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Abstract

The progressive decoupling algorithm solves problems of optimization by iteratively suppressing
complications coming from linear linkage relations. Here its formulation is significantly extended
and a sharper theory of convergence is provided. Minimization steps no longer have to be executed
exactly, and proximal terms in broadened form, potentially for numerical preconditioning, can
vary from one interation to the next. Linear convergence, for which no results were previously
available, is tied precisely to a condition of metric subregularity at the solution, with its rate given
by a formula based on the modulus of that property. It is established that, for problems with
piecewise linear-quadratic objectives, linear convergence is guaranteed, and that for convex general
objectives the lack of it is, in a sense, rare. The methodology is shown to be extendable also
to problem decomposition with nonconvex objectives, but with shortcomings so far in practical
implementability.

Keywords: convex optimization, nonconvex optimization, linkage problems, progressive
decoupling, problem decomposition, linear convergence, metric subregularity, variational
sufficiency, variable-metric prox-terms.

Version of 21 July 2025

1University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350;
E-mail: rtr@uw.edu, URL: sites.math.washington.edu/∼rtr/mypage.html

1



1 Introduction

There’s a long story to ideas for solving a difficult problem of optimization by solving an associated
sequence of simpler problems. Different approaches typically focus on exploiting different kinds of
problem structure. Our focus here is on linkage problems of the form

(P) minimize φ(z) subject to z ∈ S ⊂ H,

where H is a Euclidean space (finite-dimensional Hilbert space), S is a subspace of H, and φ is an
extended-real-valued function on H that is closed (lower semicontinuous) and proper in not taking on
−∞ and having the set

domφ = { z ∈ H |φ(z) <∞}

be nonempty. The constraint z ∈ domφ is implicit in (P), but kept in the background. The thinking
is that minimization subject only to the implicit constraint would relatively easy, but there are linear
relationships beyond that which are vital to maintain, yet seriously get in the way. Those relationships
are posed by specifying S.2 The hope is to find procedures for solving (P) in which, iteratively, some
substitute for φ is minimized in z without minding whether or not z belongs to S.

To assist in such a procedure, the complementary subspace S⊥ orthogonal to S can be brought in
together with the mappings

P = projection onto S, P⊥ = I − P = projection onto S⊥.

Subgradients of φ can be utilized and have a critical role from the start in furnishing the first-order
optimality condition

z̄ ∈ S, w̄ ∈ S⊥, w̄ ∈ ∂φ(z̄), or (z̄, w̄) ∈ (S × S⊥) ∩ gph ∂φ. (1.1)

In the general framework of variational analysis [16], the existence of w̄ satisfing (1.1) in tandem with
z̄ is necessary, under a constraint condition, for z̄ to be a local minimizer in (P); then (1.1) corresponds
to 0 being a subgradient of the sum of φ and the indicator of S.

When φ is convex, which is assumed from now on in this section and the next two, but will be
relaxed later, in Section 4, the subgradients in (1.1) are those of convex analysis. Duality provides
powerful support in pairing (P) with the dual linkage problem

(D) maximize −φ∗(w) subject to w ∈ S⊥ ⊂ H

for the convex function φ∗ conjugate to φ.3 Because

w ∈ ∂φ(z) ⇐⇒ z ∈ ∂φ∗(w), (1.2)

the first-order optimality condition (1.1) for (P) is simultaneously the first-order optimality condition
for (D). This joint condition is always sufficient for z̄ to solve (P) and w̄ to solve (D) and it guarantees
that the minimum value of the objective in (P) equals the maximum value of the objective in (D).
It is moreover necessary under constraint qualifications such as the nonemptiness of S ∩ ri domφ and
S⊥ ∩ ri domφ∗. Thus, there is no harm in taking for granted in what follows the nonemptiness of

Z = { all solutions z̄ to (P)}, W = { all solutions w̄ to (D)}, with
Z ×W = { all (z̄, w̄) that satisfy the subgradient condition (1.1)}. (1.3)

2This takes the linear relations to be homogeneous, but that can always be arranged by a shift in variables.
3The duality fits as a case of [16, 11.41]. The symmetry in this scheme, through having S⊥⊥ = S and φ∗∗ = φ, is a

big incentive for posing the linkages in (P) as given by a subspace rather than a general affine set.
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In this setting with subgradients of convex analysis, it’s easy to see from (1.1) that a solution
algorithm for (P) of the kind envisioned ought to be possible. Having w̄ ∈ ∂φ(z̄) corresponds to
having 0 ∈ ∂φ̄(z̄) for φ̄ = φ(z) − ⟨w̄, x⟩, and that’s equivalent to z̄ minimizing φ̄ over H. Thus, a
minimizer of φ on S is, in principle at least, obtainable by minimizing φ̄ with no attention paid to S.
Progressive decoupling, as a way of implementing this iteratively with tilts terms that approximate
the ideal w̄ tilt, was first proposed in [8].4

Progressive Decoupling Algorithm PDA0 (original version for convex optimization [8]). From
any initial z0 ∈ S and w0 ∈ S⊥, generate sequences of vectors zk ∈ S and wk ∈ S⊥ by

(a0) ẑk+1 = argmin φk for φk(z) = φ(z)− ⟨wk, z⟩+ r
2∥z − z

k∥2,
(b0) zk+1 = P ẑk+1, wk+1 = wk − rP⊥ẑk+1.

Note that ẑk+1 is uniquely determined in the global minimization in step (a0) because the proximal
term makes φk be strongly convex. The theory for PDA0 in [8] established that (zk, wk) must converge
to some particular pair (z̄, w̄) ∈ Z ×W even if there are others. It was unable, however, to establish
conditions for the convergence to be linear, or even to confirm convergence when r may replaced by an
adjustable sequence of proximal parameter values rk. Furthermore, the exactness of the minimization
in step (a0) couldn’t be relaxed.

The reason for these shortcomings in [8] was that the engine for this procedure is the proximal
point algorithm, PPA, but the application is inherently delicate. The proximal point theory avaliable
from [5] at the time of [8] was inadequate for coping with some of the key challengers. For instance,
replacing r by rk amounted, in the delicate underlying circumstances, to changing from one Euclidean
space to another in each iteration. It was hard to see how to make sense of that.

Subsequent work on extending and refining the proximal point algorithm itself has opened a path
for moving forward. A variable-metric version was devised in [11] that could be implemented with
stopping criteria for inexactness that mimicked those originally in [5]. It tightly tied Q-linear conver-
gence to a property of metric subregularity at the limit pair (z̄, w̄) which holds “almost always” with
respect to canonical perturbation parameters in the problem. The progressive decoupling algorithm of
[8] was adapted to these proximal point advances in [13, Section 4], but in only in monotone mapping
mode. Here the improvements are worked out in optimization mode to get an algorithm with many
improvements over PDA0. It accepts inexact minimization in the iteration subproblems, allows far
more general proximal terms than just r

2∥z − z
k∥2, and is supported by a much sharper theory of

convergence.

