncertainty/risk in a constraint?

Given an optimization problem in standard format:

,m

minimize co(x) over x € S with ¢i(x) <0, i=1,...

augment x = (xi, ..., xp) by another variable x,,1, and in terms of

pass equivalently to the reformulated problem:

minimize &(X) over X € S with &(X) <0, i=1,...,mm+1

Uncertainty in ¢, c1, ..., cm will not affect the objective with &.
It will only affect the constraints with ¢&i,...,&n, Emt1-



Some Traditional Approaches

Aim: recapturing optimization in the face of ¢ ;(x):w — ci(x,w)

Approach 1: guessing the future

e identify @ € Q as the "best estimate” of the future
e minimize over x € S:
co(x,@) subject to ¢i(x,0) <0, i=1,....,m

Approach 2: worst-case analysis, “robust” optimization

e focus on the worst that might come out of each ¢ ;(x):
e minimize over x € S:

supco(x,w) subject to supci(x,w) <0, i=1,...,m
we we




Approach 3: relying on means/expected values

e focus on average behavior of the random variables ¢ ;(x)
e minimize over x € S:
p(co(x)) = Eyco(x,w) subject to
p(ci(x)) = Euci(x,w) <0, i=1,....m

Approach 4: safety margins in units of standard deviation

e improve on expectations by bringing standard deviations into
consideration
® minimize over x € S:
p(co(x)) + Xoo(cp(x)) subject to
(e i(x)) +Xio(c;(x))<0,i=1,....m

The idea here: find the lowest z such that, for some x € S,
co(x) =z, c1(x),..., € m(x) will be <0 except in Aj-upper tails



Approach 5: specifying probabilities of compliance

e choose probability levels «; € (0,1) for i =0,1,..., m
e find lowest z such that, for some x € S, one has

P{co(x) <z} >ap, P{ci(x)<0}>aqjfori=1,...,m

Example: with ap = 0.5, the median of ¢ ;(x) would be minimized

Additional modeling ideas:
e Staircased variables: c ;(x) propagated to ¢ ¥(x) = ¢ ;(x) — d¥
for a series of thresholds d,-k, k=1,....r

e Expected penalty expressions like E[1(c¢(x))]
e Stochastic programming, dynamic programming



Quantification of Risk

How can the “risk” be measured in a random variable X7
orientation: X(w) stands for a “cost” or loss

e Idea 1: assess the ‘“risk” in X in terms of how uncertain X is:
— measures D of deviation from constancy
e |dea 2: capture the "risk” in X by a numerical surrogate for
overall cost/loss: — measures R of potential loss

A General Approach to Uncertainty in Optimization

e choose measures R; of the risk of potential loss,
e define the functions ¢; on R" by ¢i(x) = Ri(c;(x)), and then
e minimize Cp(x) over x € S subject to Gi(x) <0, i=1,...,m.




Basic Guidelines

Definition of coherency

‘R is a coherent measure of risk in the basic sense if

(R1) R(C) = C for all constants C

(R2) R((1— X)X+ X)) < (1= NR(X)+ A\R(X")

for A € (0,1)

(R3) R(X) < R(X’) when X < X'

(R4) R(X) < ¢ when X, — X with R(Xx) < ¢

(R5) R(AX) = AR(X) for A >0
‘R is a coherent measure of risk in the extended sense if it satisfies
(R1)—(R4), not necessarily (R5)

(R1)+(R2) = R(X+ C) = R(X)+ C for all X and constants C
(R2)+(R5) = R(X + X') < R(X) + R(X')



Associated Criteria for Risk Acceptability

For a “cost” random variable X, to what extent should outcomes
X(w) > 0, in constrast to outcomes X(w) < 0, be tolerated?

