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Abstract

This paper extends the 2013 development by Rockafellar and Uryasev of the Risk Quadrangle (RQ)
as a unified scheme for integrating risk management, optimization, and statistical estimation. The RQ
features four stochastic functionals — risk, deviation, regret, and error, along with an associated “stastic,”
and articulates their revealing and in some ways surprising interrelationships and dualizations. Quadrangle
additions and facts that have come to light since 2013 are reviewed in a synthesis focused on both the-
oretical advancements and practical applications. New quadrangles — superquantile, superquantile norm,
expectile, biased mean, quantile symmetric average union, and φ-divergence-based quadrangles — offer novel
approaches to risk-sensitive decision-making across various fields such as machine learning, statistics, finance,
and PDE-constrained optimization.

The theoretical contribution comes in axioms for “subregularity” which relax the “regularity” of the quad-
rangle functionals where what has turned out to be too restrictive for some budding applications. The main
RQ theorems and connections are revisited and rigorously extended to this more ample framework. Examples
are provided in portfolio optimization, regression and classification, that demonstrate the advantages and
the role played by duality, especially in ties to robust optimization and generalized stochastic divergences.
Keywords: risk quadrangle, risk, deviation, error, regret, quantile, superquantile, value-at-risk, conditional
value-at-risk, expected shortfall, coherency, convexity, duality, stochastic optimization, regression, stochastic
divergences, robust optimization.
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1 Introduction
This paper extends the work of Rockafellar and Uryasev [2013] and reviews the new results published since
2013. Although the material in the paper is self-contained and can be read independently, readers are strongly
advised to familiarize themselves with the content of Rockafellar and Uryasev [2013].

Background. The Risk Quadrangle (RQ) is a unified framework that integrates risk management, optimiza-
tion, and statistical estimation by grouping four axiomatically defined stochastic functionals: risk, deviation,
regret and error connected by a so-called statistic. For a random variable X, risk provides a numerical surrogate
for the overall hazard in X, deviation measures the ”nonconstancy“ in X, regret assesses the distaste in facing
the mix of good-and-bad outcomes of X, and error quantifies the ”nonzeroness“ in X. The statistic identifies the
constant closest to X with respect to a particular form of error functional, but also gives the level of trade-off
between future loss and immediate acceptance that is appropriate for a particular form of regret functional.
The fruitful interplay between these functionals supports a vast spectrum of applications across all engineering
areas where probabilistically modeled uncertainty is involved. Among them, to name a few, are quantitative
finance, reliability engineering, mechanical engineering, medical imaging, and machine learning.

The Risk Quadrangle

risk R ←→ D deviation
optimization ↑↓ S ↓↑ estimation

regret V ←→ E error

General Relationships

R(X) = D(X) + E[X] V(X) = E(X) + E[X]

D(X) = min
C

{
E(X − C)

}
R(X) = min

C

{
C + V(X − C)

}
argmin

C

{
E(X − C)

}
= S(X) = argmin

C

{
C + V(X − C)

}
The relationship between risk and regret allows: 1) constructing new risk measures and quadrangles; 2)

building efficient algorithms for risk optimization (see e.g., Rockafellar and Uryasev [2000, 2002]; Ben-Tal and
Teboulle [2007]; Kuzmenko [2020]; Malandii et al. [2024], and more). The relation between deviation and error
links statistical estimation and risk management, resulting in concepts such as risk-tuned regression and risk
tracking (see Rockafellar et al. [2008]; Rockafellar and Royset [2015]). This relation shows equivalences among
various types of regressions and provides robust and efficient estimation techniques (see Rockafellar et al. [2014];
Golodnikov et al. [2019]; Malandii et al. [2024]; Malandii and Uryasev [2024]). For more details, see Rockafellar
and Uryasev [2013]; Royset [2022].

Motivation. The motivation of this paper is twofold: on the practical side, it aims to offer engineers and
practitioners robust, implementable methods for regression and risk estimation under real-world constraints;
on the theoretical side, it seeks to advance foundational principles in stochastic optimization, distributionally
robust optimization, convex analysis, and statistical estimation, targeting pure mathematicians who explore
deep relationships within these fields.

Practical aspects. In their original work, Rockafellar and Uryasev [2013] established the foundation of
the RQ, formulating key theorems and relationships that unify the RQ elements within a single mathematical
structure. The innovations were largely theoretical, without extensive demonstrations of practical applications
or empirical benefits, but in the last decade, a series of other works has begun to fill the gap. The RQ scheme
has been leveraged to answer application-driven questions with practical results in risk management, statistical
estimation, machine learning, fairness-aware machine learning, and beyond. This has encompassed new additions
such as the superquantile quadrangle (Rockafellar et al. [2014]), the superquantile norm quadrangle (Mafusalov
and Uryasev [2016]), the expectile quadrangles (Malandii et al. [2024]), the biased mean quadrangle (Malandii
and Uryasev [2024]), and the quantile symmetric average union quadrangle (Malandii and Uryasev [2022]).

In particular, these recent contributions illustrate how the RQ provides a powerful framework for constructing
new regression estimators. For example, the expectile and least squares regressions (known to be quadratic
programs) have been reduced to linear programs, enabling fast algorithms that also accommodate mixed-integer
constraints–an essential feature in many real-world applications. The biased mean quadrangle introduced a novel
estimator for the so-called biased mean, broadening the scope of classical methods in robust statistics. Likewise,
the superquantile norm quadrangle has uncovered fundamental connections between support vector regression
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(SVR) and distributionally robust optimization, while the quantile symmetric average union quadrangle has
shown that SVR estimates the average of two symmetric quantiles, thus clarifying its theoretical and practical
strengths and limitations.