Progressive Decoupling Algorithm PDA (improved version for convex optimization). Sequences
of vectors zk ∈ S and wk ∈ S⊥ are generated from any z0 ∈ S and w0 ∈ S⊥ by steps of the form

(a) ẑk+1 ≈ argmin φk for φk(z) = φ(z)− ⟨wk, z⟩+ 1
2∥z − z

k∥2Jk ,
(b) zk+1 = P ẑk+1, wk+1 = wk − Jk(P⊥ẑk+1).

Here “≈” refers to inexact minimization guided by stopping criteria, the details of which will be
provided in Section 2. The generalized proximal terms in (a) use norms

∥z∥Jk =
√
⟨z, Jkz⟩ for positive-definite self-adjoint linear Jk : H → H, (1.4)

and the same mappings Jk then enter the dual update rule in (b). These mappings will be required to
carry the complementary spaces S and S⊥ into themselves and, as pinned down in Section 2, satisfy

4A version for specially structured convex φ preceded it slightly in [6].
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bounds on the extent to which Jk+1 can differ from Jk. Those bounds will in particular induce Jk to
approach a positive-definite mapping J∞ as k →∞. Taking Jk = rI would reduce the proximal terms
in PDA to the one in PDA0. But the generality not only accommodates varying rk, it can encompass
preconditioning and, eventually perhaps even quasi-Newton-type adaptations.

The better theory to go with PDA establishes basic convergence of (zk, wk) to some solution pair
(z̄, w̄) ∈ Z×W when the approximate minimization in each iteration is guided by a stopping criterion
based on the Jk-distance of 0 from the subgradient set ∂φk(ẑk+1). Linear convergence is shown to
prevail under a stricter condition on that distance, as long as a certain set-valued mapping enjoys
metric subregularity at the limit pair, which is seen to hold “usually.” The rate of that Q-linear
convergence is given by a formula that depends only on the modulus of metric subregularity there as
expressed using J∞. Section 2 will lay that all out.

Section 3 will offer perspectives on how realistic it is to expect such linear convergence. For
piecewise-linear-quadratic φ, it is seen to be guaranteed. Without any restriction on φ, it is anyway
seen to be generic in the sense of embedding (P) in the family of linkage problems parameterizes by
small translation or tilt perturbations of φ. Also answered in Section 3 is the question of whether
applying progressive decoupling to (D) instead of to (P) might be a way of reaching solutions to
the two problems by a different route. It is demonstrated that, with exact minimization, the two
approaches in fact produce exactly the same zk and wk sequences.

Section 4 will take up extensions to the case where φ is no longer convex, the subgradients are those
of variational analysis [16], and the approximate minimization in step (a) is merely local. It was proved
in [8] that, with exact minimization, PDA0 successfully in that way reaches a pair in the solution set
Z × W when initiated with (z0, w0) close enough to Z × W , as long as care is taken not to stray
away from that locality, and the proximal parameter is high enough to “elicit” a primal-dual-localized
property called variational convexity. Fundamentally, that was through Pennanen’s observation in [3]
that the proximal point algorithm only requires local information in its implementation. Variational
convexity and the associated variational sufficient condition for a local minimum in [8] have since
then undergone much scrutiny and elaboration; see [7], [9], [14], [15]. The variable-metric extension
of the proximal point algorithm in [11] was confirmed to operate with just local information as well.
However, such localization was not taken up in the progressive decompling extension in [13]. Only
globally monotone mappings were addressed there, not the local monotonicity that, for subgradient
mappings has been determined to correspond to variational convexity.

Section 4 will nonetheless provide some counterparts to the results for PDA in Section 2 that
persist locally when the convexity of φ is relaxed. It must be emphasized, though, that those results
remain, at this stage of technology, more theoretical than practical. A major obstacle to implementing
the progressive decoupling in a realistic numerical application is not understanding how to locate a
pair (z0, w0) that’s near enough to a solution pair. Furthermore, the proximal terms need to be
strong enough to elicit the required variational convexity, but there’s little guidance, so far, on how
to estimate that from accessible knowledge about the ingredients of problem (P).

Before getting into the details of all this, something general needs to be explained about the linkage
format chosen for (P) and the extent to which progressive decoupling is “new and different.” Other
approaches to problem decomposition in convex optimization have long been popular. Many take the
format instead to be that of minimizing f(z) + g(Az) for convex f and g and linear A.5 The format
in (P) can be regarded as the special case of that in which A = I and g = δS , the indicator of the
subspace S. Those other approaches can, in that way, be applied to solve (P). Applying ADMM,
for instance, produces in fact the procedure in PDA0. But ADMM is likewise basically a special

5That format comes from this author’s 1967 paper [4].
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application of the proximal point algorithm, PPA, while the PPA can itself be portrayed in turn as a
special application of progressive decoupling. From that angle, all these procedures and their formats
are “equivalent,” yet that doesn’t imply equality in theory and practice. The powerful advantage of
progressive decoupling is its very direct connection in [8] and [13] to the PPA through Spingarn’s device
in [17] of taking a partial inverse of a monotone mapping as the vehicle for computations but then
translating the implementation back to the original mapping. That makes it possible to propagate
almost any advance in PPA theory into an advance in decoupling theory. The same can’t be said for
ADMM and other decomposition procedures for which the derivation from PPA is longer and more
complicated. That’s behind the more tenuous results about linear convergence for those procedures,
and it may also be why they are typically articulated only with exact minimization.

The linkage format of (P) moreover has a powerful advantage over the extended Fenchel duality
format f(z) + g(Az) when developing special application-driven schemes of problem decomposition,
at least in this writer’s experience. It’s easier — and liberating — in efforts toward getting the right
decomposition to have only to think about linear relationships which might be decoupled, than it is
to somehow identify f , g, and A to achieve that end.

2 Formulation details and results for convex optimization

Under the assumption that φ is convex in (P), which remains in force throughout this section, the
function φk in step (a) of the improved progressive decoupling algorithm, PDA, is strongly convex
along with being closed and proper. The condition 0 ∈ ∂φk(z) is necessary and sufficient then for φk to
have its global minimum attained at z. However, instead of insisting on ẑk+1 being the unique global
minimizer, we want to allow the minimization to be approximate. A convenient approach that is to
require the subgradient set φk(ẑk+1), which is closed and convex, to contain a vector “near enough”
to 0, or in other words, for the distance from 0 to the closed convex set ∂φ(ẑk+1) to be small. In our
variable-metric setting, however, calibrating that distance by the norm ∥·∥ of the space H isn’t the
ideal approach. The iteration-dependent norms ∥·∥Jk in (1.4) can do better service. More must be
clarified about them before proceeding with minization criteria.