Preference-based definition of acceptance

Given a choice of a risk measure R:
the risk in X is deemed acceptable when R(X) <0

Notes:
from (R1): R(X)<c <= R(X-¢)<0
from (R3): R(X) <supX for all X,
so X is always acceptable when sup X <0



Consequences of Coherency for Optimization

For i=0,1,...,m let R; be a coherent measure of risk in the
basic sense, and consider the reconstituted problem:
minimize Co(x) over x € S with ¢;(x) <O0fori=1,...,m

Key properties

(a) (preservation of convexity) If ¢j(x,w) is convex with
respect to x, then the same is true for ¢;(x)

(b) (preservation of certainty) If ¢j(x,w) is a value ¢;(x)
independent of w, then ¢;(x) is that same value

(c) (insensitivity to scaling) The optimization problem is
unaffected by rescaling of the units of the ¢;'s.




Coherency or Its Lack in Traditional Approaches

The case of Approach 1: guessing the future
Ri(X) = X(®) for a choice of & € Q with prob > 0
R is coherent—but open to criticism

The case of Approach 2: worst case analysis
Ri(X) =sup X
‘R is coherent—but very conservative

The case of Approach 3: relying on expectations
Ri(X) = u(X) = EX
R; is coherent—but perhaps too “feeble”




The case of Approach 4: standard deviation units as safety margins

Ri(X) = u(X) + Aio(X) for some A\; >0
R is not coherent: the monotonicity axiom (R3) fails!
— ¢ ;j(x) could be deemed more costly than ¢ ;(x’)
even though ¢;(x,w) < ¢i(x’,w) with probability 1

The case of Approach 5: specifying probabilities of compliance

Ri(X) = q,.(X) for some o; € (0,1), where
q,;(X) = aj-quantile in the distribution of X

R is not coherent: the convexity axiom (R2) fails!
— for portfolios, this could run counter to “diversification”

What further alternatives, remedies?



Quantiles and Conditional Value-at-Risk

O(—;ﬂumf‘me

O RE CERES

a-quantile for X: go(X) = min {z| Fx(2) > o}

value-at-risk: VaRy(X) same as gq(X)

conditional value-at-risk: CVaRa( ) = a- taiI expectation of X
= [2VaRg(X)dB > VaRa(X)

THEOREM R(X) = CVaR,(X) is a coherent measure of risk!J




CVaR Versus VaR in Modeling

Approach 5 recast: specifying probabilities of compliance

e focus on value-at-risk for the random variables ¢ ;(x)
e minimize VaR,(co(x)) over x € S subject to
VaRq,(ci(x)) <0, i=1,...,m

Approach 6: safeguarding with conditional value-at-risk

e conditional value-at-risk instead of value-at-risk for each ¢ ;(x)
e minimize CVaR,,(cy(x)) over x € S subject to
CVaR,,(ci(x))<0,i=1,...,m

extreme cases: ‘“a; = 0" ~ expectation, “a; = 1" ~ supremum



Some Elementary Portfolio Examples

Sz{x:(xl,...,x,,)}XJZO, x1—|—---—|—x,,:1}

rate of return of x-portfolio:  r(x) = —[xirq + -+ xor ]

col) = —r(x), e1()=g —r(x)

Problems 1(a)(b)(c): expectation objective, CVaR constraints

(a) minimize E[co(x)] over x € S
(b) minimize E[cy(x)] over x € S subject to CVaRgs(c(x)) <0
(b) minimize E[cy(x)] over x € S subject to CVaRgo(c1(x)) <0

Problems 2(a)(b)(c): CVaR objectives, no benchmark constraints

(a) minimize E[c(x)] over x € S
(b) minimize CVaRgg(co(x)) over x € S
(c) minimize CVaRg g(co(x)) over x € S




Portfolio Rate-of-Loss Contours, Problems 1(a)(b)(c)

Solutions computed with Portfolio Safeguard software, available
for evaluation from American Optimal Decisions

Results for Problem 1(a)

min E[Loss] s.t. budget, nonnegativity; solution=(0, 0, 0, 1)
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Portfolio Rate-of-Loss Contours, Problems 2(a)(b)(c)

Solutions computed with Portfolio Safeguard software, available
for evaluation from American Optimal Decisions

Results for Problem 2(a), same as Problem 1(a)

min E[Loss] s.t. budget, nonnegativity; solution=(0, 0, 0, 1)