Another active area of research—fairness-aware machine learning—has also significantly benefited from the
development of the axiomatic theory of risk and deviation measures. In particular, Williamson and Menon [2019]
defined fairness as a deviation in subgroup risks, which enabled the reduction of fairness-aware classification to
a convex optimization problem. This problem can be efficiently solved by leveraging the relationship between
risk and regret.

Despite this progress, the emerging body of work remains scattered across multiple publications, each fo-
cusing on a specific quadrangle. Researchers and practitioners seeking to exploit these new developments lack
a single, cohesive resource detailing how the RQ can be specialized, extended, and integrated into broad classes
of optimization and estimation problems.

This paper synthesizes recent advancements in the RQ framework, highlighting how these new quadrangles
were derived and the benefits they offer for risk-sensitive decision-making. The following Map of Applications
illustrates several representative examples from machine learning, statistics, quantitative finance, and risk-averse
PDE-constrained optimization (see, for example, Antil et al. [2018]), showcasing the breadth of the framework.
The following Portfolio Optimization example for risk and deviation is based on general relationships between
elements of quadrangle, see Theorem 3.1. The Expectile Minimization example is based on the Expectile
Quadrangle considered in Example 7. The Linear Regression example is based on Regression Theorem 4.1.

Map of Applications

Unsupervised learning Supervised learning
Given: X = (X1, . . . , Xd) = features X = (X1, . . . , Xd) = features, Y = target
Model: ℓ(w;X) = loss, w ∈ W ℓ(w;X, Y ) = loss, w ∈ W
Problem: min

w
R(ℓ(w;X)) or min

w
D(ℓ(w;X)) min

w
R(ℓ(w;X, Y )) or min

w
E(ℓ(w;X, Y ))

Examples

Portfolio Optimization

ℓ(w;X) = −w⊤X

W = {w ∈ Rd : w⊤1 = 1, E[w⊤X] = µ ≥ 0}

min
w∈W

R(l(w;X)) = min
w∈W,C

{C+V(l(w;X)−C)}

or min
w∈W

D(l(w;X)) = min
w∈W,C

E(l(w;X)−C)=

= min
w∈W

{R(l(w;X))−E[l(w;X)]}

Linear Regression

ℓ(w;X, Y ) = Y − w̄⊤X− w0

W = Rd+1, w = (w̄, w0)

min
w∈W

E(ℓ(w;X, Y )) =

= min
w∈W

D(ℓ(w;X, Y )) s.t. 0 ∈ S(ℓ(w;X, Y ))

PDE-constrained
Expectile Minimization

ℓ(w;X) = L(u(w;X),X), B = Banach space

W = {w ∈ B : f(u(w;X),w,X)︸ ︷︷ ︸
PDE in weak form

= 0}

min
w∈W

eK(ℓ(w;X)) =

= min
w∈W,C

C+{E[ℓ(w;X)−C+
1

K
(ℓ(w;X)−C)+]}+

Support Vector Classification

ℓ(w;X, Y ) = −Y (w̄⊤X+w0), Y = {−1,+1}

W = {w ∈ Rd+1 : ∥w̄∥2 ≤ 1, w0 ∈ R}

min
w∈W

CVaRα(ℓ(w;X, Y )) =

= min
w∈W,C

{C +
1

1−α
E[l(w;X)− C]+}

Theoretical aspects. Practical challenges and advances have in turn stimulated the theoretical devel-
opment of the framework — especially its axiomatic foundations. The basic theorems and relationships have
accordingly needed updating beyond their original forms in Rockafellar and Uryasev [2013]. Interest in gener-
alized stochastic divergences in connection with distributional robustness, for example, has led to the discovery
that such divergence functionals are actually dual to risk functionals, but of a sort not covered by the original
scheme. That has pointed to the need for some relaxation in the original axioms.

The stochastic functionals that comprise the quadrangle are axiomatically defined (see The List of Potential
Axioms), with their axioms deeply rooted in convex analysis and classical statistics. The axiomatic nature
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of the framework elevates the optimization problem settings beyond the expectation-type objectives that have
long been common in statistics and more recently in machine learning. The significance of objectives other
than expected loss in machine learning became evident with the development of ν–Support Vector Machines by
Schölkopf et al. [2000].

The rapid development and global influence of machine learning have revealed the need for axiomatic re-
visions in the RQ setting. Specifically, several useful error quantifiers such as the Vapnik error (or expected
ε–insensitive loss), E(X) = E[|X| − ε], ε ≥ 0 and the superexpectation error, E(X) = {E[X−] − x+,E[X+] −
x−}, x ∈ R, do not satisfy the strict positivity axiom (A9) (see The List of Potential Axioms), which stimulates
an appropriate relaxation of this particular axiom, followed by axioms (A6)–(A8). The strict positivity axiom
states that an error of a random variable X should always be positive whenever X is nonzero, which holds for
most classical errors, such as mean squared error, mean absolute error, etc. However, in practice, there may
exist so-called “error-insensitive” regions, where errors below a certain threshold are ignored. The most famous
example is in ε–Support Vector Regression (cf. Drucker et al. [1996]; Vapnik et al. [1996]), where the Vapnik
error is minimized. To address the aforementioned issues, this paper introduces subregularity axioms, where
the concept of subaversity is used to relax the (A6)–(A9). The proofs of the fundamental theorems have to be
adjusted to incorporate this extension.

List of Potential Axioms

For a functional F : Lp → (−∞,∞] consider the following set of axioms:

(A1) Convexity: F(λX + (1− λ)Y ) ≤ λF(X) + (1− λ)F(Y ) for all X,Y ∈ Lp and every λ ∈ [0, 1].

(A2) Lower semicontinuity: {F ≤ C} := {X ∈ Lp : F(X) ≤ C} is closed for all C ∈ R.

(A3) Constant fidelity: F(X) = C ∈ R if P(X = C) = 1.