A fundamental requirement imposed on the mappings Jk : H → H in (1.4), beyond computability
without a need to check for membership in S, is that they must preserve the subspaces S and S⊥:

Jk(S) ⊂ S, Jk(S
⊥) ⊂ S⊥, so that P ◦ Jk = Jk ◦ P and P⊥ ◦ Jk = Jk ◦ P⊥. (2.1)

Then the subspace complementary to S with respect to the Jk-inner product ⟨w, z⟩Jk = ⟨w, Jkz⟩ is still
its complement S⊥ for the inner product of H. Since every u ∈ H can be represented as Pu+ P⊥u,
(2.1) means that

Jk(u) = Bk(Pu)) + Ck(P
⊥u) and J−1

k (u) = B−1
k (Pu) + C−1

k (P⊥u) for
positive-definite self-adjoint mappings Bk : S → S and Ck : S⊥ → S⊥,

(2.2)

where the self-adjointness is from the perspective of S and S⊥ being Euclidean spaces in themselves
with respect to the restrictions of the norm on H. This might seem unwieldy and give the impression
that in numerical implementation of the minimization in PDA step (a), direct attention might have
to be paid, via P and P⊥, to the subspaces S and S⊥ after all. But it can be perfectly easy to bypass
that, as illustrated by the following, widely applicable scheme.

Example 2.1 (adapting to a simple scheme of complementarity). Suppose that H = H+×H0×H−,
a product of three other Euclidean spaces, so that each u ∈ H has the form u = (u+, u0, u−). Let S0
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be a subspace of H0 having, with respect to H0, orthogonal complement S⊥
0 , and let P0 and P⊥

0 be
the projections from H0 onto S0 and S⊥

0 . Take, as complementary subspaces in H,

S = {u = (u+, u0, 0) |u0 ∈ S0}, S⊥ = {u = (0, u0, u−) |u0 ∈ S⊥
0 }, so that

Pu = (u+, P0u0, 0), P⊥u = (0, P⊥
0 u0, u−), for any u = (u+, u0, u−) ∈ H.

(2.3)

Next let Dk,+ : H+ → H+ and Dk,− : H− → H− be linear mappings that, with respect to the inner
products on those spaces, are self-adjoint and positive-definite with associated norms ∥·∥Dk,+

and
∥·∥Dk,− . Let rk > 0 and construct Jk by taking

Jk(u+, u0, u−) = (Dk,+(u+), rku0, Dk,−(u−)), so

J−1
k (u+, u0, u−) = (D−1

k,+(u+), r
−1
k u0, D

−1
k,−(u−)),

(2.4)

noting that Jk conforms to (2.1) and corresponds in (2.2) to taking

Bk(u) = Dk,+(u+), rku0, 0) for u = (u+, u0, 0) ∈ S,
Ck(u) = (0, rku0, Dk,−(u−) for u = (0, u0, u−) ∈ S⊥.

(2.5)

Then ∥u∥2Jk = ∥u+∥2Dk,+
+ rk∥u0∥2 + ∥u−∥2Dk,−

and is trouble-free because, in evaluating it, there is no
need to execute the projections P and P+.

Along with the subspace compatibility requirment on the mappings Jk, it’s essential that the
shifts in metric from one iteration to the next not be too wild. For that, the Bk and Ck mappings are
required here to satisfy the following mutual norm bounds for z ∈ S and w ∈ S⊥:

β−1
k ∥z∥Bk−1

≤ ∥z∥Bk
≤ βk∥z||Bk−1

and β−1
0 ∥z∥ ≤ ∥z∥B0 ≤ β0∥z∥,

γ−1
k ∥w∥C−1

k−1
≤ ∥w∥C−1

k
≤ γk∥w∥C−1

k−1
and γ−1

0 |w| ≤ ∥w∥C−1
0
≤ γ0∥w∥,

where βk ≥ 1, γk ≥ 1, with Π∞
k=0βk =: β <∞, Π∞

k=0γk =: γ <∞.
(2.6)

The bounds (2.6) have a pattern that originated in [11] and imply, as demonstrated there, that

Jk converges as k →∞ to a positive-definite self-adjoint mapping J∞,
while Bk → B∞ and Ck → C∞ in (2.2) for such mappings B∞ and C∞.

(2.7)

The variations in geometry must, in that way, settle down eventually. But only the existence in (2.6)
is supposed. The βk and γk values won’t be needed in computations, only in proofs.

The mappings Jk could be specified at the outset, but they might also be generated while the
algorithm is executed. Information in iteration k could suggest in some quasi-Newton manner how Jk
might advantageously be updated to Jk+1. The conditions in (2.2) would, from that angle, exercize
some long-run control over the updating.

Example 2.2 (conforming bounds in an elementary situation). Suppose that Jk = rkI for a sequence
of values rk > 0. Then the bounds in (2.6), implying in particular that rk → r∞ ∈ (0,∞), are available
if and only if ∏∞

k=0 αk <∞ for αk = max{rk/rk−1, rk−1/rk}. (2.8)

Detail. The demand on βk in (2.6) in this case is that β−1
k rk−1 ≤ rk ≤ βkrk−1, or in other words,

βk ≥ rk/rk−1 and βk ≥ rk−1/rk. That’s the same as βk ≥ αk for the αk ≥ 1 in (2.8). The demand on
γk is that γ−1

k r−1
k−1 ≤ r

−1
k ≤ γkr−1

k−1, which is the same as γ−1
k rk−1 ≤ rk ≤ γkrk−1, so γk like βk can be

taken to equal αk. Then the finite product conditions in (2.6) are the one on αk in (2.6).

With these clarifications, we can proceed to our basic convergence result for the improved version
of the progressive decompling algorithm presented in Section 1. More background will then have to
be explained, however, before our result on linear convergence can even be formulated.
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Theorem 2.3 (global convergence of PDA in the convex case). Under the assumptions on Jk in (2.1)
and (2.6) and the underlying assumption that the primal-dual optimality condition in (1.1) can be
satisfied, and for tolerances

εk > 0 with
∑∞

k=0
εk <∞, (2.9)

let the sequences of vectors zk ∈ S and wk ∈ S⊥ be generated by PDA from any initial z0 ∈ S and
w0 ∈ S⊥ with the stopping criterion for the minimization in step (a) being

distJ−1
k

(0, ∂φk(ẑk+1)) ≤ εk, or equivalently through (2.2),

∃w ∈ ∂φk(ẑk+1)) such that ∥Pw∥2
B−1

k

+ ∥P⊥w∥2
C−1

k

≤ ε2k,
(2.10)

noting that, in terms of (2.2), the dual update in the PDA step (b) has the alternative expressions

wk+1 = wk − Ck(P
⊥ẑk+1) = wk − Ck(ẑ

k+1 − zk+1). (2.11)

Then (zk, wk) is sure to converge to some solution pair (z̄, w̄) ∈ Z ×W in (1.1),

Proof. This will be deduced as a specialization of Theorem 4.1 of [5]. That theorem pertains to
progressive decoupling in the framework of determining a pair (z̄, w̄) such that

z̄ ∈ S, w̄ ∈ S⊥, w̄ ∈M(z̄), (2.12)

for a maximal monotone mapping M : H →→ H. For convex φ, the subgradient mapping ∂φ is
maximal monotone, as is well known, and M can therefore be taken as ∂φ, with (2.12) then being the
relations (1.1) that simultaneously solve the optimization problems (P) and (D). Also, the mappings
Mk(z) =M(z) + Jk(z)−wk are the subgradient mappings ∂φk. The earlier stopping criterion in the
Mk form reduces then to the one in (2.10), except that the εk here is twice the size of the one in the
earlier result. That scaling makes no difference in (2.9), of course, so the conclusion about convergence
is thereby justified.