Percertage

Solution vector: the portfolio weights for four different stocks



Results for Problems 2(b) and 2(c)
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Minimization Formula for VaR and CVaR

— mi 1 —
CVaR,(X) = rcnelg{(: + 1_&E[max{O,X C}}}
VaR,(X) = lowest C in the interval giving the min

Application to CVaR optimization: convert a problem like
minimize CVaR,(c o(x)) over x € S subject to
CVaR,,(ci(x))<0,i=1,...,m
into a problem for x € S and auxiliary variables Cp, (1, ..., Cy:

minimize Co + [max{O,go(x) — CO}} while requiring

0

C;—I—l%ai [max{O,g;(X)—Ci}} <0, i=1,...,m

Important case: this converts to linear programming when
(1) each cj(x,w) depends linearly on x,
(2) the future state space Q is finite



Further Modeling Possibilities

Coherency-preserving combinations of risk measures

(a) If Ry,..., R, are coherent and A\; > 0,...,\, > 0 with
A1+ -+ A =1, then
R(X) = MR1(X) + -+ - + AR (X) is coherent
(b) If Ri,..., R, are coherent, then

R(X) = max{Rl(X), . ,R,(X)} is coherent

Approach 7: safeguarding with CVaR mixtures

The CVaR approach already considered can be extended by
replacing single CVaR expressions with weighted combinations




Risk Measures From Subdividing the Future

L, Wi
Ny S \\W 7'!
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R(X) = A1 sup X(w)---+ Ar sup X(w) is coherent
weM we,

Approach 8: distributed worst-case analysis

Extend the ordinary worst-case model

minimize sup ¢p(x,w) subject to sup ¢i(x,w) <0,i=1,....,m
we we
by distributing each supremum over subregions of 2, as above




Safety Margins Reconsidered

Traditional approach to an expected cost EX being safely below 0:
EX + Ao(X) <0 for some A > 0 scaling the “safety”

Can the coherency be restored if o(X) is replaced by some D(X)?

General deviation measures for quantifying uncertainty

D is a measure of deviation (in the basic sense) if
(D1) D(X) =0 for X = C constant, D(X) > 0 otherwise
(D2) D((1 - X)X +AX') < (1-A)D(X)+ AD(X')
for A € (0,1)
(D3) D(X) < ¢ when Xi — X with D(Xk) < ¢
(D4) D(AX) = AD(X) for A >0
It is a coherent measure of deviation if it also satisfies
(D5) D(X) < supX — EX for all X




Risk Measures Paired With Deviation Measures

R is a loss-averse measure of risk if it satisfies the axioms for
coherency, except perhaps (R3) (monotonicity), and
(R6) R(X) > EX for all nonconstant X

THEOREM A one-to-one correspondence D < R between
deviation measures D and loss-averse measures R is furnished by
R(X) = EX + D(X), D(X) = R(X — EX)

and moreover R is coherent <= D is coherent

Approach 9: safety margins with coherency

e replace standard deviation by coherent deviation measures D;
e minimize over x € S:
E[co(x)] + Mo Do(co(x)) subject to
Elc;(x)]+AiDi(ci(x)) <0,i=1,...,m




Risk Envelope Characterization of Coherency

A subset Q of £? is a coherent risk envelope is it is nonempty,
closed and convex,and Q€ Q9 — Q>0 EQ=1

Interpretation: Any such Q is the “density” relative to the
underlying probability measure P on Q of an alternative
probability measure P’ on Q :  Ep/[X] = E[XQ]

THEOREM: There is a one-to-one correspondence R « Q
between coherent measures of risk R (in the basic sense) and
coherent risk envelopes @, which is furnished by the relations

R(X) = glépg E[XQ], Q = {Q| E[XQ] < R(X) for all X}

Some examples: R(X)=EX < Q=1{1}
R(X)=supX < Q= {all Q> 0with EQ =1}
R(X) = CVaRq(X) < Q= {all Q> 0with Q<a!, EQ=1}