(A4) Constant neutrality: F(X) = 0 ∈ R if P(X = C) = 1.

(A5) Zero fidelity: F(X) = 0 ∈ R if P(X = 0) = 1.

(A6) Aversity: F(X) > E[X] for all X ̸= C.

(A7) Zero aversity: F(X) > E[X] for all X ̸= 0.

(A8) Nonconstant positivity: F(X) > 0 for all X ̸= C.

(A9) Strict positivity: F(X) > 0 for all X ̸= 0.

(A10) Monotonicity: F(X) ≤ F(Y ) when P(X ≤ Y ) = 1.

(A11) Positive homogeneity: F(λX) = λF(X) when λ > 0.

Regular Quadrangle Axioms

(R) Regular risk : (A1), (A2), (A3), (A6).

(V) Regular regret : (A1), (A2), (A5), (A7).

(D) Regular deviation: (A1), (A2), (A4), (A8).

(E) Regular error : (A1), (A2), (A5), (A9).

Originally in Rockafellar and Uryasev [2013], the definitions of regular error and regret also included
limit conditions. For E , this required that limk→∞ E[Xk] = 0 for any sequence of r.v.s {Xk}∞k=1 satisfying
limk→∞ E [Xk] = 0, and there was something analogous for V. Those conditions were needed back then for the
proofs of some theorems, but in the meantime they have been found to be superfluous — other proofs succeed
without invoking them. Presenting the RQ framework in that simpler form is one of the contributions of this
paper.

For the orientation of readers who may be familiar with risk measures R that are coherent, but perhaps
new to risk measures that are regular, an explanation of the relationship may be helpful. As introduced in the
pioneering days of risk theory, a coherent measure of risk had to satisfy axioms that, although stated differently,
were equivalent to the combination of (A1), (A2), (A3), (A10) and (A11) for R in place of F (although (A2) did
not appear from the start, because the original context was such that the convexity of the functionals entailed
their continuity). Later there was incentive on many fronts to drop (A11) from this list, and then R was called,
by some, simply a convex measure of risk. The trouble with that there are very prominent instances of risk
measure R, such as the one in the Standard Quadrangle at the beginning of Section 2, that are convex but
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lack the monotonicity in (A10). That monotonicity, however, is a watershed requirement for dualization that
reflects in terms of alternative probability distributions compared to the nominal one. Rockafellar suggested
it would make better sense to tie coherency to that monotonicity and adjust the terminology by speaking of
risk measures satisfying (A1), (A2), (A3), and (A10) as coherent in the general sense. But if mononicity is
so important, why is (A10) absent from the definition of a regular risk measure R in Rockafellar and Uryasev
[2013]? That is because the Standard Quadrangle, with its long-running usage and deep connection to classical
statistics, had to be admitted to the RQ picture despite its lack of (A10), in particular for bringing out that
deficiency.

Incentives coming from stochastic divergences. The stochastic modeling of uncertainty entails an
underlying probability space (Ω,M,P0), which is used to define the random losses (or costs), ℓ(w, ω), ω ∈ Ω, as
real-valued random variables. Specifically, the probability of a random loss being less than a certain numerical
threshold is measured by the cumulative distribution function defined by the underlying probability measure,
i.e., F (x) = P0({ω ∈ Ω : ℓ(w, ω) ≤ x}). When the goal is to find a decision w that “minimizes” the loss function,
the stochastic nature of this function raises the question: “minimizes in which sense?” The answer to this
question significantly relies on the information regarding the underlying probability P0, which is usually either
unknown or only partially available.

When the natural designation of P0 is at hand, the classical approach suggests minimizing the average loss,
i.e.,

min
w

EP0
[ℓ(w, ω)].

The average loss minimization is often referred to as risk-neutral optimization. On the other hand, if there is
a lack of information regarding the underlying probability, the robust approach suggests minimizing the loss
associated with the worst outcome ω ∈ Ω, i.e.,

min
w

max
ω∈Ω

ℓ(w, ω).

While this approach has its merits and successes, it can also be overly conservative and, consequently, costly.
The distributionally robust approach offers a sort of compromise between neutrality and conservativeness.

Rather than relying solely on a single distribution P0 or avoiding probabilities entirely, we can consider sets of
alternative distributions P ∈ PR and minimize the expected value with respect to the worst one, i.e.,

min
w

max
P∈PR

EP[ℓ(w, ω)].

Consequently, it raises the question of how to construct the set of probability alternatives PR. It turns out
that the answer is intimately connected to the duality theory for coherent measures of risk R in the basic sense,
satisfying (A1), (A2), (A3), (A10) and (A11), and the concept of distributional robustness in that way is an
integral part of the RQ picture. A key there to constructing sets PR consisting of probability alternatives
is to take those sets to be “neighborhoods” of nominal probability measure P0 with respect to some sort of
“distance” concept. Such distances are furnished by general stochastic divergence functionals. That much has
been understood by practitioners in machine learning and elsewhere, but here there will be something more.
Stochastic divergence functionals will be given an axiomatic definition and seen as duals to special risk measures
that are not quite regular, but fit with a relaxation of regularity in addition to being coherent in the general
sense.

Outline. The rest of the paper is organized as follows. Section 2 provides a list of examples of risk quadrangles
highlighting the framework’s scope and motivating its further extensions.

Section 3 reviews and extends the main properties and relationships of the subregular RQ. Specifically,
subregularity axioms and definitions are given in Subsection 3.1. The discussion on the fundamental theorems–
cornerstones of the framework– is a subject of Subsection 3.2. The primal aspects of quadrangle construction
are covered in Subsection 3.2.1. Dual representation and conjugate duality of the subregular risk, deviation,
regret, and error are discussed in Subsection 3.2.2, and the concept of generating families of positive homogeneous
functionals is presented in Subsection 3.3. Section 4 is devoted to discussing generalized regression and statistical
estimation in the subregular RQ framework. Finally, Section 5 overviews the ideas of robust and distributionally
robust optimization in the subregular RQ framework.