Once more in (2.10) a threat of having to evaluate projections onto S and S⊥ in order to execute
the approximation seems to appear. Example 2.1 again indicates a way of bypassing that.

After the basic convergence in Theorem 2.3 the question of linear convergence comes up. What
extra circumstances and numerical precautions, if any, are needed to achieve it? But also, what exactly
might be meant by linear convergence and how might the rate of it be calibrated? A worthy goal
might be Q-linear convergence of (zk, wk) to (z̄, w̄), which would ordinarily be interpreted in the usual
norm on H as saying that6

∃ b such that ∥(zk+1, wk+1)− (z̄, w̄)∥ ≤ b∥(zk, wk)− (z̄, w̄)∥ for large enough k. (2.13)

The rate of that Q-linear convergence is the inf of all possible b. This version of convergence will
generally be out of reach, however, because of the possible multiplicity of solutions to (P) and (D).
Instead, the focus will be on getting the distance of (zk, wk) from the solution set Z ×W in (1.3) to
converge Q-linearly to 0. When both Z and W are singletons, this reduces obviously to the Q-linear
convergence in (2.13), but not otherwise, despite our knowing that (zk, wk) tends to a particular pair
in Z ×W .7 That limit pair (z̄, w̄) will nonethless have a crucial role in whether a key property of
metric subregularity holds there or not.

6Here ∥(z, w)∥2 = ∥z∥2 + ∥w∥2 = ∥z + w∥2 because the z-vectors are in S and the w-vectors are in S⊥.
7Imagine (z̄, w̄) being a surface point of Z×W that is approached by (zk, wk) in a very slow spiral which very quickly

nears the surface.
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In general, a mapping T : H →→ H is said to be metrically subregular at ū for a vector v̄ ∈ T (ū) if
there exists a ∈ (0,∞) such that, for (u, v) in some small enough neighborhood U × V of (ū, v̄),

dist(u, T−1(v̄)) ≤ adist(v̄, T (u) ∩ V) when u ∈ U , (2.14)

where the distance on the right of the estimate is considered to be∞ when T (u)∩V = ∅. The modulus
of that metric subregularity is defined to be the liminf of the available sizes of a as the neighborhood
shrinks down to (ū, v̄). The neighborhood V turns out to be superfluous in this, however, according
[1, 3H.4]. The same condition is captured when T (u) ∩ V in (2.14) is replaced by T (u), with only a
neighborhood U of ū being specified for nearness.

The mapping T for which metric subregularity will be invoked here is the “partial inverse” of
the mapping ∂φ obtained as follows, in taking advantage of the fact that every element of H can be
represented uniquely as a sum of something in S and something in S⊥:

z′ + w′ ∈ T (z + w) ←→ z′ + w ∈ ∂φ(z + w′) for z, z′ ∈ S, w,w′ ∈ S⊥,
or equivalently: gphT = R(gphφ), gphφ = R(gphT ), for the reflection
R that takes (u, v) = (Pu+ P⊥u, Pv + P⊥v) to (Pu+ P⊥v, Pv + P⊥u).

(2.15)

The modulus for the subregularity will enter a formula for the rate of convergence. But we are
operating in a variable-metric environment. It turns out best from that angle, for the sake of gaining
the tightest rate, to adapt the metric subregularity and its modulus to a different norm than the given
one on H. That goes back to the theory of linear convergence for the variable-metric version of the
proximal point algorithm in [11]. The alternative norm isn’t ∥·∥J∞ , as might be anticipated from (2.7),
but rather

J#
∞(u) = B∞(Pu) + C−1

∞ (P⊥u), with associated distances tied to
∥u∥2

J#
∞

= ∥Pu∥2B∞
+ ∥P⊥u∥2

C−1
∞
, ∥u∥2

J#−1
∞

= ∥Pu∥2
B−1

∞
+ ∥P⊥u∥2C∞

. (2.16)

This is a good time to recall that, because of finite-dimensionality, any norm on H can be estimated
in a uniform manner from any other norm on H. In terms of “mineig” referring to lowest eigenvalue
and “maxeig” to highest, distances with respect to the norms given by Jk and J−1

k can be estemated
in terms of distances with respect to the given norm ∥·∥ by√

mineig(Jk)·dist ≤ distJk ≤
√
maxeig(Jk)·dist,

1√
mineig(Jk)

·dist ≤ distJ−1
k
≤ 1√

maxeig(Jk)
·dist, (2.17)

and similarly for J#
∞ and J#−1

∞ . Shifting to a different norm doesn’t affect whether metric subregularity
is present or not, but it alters the associated modulus, and a lower value is better..

With all this in mind, we turn now to the extended definition in [11], according to which T is
metrically subregular at ū with respect to v̄ ∈ T (ū) as expressed in the J#

∞ norm when

∃ a ∈ (0,∞) such that dist
J#
∞
(u, T−1(v̄)) ≤ a dist

J#−1
∞

(v̄, T (u)) for u near ū. (2.18)

The corresponding modulus of metric subregularity is then

subreg
J#
∞
T (ū | v̄) := liminf of a values in (2.18) as the neighborhood shrinks. (2.19)

The case where v̄ = 0 will be paramount, for reasons explained next.
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Proposition 2.4 (properties of the partial inverse). For the mapping T defined in (2.15),

T−1(0) = Z +W for the solution sets Z and W in (1.3). (2.20)

The inequality in (2.18) for v̄ = 0 translates then, in terms of z, z′ ∈ S and w,w′ ∈ S⊥, to

dist2B∞
(z, Z) + dist2

C−1
∞

(w,W )

≤ a2min
{
∥z′∥2

B−1
∞

+ ∥w′∥2C∞

∣∣∣ z′ + w ∈ ∂φ(z + w′)
}
.

(2.21)

Proof. Because of orthogonality, having z′ + w′ = 0 in (2.15) requires both z′ = 0 and w′ = 0. But
this corresponds to having w ∈ ∂φ(z) with z ∈ S and w ∈ S⊥, which in (1.3) means z ∈ Z, w ∈ W .
That takes care of (2.20). Then (2.21) follows from (2.15) and the definition of J#

∞ in (2.16).

In combination with v̄ = 0 in (2.18) and (2.19), we’ll take as ū the sum z̄ + w̄ associated with
the PDA limit pair (z̄, w̄) in Theorem 2.3. The metric subregularity corresponds then to having the
estimate (2.21) available when z is near to z̄ and w is near to z̄. That estimate will therefore be
available eventually for the zk and wk generated by the algorithm and be able to come into play in
convergence analysis.

Theorem 2.5 (linear convergence of PDA in the convex case and its rate). In the execution of PDA
in Theorem 2.3 under the assumptions there, strengthen the stopping criterion in (2.10) to

distJ−1
k
(0, ∂φk(ẑk+1)) ≤ εk min{1, ∥ẑk+1 − zk∥Jk}, (2.22)

where alternatively, from the PDA updating rule (b),

∥ẑk+1 − zk∥Jk =
√
∥zk+1 − zk∥2Bk

+ ∥wk+1 − wk∥2
C−1

k

. (2.23)

Suppose at the limit (z̄, w̄) approached by (zk, wk) that the mapping T in (2.15) is metrically subregular
at z̄ + w̄ for 0. Then the distances

dk =
√
dist2Jk(z

k, Z) + dist2
J−1
k

(wk,W )

=
√
dist2Bk

(zk, Z) + dist2
C−1

k

(wk,W )
(2.24)

will converge Q-linearly to 0 at the rate

b# =
a#√
1 + a2#

for a# = subreg
J#
∞
T
(
z̄ + w̄

∣∣∣ 0). (2.25)

Proof. Like Theorem 2.3, this specializes a part of [13, Theorem 4.1],8 but with serious challenges
in making the connection and getting the most out of it. That’s reflected in the developments above,
where almost everything needing argument or explanation has already been addressed. All that
remains is verifying that the stopping criterion agrees with the one utilized in [13, Theorem 4.1], which
in place of ∥ẑk+1 − (zk + wk)∥Jk in (2.22) had the square root of ∥zk+1 − zk∥2Jk + ∥w

k+1 − wk∥2
J−1
k

.

8In (4.22) of [13], which stands behind the rate formula now in (2.25), the subregularity modulus was intended to
be the one in (4.18) of [13] for a mapping that specializes here to J#

∞, but a different mapping D∞ was accidentally
indicated through a cloning glitch.
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That square root can be identified with the right side of (2.23) on the basis of the structure
introduced in (2.2), inamuch as zk+1 − zk ∈ S and wk+1 − wk ∈ S⊥. The same structure likewise
yields (2.25). At issue therefore is just the equality claimed in (2.23).

In the algorithm’s updating rule (b) as elaborated in (2.11), we have P ẑk+1 = zk+1 in S and
P⊥ẑk+1 = C−1

k (wk+1−wk) in S⊥. On the other hand, P ẑk+1+P⊥ẑk+1 = ẑk+1. Hence, through (2.2),

∥ẑk+1 − zk∥2Jk = ∥zk+1 + C−1
k (wk+1 − wk)− zk∥2Jk

= ∥zk+1 − zk∥2Bk
+ ∥C−1

k (wk+1 − wk)∥2Ck
.

But ∥C−1
k (wk+1−wk)∥2Ck

= ⟨C−1
k (wk+1−wk), Ck(C

−1
k (wk+1−wk))⟩ = ∥wk+1−wk∥2

C−1
k

. In that way,

the validity of (2.23) is seen as confirmed.

The characteristic features of linear convergence of the progressive decoupling algorithm depicted in
Theorem 2.5 are definitive, because they are based squarely on those of the proximal point algorithm
in [11] from which the procedure is derived, where the rate is show to be generically tight. It’s
interesting that the rate ultimately depends only on the pair (z̄, w̄) to which the sequence tends and
the T subregularity modulus there, as calibrated by the limit mappings B∞ and C∞. Even the failure
of linear convergence can be viewed as embodied in this formula: the modulus a# can be regarded as
equaling ∞ when subregularity is absent, with b in (2.25) being interpreted then as 1.

3 Linear convergence prospects and dualization

How might it be determined in some given instance of the linkage problem (P) whether linear con-
vergence is assured? In principle that would have to be gleaned from a close examination of whether
(2.21) is satified by some a when z and w are close to z̄ and w̄. This could be difficult and would likely
have to come down to a universal property of the mapping ∂φ. One simplification at least is that the
mappings B∞ and C∞, while affecting the modulus, don’t matter in assertaining the presence of the
subregularity. Tests on satisfying (2.21) can proceed therefore with the norms and distances in (2.21)
being just those of H.

Some help can then come from another direction, through connections between metric subregularity
and calmness. The mapping T−1 is calm at 0 for the vector z̄+ w̄ ∈ T−1(0) if there are neighborhoods
U of z̄ + w̄ and V of 0 for which

∃ a ∈ (0,∞) such that T−1(v) ∩ U ⊂ T−1(0) + a∥v∥IB when v ∈ V, (3.1)

where IB denotes the unit ball in H. The modulus of that calmness is defined to be the liminf of the
available a as U and V shink to z̄ + w̄ and 0. This calmness property of T−1 is known from [1, 2H.3]
to be equivalent to the metric subregularity of T at z̄ + w̄ for 0, moreover with the calmness modulus
equaling the subregularity modulus as calibrated by the norm ∥·∥ on H. The calibration of calmness
could be adapted to ∥·∥

J#
∞
, but leaving that aside, it would anyway be possible in principle to get a

guarantee of linear convergence by verifying that the calmness in (3.1) is sure to be available when
applying PDA to a given φ.

Here’s an illustration that covers the case of φ being piecewise linear-quadratic in the sense of
domφ being representable as a union of polyhedral convex sets on each of which φ reduces, in a linear
coordinate system for H, to a polynomial of no more than degree 2. The theory of such functions
is available in [16, Section 10E]. The key feature for us here is that a convex function φ is piecewise
linear-quadratic if and only if its subgradient mapping ∂φ is piecewise polyhedral in the sense of its
graph being the union of a finite collection of polyhedral convex sets.
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Theorem 3.1 (guaranteed linear convergence in the piecewise linear-quadratic case). When φ is
piecewise linear-quadratic, there exists ā ∈ (0,∞) such that partial inverse mapping T has

subreg
J#
∞
T (ū | v̄) ≤ ā for every pair (ū, v̄) ∈ gphT. (3.2)

Then, regardless of anything about the particular limit pair (z̄, w̄), the distances dk in Theorem 2.5
will surely converge Q-linearly to 0 at the rate b̄ := ā/

√
1 + ā2 or better.

Proof. In this case the mapping ∂φ is piecewise polyhedral, as noted above. Then T and T−1 are
piecewise polyhedral too, because that graphical property is maintained when passing to inverses and
partial inverses, which simply apply to graphs the isometric linear transformation R seenr in (2.15).
Piecewise polyhedral mappings are everywhere “outer Lipschitz continuous” [1, 3D1], that being for
T−1 the property stronger than the calmness in (3.1) in which the left side is just T−1(v). Moreover,
modulus for it is universal because of only finitely many pieces making up the graph of T−1. Here we
also appeal to the fact that, because H is finite-dimensional, relations like those in (2.17) are available
for estimating a modulus calibated any given norm in terms of a different norm.

Another sort of guarantee of linear convergence in progressive decoupling is obtained by showing
that its failure is, from some perspective, “rare.”

Theorem 3.2 (a generic guarantee of linear convergence). Consider the perturbation-parameterized
family of linkage problems (Pζ,ω) in which φ is replaced by

φζ,ω(z) = φ(z + ζ)− ⟨ω, z⟩ for (ζ, ω) ∈ S × S⊥ near (0, 0), (3.3)

where (P0,0) = (P) and the optimality conditions for (Pζ,ω) paralleling (1.1) are

z̄ζ,ω ∈ S, w̄ζ,ω ∈ S⊥, w̄ζ,ω ∈ ∂φζ,ω(z̄ζ,ω). (3.4)

Suppose the solutions sets Z and W to (P) and (D) in (1.3) are bounded, which holds if and only
the projection of domφ on S⊥ has the origin in its interior relative to S⊥ and, for some α, the set
{ z ∈ S |φ(z) ≤ α} is nonempty and bounded.