2 Examples of Risk Quadrangles
Following Rockafellar and Uryasev [2013], we start with the examples highlighting the framework’s scope and
motivating its further extension. We begin with a few main examples from Rockafellar and Uryasev [2013], and
then continue with new examples.
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Example 1 (Standard Quadrangle, λ > 0). This is Example 1 in Rockafellar and Uryasev [2013], where it is
called the Mean-based Quadrangle.

Standard Quadrangle

S(X) = E[X] = mean
R(X) = E[X] + λσ(X) = safety margin tail risk
D(X) = λσ(X) = standard deviation, scaled
V(X) = E[X] + λ||X||2 = L2-regret, scaled
E(X) = λ||X||2 = L2-error, scaled

Example 2 (Quantile-based Quadrangle, α ∈ (0, 1)). This is Example 2 in Rockafellar and Uryasev [2013].
Recall that for any r.v. X its cumulative distribution function is FX(x) = prob (X ≤ x), and its α-quantile is
qα(X) = [q−α (X), q+α (X)], where q−α (X) = sup{x |FX(x) < α} and q+α (X) = inf{x |FX(x) > α}. Recall also
notation X+ = max(X, 0) and X− = max(−X, 0).

Quantile-based Quadrangle

S(X) = VaRα(X) = qα(X) = quantile

R(X) = CVaRα(X) =
1

1− α

∫ 1

α

VaRβ(X)dβ = CVaR

D(X) = CVaRα(X − E[X]) = CVaR-deviation

V(X) =
1

1− α
E[X+] = average absolute loss, scaled

E(X) = E
[

α

1− α
X+ +X−

]
= normalized Koenker-Bassett error

We refer to Rockafellar and Uryasev [2013] for many more examples. We next present quadrangles not listed
in Rockafellar and Uryasev [2013].

Example 3 (CVaR-based Quadrangle, α ∈ (0, 1)). Estimating conditional value-at-risk (CVaR, also called
superquantile) via regression has long been challenged by CVaR’s known non-elicitability property Chun et al.
[2012]; Gneiting [2011], which often forces indirect, quantile regression-based approximations. Overcoming this
obstacle is crucial for developing more direct and reliable algorithms for superquantile estimation.

A breakthrough came with the CVaR Quadrangle developed in Rockafellar and Royset [2014]; Rockafellar
et al. [2014], which underpins new methodologies for CVaR estimation. In particular, CVaR regression functions
emerge naturally as the optimal solutions to the CVaR2 error minimization problem. This fundamental result
circumvents the non-elicitability issue without relying on indirect approaches.

The CVaR-based quadrangle is regular.

CVaR Quadrangle

S(X) = CVaRα(X) = CVaR

R(X) =
1

1− α

∫ 1

α

CVaRβ(X)dβ = CVaR2 risk

D(X) =
1

1− α

∫ 1

α

CVaRβ(X)dβ − E[X] = CVaR2 deviation

V(X) =
1

1− α

∫ 1

0

[CVaRβ(X)]+dβ = CVaR2 regret

E(X) =
1

1− α

∫ 1

0

[CVaRβ(X)]+dβ − E[X] = CVaR2 error

Example 4 (Quantile Symmetric Average Quadrangle (CVaR Norm Quadrangle)1, α ∈ (0, 1)). Addressing the
limitations of classical Lp-norms in functional analysis, statistical estimation, and machine learning has driven
interest in alternative norms capable of quantifying the risk of rare events. One promising candidate is the
CVaR norm, which provides robust performance in various regression scenarios.

Building on this motivation, the quantile symmetric average quadrangle–developed and studied by Mafusalov
and Uryasev [2016]—introduces the CVaR norm as its error function, earlier explored by Pavlikov and Uryasev

1Originally, this quadrangle was named “CVaR Norm Quadrangle” in Mafusalov and Uryasev [2016]. However this paper uses
the term “Quantile Symmetric Average Quadrangle,” following the original logic of Rockafellar and Uryasev [2013].
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[2014]; Bertsimas et al. [2011]. This framework has shown noteworthy success in linear regression applications,
where Malandii and Uryasev [2022] demonstrated that regression with respect to the CVaR norm is equivalent to
the well-known ν-Support Vector Regression (SVR) of Schölkopf et al. [2000] and Stable Regression of Bertsimas
and Paskov [2020] which is essentially a well-kown dual formulation of CVaR.

The quantile symmetric average quadrangle is regular.

Quantile Symmetric Average Quadrangle (CVaR Norm Quadrangle)

S(X) =
1

2

(
VaR(1−α)/2(X) + VaR(1+α)/2(X)

)
R(X) =

1

2

(
(1 + α)CVaR(1−α)/2(X) + (1− α)CVaR(1+α)/2(X)

)
D(X) =

1

2

(
(1 + α)CVaR(1−α)/2(X − E[X]) + (1− α)CVaR(1+α)/2(X − E[X])

)
V(X) = ⟨⟨X⟩⟩α + E[X] = CVaR norm regret
E(X) = CVaRα(|X|) = ⟨⟨X⟩⟩α = CVaR norm

Example 5 (Quantile Symmetric Average Union Quadrangle, 0 ≤ x < 1
2 (ess sup(X)−ess inf(X))). Integrating

machine learning tools with classical statistics and risk management has long been of interest for creating robust
and versatile estimation frameworks. A notable step in this direction is the effort to embed well-known methods
like ε-SVR Drucker et al. [1996]; Vapnik et al. [1996] into the Risk Quadrangle framework.