There will then be a neighborhood O of (0, 0) in S × S⊥ such that, for almost all9 (ζ, ω) ∈ O, the
conditions (3.4) determine a unique pair (z̄ζ,ω, w̄ζ,ω) and the mapping Tζ,ω associated with ∂φζ,ω as
in (2.15) will be metrically subregular at z̄ζ,ω + w̄ζ,ω for 0. The sequence generated by the algorithm
in solving (Pζ,ω) and its dual (Dζ,ω) will itslef then converge Q-linearly to (z̄ζ,ω, w̄ζ,ω).

Proof. This translates [13, Theorem 5.2] to our optimization context, but the criterion given for
the boundedness of Z and W is particular to that and requires its separate justification. It helps to
recall that an orthonormal basis for a coordinate system can be chosen which identifies the elements
of H with vector pairs in IRn × IRm, moreover in such a way that S consists of the pairs where the
second component is 0, while S⊥ consists of those where the first component is 0. In writing z ∈ H
accordingly as (x, u), the linkage problem (P) becomes the problem of minimizing the closed convex
function x 7→ φ(x, 0). It’s well known in convex analysis that if any of the level sets of such a function
is bounded, then they all are, and the minimum is attained. On the other hand, the set of solutions
to the dual problem is nonempty and bounded if and only if the projection of domφ in the second
argument is a neighborhood of u = 0. These two conditions are the coordinatized forms of the ones
claimed in the theorem for the boundedness of the primal and dual solution sets.

9In the sense of Lebeguese measure, with the exception thus constituting a so-called negligible set.
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The genericity in the theorem comes ultimately from a property of maximal monotone mappings
that was brought to light in [12].

To complete the findings in convex optimization, it’s interesting to return to duality and with the
observation that, since progressive decoupling as applied to the linkage problem (P) solves both the
dual linkage problem (D), it could also be applied to (D) and likewise then solve both (P) and (D).
To what degree might there be an advantage in that approach?

Dual Progressive Decoupling Algorithm PDA* (for convex optimization). Sequences of vectors
zk ∈ S and wk ∈ S⊥ are generated from any z0 ∈ S and w0 ∈ S⊥ by steps of the form

(a∗) ŵk+1 ≈ argmin φ∗k for φ∗k(w) = φ∗(w)− ⟨zk, w⟩+ 1
2∥w − w

k∥2
J−1
k

,

(b∗) wk+1 = P⊥ŵk+1, zk+1 = zk − J−1
k (Pŵk+1).

Theorem 3.3 (PDA versus PDA* in convex optimization). When PDA and PDA* start from the
same z0 and w0 and are executed with exact minimization, they produce the same sequences of vectors
zk and wk converging in the same manner to the same solutions z̄ and w̄.

Proof. In exact minimization, step (a*) of PDA* has 0 ∈ ∂φ∗(ŵk1) − zk + J−1
k [ŵk+1 − wk]. This

means zk − J−1
k [ŵk+1 − wk] ∈ ∂φ∗(ŵk+1), which, since the subgradient mappings φ and φ∗ are the

inverses of each other, can be written as

ŵk+1 ∈ ∂φ(ẑk+1) for ẑk+1 := zk − J−1
k (ŵk+1 − wk). (3.5)

Then 0 ∈ ∂φ(ẑk+1) − wk + Jk(ẑ
k+1 − zk) = ∂φ(ẑk+1), which identifies ẑk+1 as the argmin in PDA

step (a). On the other hand, in applying P and P⊥ to formula for ẑk+1 in (3.5), we see from the fact
in (2.1) that these projection commute with Jk, likewise then with J−1

k , that

P ẑk+1 = zk − J−1
k (Pŵk+1), P⊥ẑk+1 = −J−1

k (P⊥ŵk+1 − wk), (3.6)

inasmuch as zk ∈ S and wk ∈ S⊥. The two right sides are, respectively, zk+1 and −J−1
k (wk+1 − wk)

according to PDA* step (b*). The two equations in (3.6) come out then as the update rule in PDA
step (b). The steps in PDA* are, in this mode of execution, the same then as the steps in PDA.

Of course, this pretty fact doesn’t rule out differences between the primal and dual procedures
when minimization is only approximate, or that either might have an advantage over the other in
particular circumstances. Sometimes minimizing might be easier in (a*) than in (a).

4 Extending to nonconvex optimization

The challenge next is understanding how far the results about progressive decoupling might extend
when the function φ in the linkage problem (P) isn’t convex on H, just closed and proper. Locating
a global minimizer can no longer then be the algorithmic goal.

The projection mappings P and P⊥ are still available, and so too is the first-order condition (1.1)
with subgradients of convex analysis replaced by the general subgradients of variational analysis [16,
8B], but in association now with local optimality, not global optimality. For z̄ to be a local minimizer
in (P), it is necessary, under a constraint qualification,10 to have some w̄ satisfy (1.1) with z̄, but

10The basic one is that φ has no nonzero “horizon” subgradient in S⊥ at z̄, see [16, 8.15]. This reduces for convex φ
to having the projection of domφ on S⊥ be a neighborhood of the origin relative to S⊥. It will be assumed to hold in
what follows.
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for sufficiency something “second-order” must be added. In variational analyis there’s more than one
approach to that, however, and it’s essential to choose one that best supports the needs at hand.

Progressive decoupling revolves not only around the degree to which the limit z̄ of a sequence of
vectors zk might be regarded as solving the minimization problem (P), but also the solution qualities
of each zk in the minimization subproblem producing it. Perhaps optimality wishes could be relaxed
to just accepting z̄ and zk as first-order “stationary points,” but it’s hard to see how that could be
made to work successfully, with so little in structure to utilize. The alternative is that z̄ and zk

should be local minimizers of a strong-enough sort to ensure stability in computations and provide a
solid foundation for convergence analysis. A framework for that was devised in [8] by taking a novel
approach to sufficiency for local optimality. Instead of relying on generalized second derivatives, as in
[16, Chapter 13] and subsequent developments recently reviewed and extended by Mordukhovich in
[2], it took advantage of the property of variational convexity in [7], [14], that characterizes when a
function’s subgradient mapping has a graphical localization that is maximal monotone.

Such a localization is exactly what permits the proximal point algorithm to be applied to that
mapping locally. Since progressive decoupling is based on that algorithm and we are indeed applying
to a subgradient mapping, variational convexity will naturally be the key again here. Variational
convexity indicates, in a primal-dual -local sense, a function’s subgradients and the its values associated
with them behave just as if the function is convex. Here is a precise statement.

Definition 4.1 (variational convexity). A closed proper function ψ on H is variationally convex at z̄
for w̄ ∈ ∂ψ(z̄) if the following holds with respect to some closed proper function ψ̂ that is also convex.
There is a neighborhood Z ×W of (z̄, w̄) and α > ψ(z̄) such that, for Zα = { z ∈ Z |ψ(z) < α},

ψ̂ ≤ ψ on Z with [Z ×W] ∩ gph ∂ψ̂ = [Zα ×W] ∩ gph ∂ψ and

ψ̂(z) = ψ(z) at all (z, w) in the joint intersection, such as (z̄, w̄).
(4.1)

Variational strong convexity has ψ̂ strongly convex.

Besides the original developments about this mysterious-at-first concept in [7] and [8, Section
3], with examples, much more has become available in [14] and [15]. Variational strong convexity
is characterized for instance by a strong quadratic growth condition on function values holding in a
locally uniform sense, and it makes the subgradient mapping be strongly max monotone in a graphical
localization.

Definition 4.2 (variational sufficiency in the linkage problem). The strong variational sufficient con-
dition for local optimality of z̄ in (P) holds if for some w̄ satisfying with z̄ the first-order condition
(1.1) there exists e ≥ 0 (elicitation parameter) such that the function

φe(z) = φ(z) +
e

2
dist2(z, S) (4.2)

is variationally strongly convex at z̄ for w̄. Here w̄ ∈ ∂φe(z̄) as well as w̄ ∈ ∂φ(z̄), because

∂φe(z) = ∂φ(z) + eP⊥z, so that ∂φe(z) = ∂φ(z) for z ∈ S. (4.3)

This guarantees, through the quadratic growth associated with variational strong convexity, that
z̄ is a strong local minimizer in (P) which is locally isolated; there is no other point ẑ near z̄ for which
even just the first-order condition (1.1) can be satisfied:

[(S × S⊥) ∩ gph ∂φ] ∩ [Z ×W] = {z̄} × [∂φ(z̄) ∩W ∩ S⊥]
with ∂φ(z̄) ∩W convex and such that every ŵ ∈ ∂φ(z̄) ∩W
partners with z̄ like w̄ in giving strong variational sufficiency.

(4.4)
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That’s because φ can be replaced in this by φe and then in turn by the strongly convex function
associated with φe in the strong variational convexity and variational sufficiency.

It was observed in [8] that, in the special case where φ is a C2 function on H = IRn and w̄ = ∇φ(z̄),
this sufficient condition for local optimality comes down to the classical stipulation that ∇φ(z̄) ⊥ S
and the hessian ∇2φ(z̄) is positive-definite relative to S. Explorations since [8] have demonstrated that
in many other situations common to optimization a similar identification with a well established strong
second-order sufficient condition for local optimality can be made. That includes standard nonlinear
programming, generalized nonlinear programming, and much more; see [9], [18]. In [15], new kinds of
second derivatives have recently been introduced which enable identification of variational convexity
and perhaps estimation of the elicitation parameter in Definition 4.2. For example, in an echo of the
case of smooth φ, if φ is “prox-regular” (a property that’s commonly assured [16, 13F]), a bundle of
“generalized quadratic forms” is associated with φ at z̄ for w̄ ∈ φ(z̄) that can serve as a substitute
for the hessian matrix. Strong variational sufficiency corresponds then by [15, Theorem 5.1] to those
forms being positive-definite relative to S.

Our adjusted goal for progressive decoupling in the face of nonconvexity is to get it to work locally
when initiated with (z0, w0) near enough to some (z̄, w̄) satisfying the strong variational sufficient
condition for local optimality. Experience in [10] with applying augmented Lagrangian methods to
problems in nonconvex optimization suggests that the proximal terms in progressive decoupling might
have to be coordinated with the elicitation level for the strong variational convexity, marked by the
big-enough parameter e. A sort of trust region approach to computation needs to be adopted as well.
It involves a small-enough locality parameter ρ as the radius of a ball around zk in the Jk-norm in
iteration k. Besides ρ, there will later be a small-enough initialization parameter ρ0 to specify how
close (z0, w0) ought to be to a locally optimal (z̄, w̄) for the procedure to be operate without straying
off target. The size of the tolerances εk in the stopping conditions must be small enough as well. The
details of the relationships will come in Theorem 4.3.

Progressive Decoupling Algorithm PDA′ (localized version for nonconvex optimization). Let
ρ > 0. Let e ≥ 0 and let Je

k be the mapping obtained from Jk by replacing its Ck part in (2.2) by
Ck + eI. From (z0, w0) ∈ S × S⊥ generate sequences of zk ∈ S and wk ∈ S⊥ by

(a′) ẑk+1 ≈ argmin
{
φ(z)− ⟨wk, z⟩+ 1

2∥z − z
k∥2Je

k

∣∣∣ ∥z − zk∥Jk ≤ ρ},
(b′) zk+1 = P ẑk+1, wk+1 = wk − Jk(P⊥ẑk+1),

with the subgradients in stopping criterion for the approximation in (a′) being those of the function
φk given by adding the indicator of the ρ-ball trust region to the specified objective function.

Our results about progressive decoupling in the convex case in Section 2 were specialized from
[13], where the variable-metric form of the proximal point algorithm in [11] was applied to the partial
inverse T of ∂φ in (2.15). Although the nonconvex case wasn’t addressed in [13], its developments
remain pertinent because the variable-metric PPA is able to operate with maximal monotonicity just
in a graphical localization. But here, hidden under the surface, we’ll in be applying a localization of
PPA to a different mapping than T , namely the partial inverse Te associated with the subgradient
mapping for the function φe in the strong variational sufficient condition with respect to some (z̄, w̄).

From a practical standpoint, there will nevertheless be important shortcomings which will be
discussed after the proof of the next theorem.

Theorem 4.3 (convergence properties of PDA′ in nonconvex optimization). Let e ≥ 0 and ρ > 0.
Require the tolerances εk in the stopping criteria to have∑∞

k=0
εk < ρ− ρ0 for a choice of ρ0 ∈ (0, ρ). (4.5)
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Suppose in the initiation of the procedure that the strong variational sufficient condition for local
optimality in problem (P) holds at elicitation level e for some z̄ and w̄ such that√

∥z0 − z̄∥2 + ∥w0 − w̄∥2 < ρ0. (4.6)

Then, as long as ρ and ρ0 are small enough, the approximate minimizers ẑk+1 in step (a′) will always
belong to the interior of the ρ-ball giving trust region, with the subgradient set ∂φk(ẑk+1) in the
stopping criteria thus being unaffected by the trust region indicator term in the definition of φk in
PDA′. The sequences of vectors zk ∈ S and wk ∈ S⊥ will converge to z̄ and some w̃ which, like w̄,
satisfies with z̄ the strong variational sufficient condition for local optimality in (P). Under the tighter
stopping criterion in Theorem 2.5, the convergence will be Q-linear as described there, but with w̃
replacing w̄ in the required metric subregularity and accompanying convergence rate formula.

Proof. For the function φe in Definition 4.2 of the strong variational sufficiency at z̄ for w̄ we have

φe(z)− wk + Je
k(z − zk) = φ(z)− wk + Jk(z − zk), (4.7)

so that the steps (a′) and (b′) in PDA′ for φ with the fixed J metric actually apply steps (a) and (b)
of PDA to φe with the trust region. If φe were a strongly convex function on H, not just variationally
strongly convex at z̄ for w̄, the results in Theorems 2.3 and 2.5 would immediately give the convergence
properies claimed for PDA′ without any trust region having to be brought in. The challenge facing
us therefore is not about convergence, but rather about establishing that, under the added locality
restrictions, PDA′ behaves just as it would if applied with φe being strongly convex on H.