As constructed in Malandii and Uryasev [2022], the quantile symmetric average union quadrangle accom-
plishes this integration: the optimal solution to the regression problem with the Vapnik error emerges as an
estimate of the average of two symmetric quantiles, effectively bridging the gap between traditional statistical
tools and modern machine learning methods.

The quantile symmetric average union quadrangle is not regular. For instance, axiom (A9) fails for its error
measure. Nonetheless, it is a subregular risk quadrangle (see Definition 3.11).

Define
Ax(X) =

{
α ∈ [0, 1)

∣∣∣x ∈ 1

2

(
VaR(1+α)/2(X)−VaR(1−α)/2(X)

)}
.

Then

Quantile Symmetric Average Union Quadrangle

S(X) =
⋃

α∈Ax(X)

1

2

(
VaR(1−α)/2(X) + VaR(1+α)/2(X)

)
R(X) =

1

2

(
(1 + α)CVaR(1−α)/2(X) + (1− α)CVaR(1+α)/2(X)

)
− (1− α)x, ∀ α ∈ Ax(X)

D(X) =
1

2

(
(1 + α)CVaR(1−α)/2(X) + (1− α)CVaR(1+α)/2(X)

)
− E[X]− (1− α)x, ∀ α ∈ Ax(X)

V(X) = E[|X| − x]+ + E[X] = Vapnik regret
E(X) = E[|X| − x]+ = Vapnik error

Example 6 (Expectile-based Quadrangle (Asymmetric Mean Squared Error Version), q ∈ (0, 1)). The expectile
of a random variable X at confidence level q ∈ (0, 1) is defined as (cf. Newey and Powell [1987])

eq(X) = argmin
C∈R

{E(X − C)} , (1)

where E(X) = E[qX2
+ + (1 − q)X2

−] is the asymmetric mean squared error. The case q = 0.5 gives the usual
mean value.

The expectile-based quadrangle (asymmetric mean squared error version) was introduced in Kuzmenko
[2020] and studied in Malandii et al. [2024]. This quadrangle generalizes the mean quadrangle introduced in
Rockafellar and Uryasev [2013]. The expectile-based quadrangle (asymmetric mean squared error version) is
regular.
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Expectile-based Quadrangle (Asymmetric Mean Squared Error Version)

S(X) = eq(X) = expectile
R(X) = D(X) + E[X] = asymmetric risk

D(X) = qE
[
((X − eq(X))+)

2
]
+ (1− q)E

[
((X − eq(X))−)

2
]
= asymmetric variance

V(X) = E(X) + E[X] = asymmetric regret

E(X) = E[qX2
+ + (1− q)X2

−] = asymmetric mean squared error

Example 7 (Expectile-based Quadrangle (Piecewise Linear Version), K > 0). Despite growing interest in
expectiles for risk management and statistical estimation, there has been no unified framework for both efficient
optimization and statistical estimation.

Expectile can also be defined by the necessary condition of extremum for (1) as a solution to the equation

qE[(X − C)+] = (1− q)E[(X − C)−]. (2)

With formula E[X − C] = E[(X − C)+]− E[(X − C)−] equation (2) is equivalently transformed to

C − E[X] =
1

K
E[(X − C)+], (3)

where K = 1−q
2q−1 . A one-to-one correspondence exists between values K > 0 and values q in the interval

1/2 < q < 1. Also, there is a one-to-one correspondence between values K in the interval K < −1 and values q
in the interval 0 < q < 1/2.

The equation (3) should be considered separately for K > 0 (1/2 < q < 1) and for K < −1 (0 < q < 1/2)
because properties of expectile as a function of the parameter q change at the point q = 1/2.

For the range K > 0 (1/2 < q < 1), expectile is a coherent risk measure in the basic sense (see Shapiro
[2012]), i.e., it is translation invariant, positively homogeneous, monotonic, and subadditive.

The expectile-based quadrangle (piecewise linear version) introduced in Kuzmenko [2020] and studied in
Malandii et al. [2024] has the expectile, eK , as a risk measure as well as the statistic. Having the expectile as a
risk allows to leverage the [Rockafellar and Uryasev, 2013, Regret Theorem] for efficient expectile optimization.
Having a piecewise linear error allows for the reduction of the expectile estimation with linear regression to a
linear programming problem.

The expectile-based quadrangle (piecewise linear version) is regular.

Expectile-based Quadrangle (Piecewise Linear Version)

S(X) = eK(X) = expectile
R(X) = min

C
{C + V(X − C)} = eK(X) = expectile risk

D(X) = min
C
{E(X − C)} = eK(X − E[X]) = expectile deviation

V(X) =
(
E[X] + 1

KE[X+]
)
+
=
(
E
[
X + 1

KX+

])
+
= piecewise linear regret

E(X) = V(X)− E[X] = max
{
−E[X], 1

KE[X+]
}
= piecewise linear error

Example 8 (Mean-based Quadrangle (Piecewise Linear Version)). Modern risk management and statistical
estimation often require alternatives to the classical mean squared error. A piecewise linear approach can offer
greater flexibility and potentially more efficient computational methods, motivating the development of new
frameworks that incorporate mean–upper–semideviation risk measures within standard regression tasks.

The mean-based quadrangle (piecewise linear version), introduced and studied by Malandii and Uryasev
[2024], provides exactly such a framework. By pairing a mean–upper–semideviation risk measure with the
statistical estimation of mean value via regression, this quadrangle replaces the classical mean squared error
with a piecewise linear alternative. Crucially, the resulting linear regression can be efficiently reformulated as a
linear programming problem, offering computational advantages and more robust modeling possibilities.

The mean-based quadrangle (piecewise linear version) is regular.