What the variational strong convexity gives us is an open convex neighborhood of (z̄, w̄), which
can just as well be taken to be of the form

Z = ZS + ZS⊥ , W =WS +WS⊥ , for ZS ,WS ⊂ S, ZS⊥ ,WS⊥ ⊂ S⊥, (4.8)

with respect to which the mapping ∂φe is strongly max monotone. As understood from the theory
in [13, Section 4] behind the convex case in Section 2, applying PDA to φe corresponds to applying

PPA, the proximal point algorithm, to the partial inverse Te of ∂φe and the J#
k -metrics

J#
k (u) = Bk(Pu) + C−1

k (P⊥u). (4.9)

The PDA iterates on φe identify with PPA iterates on Te through

uk = zk + wk, zk = Puk, wk = P⊥uk, (4.10)

Here, by the definition of partial inverse in terms of the reflection mapping R in (2.15), we have
gphTe = R(gph ∂φe) and gph ∂φe = R(gphTe), along with

ū ∈ T−1
e (0) for ū = z̄ + w̄, (4.11)

since in general
R(z, w) = (z + w, 0) ⇐⇒ (z, w) ∈ S × S⊥. (4.12)

The neighborhood Z ×W in (4.8) passes through R to become the open convex set

U × V = (ZS +WS⊥)× (WS + ZS⊥), a neighborhood of (ū, 0), (4.13)

the key to computations around (4.11). Monotonicity is preserved by R, so Te is maximal monotone
relative to that neighborhood U × V.
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The issue is therefore just whether PDA, under the restrictions in the theorem, amounts in trans-
lation to executing Te in a manner such that nothing beyond U × V takes part in its convergence
to some ũ ∈ T−1(0). That ũ would then give, through (4.12) and the projection scheme in (3.11),
an alternative pair (z̃, w̃) that, like (z̄, w̄) satisfies the strong variational sufficient condition for local
optimality in (P), necessarily therefore with z̃ = z̄, as already noted.

Guidance will come from the localized PPA theory in [11, Section 4] after we translate the PDA
restrictions into the corresponding PPA restrictions via (4.10). Observe first that the initialization
inequality in (4.6) means ∥u0 − ū∥ < ρ0. In connection with the trust region, observe next from step
(b′) of PDA′ that

ẑk+1 − zk = P ẑk+1 − zk + P⊥ẑk+1 = (zk+1 − zk)− C−1
k (wk+1 − wk),

where the z-part belongs to S and the w-part belongs to S⊥. That makes ∥ẑk+1 − zk∥2Jk come out as

∥zk+1 − zk∥2B + ∥C−1
k (wk+1 − wk∥2Ck

= ∥zk+1 − zk∥2B + ∥wk+1 − wk∥2
C−1

k

= ∥(zk+1 + wk+1)− (zk + wk)∥
J#−1
k

because ∥C−1
k w∥2Ck

= ⟨C−1
k w,CkC

−1
k w⟩ = ∥w∥2

C−1
k

. Thus,

∥ẑk+1 − zk∥Jk = ∥uk+1 − uk∥
J#
k
.

We are therefore executing the PPA on Te with trust region ∥uk+1−uk∥
J#
k
starting from ∥u0−ū∥ ≤ ρ0.

According to [11, Theorem 3.1], the PPA interations in question will proceed in these circumstances
with only the localization of Te to the neighborhood U × V being involved, as long as ρ and ρ0 are
small enough that

{ v | ∥v∥ ≤ 2ρ} ⊂ V and, under (4.6), {u | ∥u− u0∥ ≤ 2ρ} ⊂ U . (4.14)

This can always be arranged with a corresponding adjustment of the tolerances εk in (4.5), and that
completes the proof.

It’s apparent from Theorem 4.3 that much more will need to be understood before progressive
decoupling in nonconvex optimization can considered useful and practical. The contribution here is
only a potential door opener.

A serious shortcoming, of course, is the mystery of how to select the parameter values. How
high should e be for good prospects of (P) having a locally optimal solution z̄ satisfying the strong
variational sufficent condition at that level of elicitation? How could the proximity of z̄ be assessed
in order to choose ρ, ρ0, and εk that satisfy the conditions in Theorem 4.3 and the further condition
that came out in the proof as (4.14), where furthermore the unknown neighborhood U × V in (4.13)
is involved?

The sizes would be hard to estimate from problem data, but maybe they could be “discouvered”
during computations through an extension of the algorithm in which they, too, could vary from
one iteration to the next? That’s nothing new in numerical optimization, of course. There’s long
and positive experience in coping with such discovery in getting quasi-Newton methods to work, for
instance. They, too, are based on second-order properties that have influence in close enough proximity
to a locally optimal solution. But that points to another lack, and it’s a major one. Quasi-Newton
methods can be combined with simpler first-order schemes that have a much wider reach in at least
being able to find a sort of stationary point quasi-solution.
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What might there be that’s comparable here in relation to progressive decoupling for a linkage
problem? Finding a quasi-solution can be identified with solving the subgradient condition (1.1) for z̄
and w̄ when the subgradients aren’t those of convex analysis which immediately signal local optimality.
Could that be accomplished by a first-order-type scheme that respected the linkage structure by having
iterations where the subspace constraint is relaxed? Without that relaxation, the rationale for the
computations would be missing.

Another shortcoming in PDA′, equally serious although not so obvious, is that the proximal term in
(a′) can’t be evaluated when e > 0 without utilizing the projection mapping P⊥. That undermines the
motivation for progressive decoupling: minimization steps that are able to ignore the linkage subspace
structure. Maybe there’s a way to get around this while still taking advantage of the intriguing
reduction to the convex case offered by variational sufficiency?

One idea is to switch the role of the elicitation parameter e from step (a′) to step (b′) by leaving
Jk in the minimization as in PDA but switching from Jk in the dual update formula to Je

k , but now
with Je

k = Ck − eI instead of Je
k = Ck + eI. This corresponds to applying the PPA to Te with those

Je
k norms. There’s no trouble then with the projection P⊥ coming in, because it’s already implicit at

that stage from the projection P being used to get zk+1. In fact, that was the approach sucessfully
taken to progressive decoupling originally in [8]. But, unfortunately, it emerges now that it worked
there only because the metric was fixed and the minimization was exact. The trouble unleashed by
dropping either of those features is that the variable-metric taming conditions in (2.6) have to hold for
Ck − eI instead of Ck, and the distances in the trust region and stopping criteria have to change that
way as well. The altered conditions are tighter, however, and with e having a value that is truly just a
tentative guess, there’s not much sense in supposing they hold for a one particular level of elicitation,
unless it’s very high. That would cause problems from other angles.

Still, future efforts might lead to discoveries that could bring reliable success to progressive decou-
pling even in nonconvex optimization.
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