Mean-based Quadrangle (Piecewise Linear Version)

S(X) = E[X] = mean
R(X) = E[X − E[X]]+ + E[X] = mean–upper–semideviation risk
D(X) = E[X − E[X]]+ = upper–semideviation
V(X) = max{E[X−],E[X+]}+ E[X] = mean–upper–semideviation regret
E(X) = max{E[X−],E[X+]} = mean–upper–semideviation error

8



Example 9 (Biased Mean Quadrangle, x ∈ R). A growing need exists for alternative regression frameworks
that go beyond classical mean-based approaches, particularly in engineering and finance. The concept of super-
expectation Rockafellar and Royset [2014] offers a way to capture biased mean estimates, which can be more
relevant for certain practical applications. Leveraging these ideas, the biased mean quadrangle developed in
Malandii and Uryasev [2024] enables conditional biased mean estimation.

Within this biased mean quadrangle, the statistic is the biased mean S(X) = x+ E[X], for any x ∈ R. The
superexpectation error plays a central role in estimating the conditional biased mean via regression, creating a
wide range of potential engineering and financial applications. Notably, this approach to regression is equivalent
to quantile regression; rather than specifying a confidence level α ∈ (0, 1), one determines the desired quantile by
choosing a distance x ∈ R from the mean. Furthermore, the mean-based quadrangle (piecewise linear version)
emerges as a special case of this more general quadrangle.

The biased mean quadrangle is not regular. However, it is a subregular risk quadrangle, see Definition 3.11.

Biased Mean Quadrangle

S(X) = x+ E[X] = biased mean
R(X) = E[X − E[X]− x]+ − x− + E[X] = superexpectation risk
D(X) = E[X − E[X]− x]+ − x− = superexpectation deviation
V(X) = max{E[X−]− x+,E[X+]− x−}+ E[X] = superexpectation regret
E(X) = max{E[X−]− x+,E[X+]− x−} = superexpectation error

Example 10 (φ–Divergence-based Quadrangle, β > 0). The φ–divergence-based quadrangle introduced and
studied in Peng et al. [2024] is based upon the concept of distributionally robust risk measures studied by
Shapiro [2017]; Dommel and Pichler [2020]. The function φ here is a so-called extended divergence function,
i.e., a convex lower semi-continuous function φ : R→ (∞,∞] satisfying2

φ(1) = 0, 1 ∈ int({x : φ(x) < +∞}) . (4)

In what follows φ∗ denotes the convex conjugate function of φ. This quadrangle provides an interpretation of
portfolio optimization, classification, and regression as robust (or distributionally robust) optimization. The
φ–divergence-based quadrangle is regular.

φ–Divergence-based Quadrangle

Rφ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
φ∗
(X
t
− C

)]}

Dφ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
φ∗
(X
t
− C

)
− X

t

]}

Vφ,β(X) = inf
t>0

t

{
β + E

[
φ∗
(X
t

)]}

Eφ,β(X) = inf
t>0

t

{
β + E

[
φ∗
(X
t

)
− X

t

]}

Sφ,β(X) = argmin
C∈R

inf
t>0

t

{
C

t
+ β + E

[
φ∗
(X − C

t

)
− X

t

]}

The following examples are specific instances of the φ-divergence-based quadrangle for different divergence
functions φ.

Example 10.1 (Kullback–Leibler Divergence-based Quadrangle, α ∈ (0, 1)). The Kullback–Leibler divergence-
based quadrangle is built upon the entropic value-at-risk (EVaR) introduced and studied in Ahmadi-Javid
[2012]. The divergence function and its convex conjugate are

φ(x) = x ln(x)− x+ 1, φ∗(z) = exp(z)− 1.

Let β = ln
(

1
1−α

)
. The complete quadrangle is as follows:

2We call φ a divergence function if it additionally satisfies φ(x) = +∞ for x < 0 .
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Kullback–Liebler Divergence-based Quadrangle

Rφ,α(X) = EVaRα(X) = inf
t>0

t

{
lnE

[ e
X
t

1− α

]}

Dφ,α(X) = EVaRα(X)− E[X] = inf
t>0

t

{
lnE

[eX−E[X]
t

1− α

]}

Vφ,α(X) = inf
t>0

t

{
ln
( 1

1− α

)
+ E

[
e

X
t − 1

]}

Eφ,α(X) = inf
t>0

t

{
ln
( 1

1− α

)
+ E

[
e

X
t − X

t
− 1
]}

Sφ,α(X) = t∗ lnE
[
e

X
t∗
]

In the quadrangle, t∗ = t∗(X) is a solution of the following equation:

t∗ ln
( 1

1− α

)
+ t∗ lnE

[
e

X
t∗
]
−

E
[
Xe

X
t∗
]

E
[
e

X
t∗
] = 0.

Example 10.2 (Total Variation Divergence-based Quadrangle). The total variation divergence-based quadran-
gle relies on Example 3.10 of Shapiro [2017], where the derivation of the risk measure was carried out. Consider
the following divergence function and its convex conjugate

φ(x) =

{
|x− 1|, x ≥ 0

+∞, x < 0
and φ∗(z) =

{
−1 + [z + 1]+, z ≤ 1

+∞, z > 1
.

The complete quadrangle is as follows:

Total Variation Divergence-based Quadrangle

Rφ,β(X) =
β

2
ess sup(X) + (1− β

2
)CVaR β

2
(X)

Vφ,β(X) = inf
t>0,t≥ess supX

{
t(β − 1) + E

[
X + t

]
+

}

Dφ,β(X) =
β

2
ess sup(X) + (1− β

2
)CVaR β

2
(X)− E[X]

Eφ,β(X) = inf
t>0

{
t(β − 1) + E

[[
X + t

]
+
−X

]}
Sφ,β(X) = ess sup(X)− 2VaR1− β

2
(X)

Example 10.3 (Pearson Divergence-based Quadrangle). The Pearson divergence-based quadrangle is a special
case of the higher-order quantile-based quadrangle in Example 12 of Rockafellar and Uryasev [2013]. The
second-order superquantile risk measure from this quadrangle was introduced and studied by Krokhmal [2007].
The divergence function and its convex conjugate are

φ(x) =

{
(x− 1)2, x ≥ 0

+∞, x < 0
and φ∗(z) =

{
(z+2)2

4 − 1, z + 2 ≥ 0

−1, z + 2 < 0
=

1

4
[z + 2]

2
+ − 1 .

The complete quadrangle is
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Pearson Divergence-based Quadrangle

Rφ,β(X) = min
C∈R

(√
(β + 1)E

[
(X − C)2+

]
+ C

)
= second-order superquantile

Vφ,β(X) =
√
(β + 1)E

[
X2

+

]
= L2–normed absolute loss, scaled

Dφ,β(X) = min
C∈R

(√
(β + 1)E

[
(X − C)2+

]
− E[X − C]

)
= second–order superquantile deviation

Eφ,β(X) =
√
(β + 1)E

[
X2

+

]
− E[X] = second–order quantile error

Sφ,β(X) = argmin
C∈R

(√
(β + 1)E

[
(X − C)2+

]
− E[X − C]

)
= second–order quantile

Example 10.4 (Extended Pearson Divergence-based Quadrangle). Consider the following extended divergence
function and its convex conjugate

φ(x) = (x− 1)2 and φ∗(z) =
z2

4
+ z .

Then, the extended Pearson χ2-divergence risk measure is given by

Rφ,β(X) = inf
t>0,C∈R

t

{
C + β +

1

4t2
E[(X − C)2] + E

[
X − C

t

]}
= inf

t>0,C∈R

{
tβ +

1

4t
E[(X − C)2] + E[X]

}
= E[X] +

√
βV[X],

where V[X] = E[(X − E[X])2] is the variance of X and (t∗, C∗), which furnish the minimum are

t∗ =

√
V[X]

4β
, C∗ = E[X].

The corresponding regret is given by

Vφ,β(X) = E[X] +
√
βE[X2]

= E[X] +
√
β ∥X∥2 .

Let τ =
√
β and σ(X) =

√
V[X], then the complete quadrangle is

Extended Pearson Divergence-based Quarangle

Rφ,τ (X) = E[X] + τσ(X) = safety margin tail risk
Vφ,τ (X) = E[X] + τ ∥X∥2 = L2–regret, scaled
Dφ,τ (X) = τσ(X) = standard deviation, scaled
Eφ,τ (X) = τ ∥X∥2 = L2–error, scaled
Sφ,τ (X) = E[X] = mean

exactly the mean quadrangle in Example 1. The divergence function is the extended version of the divergence
function of χ2–divergence. It is worth noting that the radius β of the uncertainty set does not impact the
regression result, since it only impacts the scale of the error function.
Example 10.5 (Generalized Extended Pearson Divergence-based Quadrangle). Let 0 < q < 1. Consider the
following extended divergence function and its convex conjugate

φ(x) =

{
1
q (x− 1)2, x > 1
1

1−q (x− 1)2, x ≤ 1
and φ∗(z) =

{
( qz2 + 1)z − 1

q (
qz
2 )2 = qz2

4 + z, z > 0

( (1−q)z
2 + 1)z − 1

1−q (
(1−q)z

2 )2 = (1−q)z2

4 + z, z ≤ 0
.
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The error measure is given by

Eφ,β(X) = inf
t>0

tβ + E
[
tφ∗

(
X

t

)
−X

]
= inf

t>0
tβ +

1

4t
E
[
qX2

− + (1− q)X2
+

]
= tβ +

1

4t
E
[
qX2

− + (1− q)X2
+

] ∣∣∣
t=

√
E[qX2

−+(1−q)X2
+]

4β

=
√
βE
[
qX2

− + (1− q)X2
+

]
.

Thus, the complete quadrangle is as follows

Generalized Extended Pearson Divergence-based Quadrangle

Rφ,β(X) = Dφ,β(X) + E[X]

Vφ,β(X) = Eφ,β(X) + E[X]

Dφ,β(X) =
√
β
(
qE[(X − eq(X))2+] + (1− q)E[(X − eq(X))2−]

)
Eφ,β(X) =

√
βE
[
qX2

− + (1− q)X2
+

]
= asymmetric L2–error, scaled

Sφ,β(X) = eq(X) = expectile

Therefore, we recover the Expectile-based Quadrangle (Asymmetric L2–error version) introduced in Kuz-
menko [2020]; Malandii et al. [2024]. The divergence function φ(x) gives rise to a generalized Pearson χ2–
divergence.

3 Theoretical Framework
This section provides a theoretical foundation for defining, constructing, and utilizing risk quadrangles.

3.1 Definitions and Axioms
This subsection introduces the central definitions and axioms required for further development. We first fix
the functional space setting and define regular measures of risk, deviation, regret, and error introduced in
Rockafellar and Uryasev [2013] and refined in Rockafellar and Royset [2015].

Let (Ω,M,P) be a probability space, where Ω is a set of elementary outcomes, M ⊆ 2Ω is a σ-algebra of
subsets of Ω, and P is a probability measure on (Ω,M). A random variable (r.v.) X : Ω → R is a measurable
function defined on Ω taking values in R, defined up to the set of measure 0, that is, r.v. X and Y such that
P(X = Y ) = 1 will be identified. The mathematical expectation of an r.v. X is defined by E[X] =

∫
Ω
XdP.

For p = [1,∞], let Lp(Ω) = Lp(Ω,M,P) be a normed space of all r.v.’s X with ∥X∥p < ∞, where ∥X∥p =
(E[|X|p])1/p for p <∞, and ∥X∥∞ = ess sup |X|. A functional F : Lp(Ω)→ (−∞,∞] is called convex if

F(λX + (1− λ)Y ) ≤ λF(X) + (1− λ)F(Y ) for all X,Y ∈ Lp(Ω) and every λ ∈ [0, 1]

and closed (or lower-semicontinuous) if

{X : F(X) ≤ C} is a closed set in Lp(Ω) for every constant C.

Definition 3.1 (Regular risk). A closed convex functional R : Lp(Ω) → (−∞,∞] is called a regular measure
of risk if

(R0) R(C) = C for constants C and R(X) > EX for nonconstant X.

Definition 3.2 (Coherent risk). A closed convex functional R : Lp(Ω)→ (−∞,∞] is called a coherent measure
of risk in the basic sense if

(C0) R(C) = C for constants C;

(C1) R(λX) = λR(X) for all λ > 0;

(C2) R(X) ≤ R(Y ) for all X and Y such that X ≤ Y almost surely,

and coherent in the general sense if (C1) is left out.

Definition 3.3 (Regular deviation). A closed convex functional D : Lp(Ω)→ [0,∞] is called a regular measure
of deviation if
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(D0) D(C) = 0 for constants C and D(X) > 0 for nonconstant X.

Definition 3.4 (Regular regret). A closed convex functional V : Lp(Ω)→ (−∞,∞] is called a regular measure
of regret if

(V0) V(0) = 0 and V(X) > EX for nonconstant X.

Definition 3.5 (Regular error). A closed convex functional E : Lp(Ω) → [0,∞] is called a regular measure of
error if

(E0) E(0) = 0 and E(X) > 0 for X ̸≡ 0.

Definition 3.6 (Regular quadrangle). A quartet (R,D,V, E) of regular risk, deviation, regret, and error is
called a regular risk quadrangle if it satisfies the following relationship formulae:

(Q1) error projection: D(X) = min
C

{
E(X − C)

}
;

(Q2) regret formula: R(X) = min
C

{
C + V(X − C)

}
;

(Q3) mean-centering:
R(X) = D(X) + E[X] and D(X) = R(X)− E[X] (5)

V(X) = E(X) + E[X] and E(X) = V(X)− E[X]; (6)

where the argmin in (Q1) and the argmin in (Q2) coincide, i.e.,

(Q4) statistic: S(X) = argminC
{
E(X − C)

}
= argminC

{
C + V(X − C)

}
and called a statistic.

Remark 3.1. (Coherent quadrangle) A quartet (R,D,V, E) satisfying (Q1)–(Q4), where R is a coherent mea-
sure of risk is called a coherent risk quadrangle.

The axioms listed above are too restrictive to accommodate certain examples commonly used in the literature.
One key example is the Vapnik error, defined by

E(X) = E[|X| − x]+, (7)

where [X]+ = max(X, 0), and x ≥ 0 is a parameter. The idea behind the Vapnik error is to disregard errors
whose absolute values are below x while penalizing all errors exceeding that threshold. For any x > 0, Vapnik
error (7) does not satisfy (E0), because E(X) = 0 for r.v. X such that X = x almost surely.

This observation motivates a relaxation of the axioms listed above and leads to the following definitions.

Definition 3.7 (Subregular risk). A closed convex functional R : Lp(Ω)→ (−∞,∞] is called a subregular risk
measure if

(R1) R(C) = C for constants C and R(X) ≥ E[X] for all X;

(R2) for all non-constant X ∈ Lp(Ω) there exists λ > 0 such that R(λX) > E(λX).

Definition 3.8 (Subregular deviation). A closed convex functional D : Lp(Ω) → [0,∞] is called a subregular
deviation measure if

(D1) D(C) = 0 for constants C and D(X) ≥ 0 for all X;

(D2) for all non-constant X ∈ Lp(Ω) there exists λ > 0 such that D(λX) > 0.

Definition 3.9 (Subregular regret). A closed convex functional V : Lp(Ω) → (−∞,∞] is called a subregular
regret measure if

(V1) V (0) = 0 and V(X) ≥ E[X] for all X;

(V2) for all non-zero X ∈ Lp(Ω) there exists λ > 0 such that V(λX) > E(λX).

Definition 3.10 (Subregular error). A closed convex functional E : Lp(Ω)→ [0,∞] is called a subregular error
measure if

(E1) E(0) = 0 and E(X) ≥ 0 for all X;

(E2) for all non-zero X ∈ Lp(Ω) there exists λ > 0 such that E(λX) > 0.

Definition 3.11 (Subregular quadrangle). A quartet (R,D,V, E) of subregular risk, deviation, regret, and
error satisfying (Q1)–(Q4) is called a subregular risk quadrangle.
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Axioms (E1)–(E2) relax axiom (E0) by allowing E(X) = 0 for some nonzero but “not-too-large” random vari-
ables X. For example, the Vapnik error (7) satisfies (E1)–(E2) and thus qualifies as a subregular error measure.
Similarly, axioms (V1)–(V2), (D1)–(D2), and (R1)–(R2) relax axioms (V0), (D0), and (R0), respectively.

In the following section, we will extend the theory developed in Rockafellar and Uryasev [2013]; Rockafellar
and Royset [2015] for measures of error, regret, deviation, and risk to the more general subregular measures
introduced in Definitions 3.7–3.10. In particular, we will show that relations (Q1)–(Q4) still hold in this broader
framework. In fact, relations (Q3) are straightforward to verify, while (Q2) is equivalent to (Q1) under (Q3),
so we only need to prove (Q1).

3.2 Fundamental Theorems and Construction of Quadrangles
This section states and proves the main theorems of the RQ framework. These theorems establish the relation-
ships among the quadrangle elements and provide a foundation for constructing RQs.

Subsection 3.2.1 discusses the theory in the primal space, i.e., the space where the stochastic functionals are
defined. Meanwhile, Subsection 3.2.2 focuses on the dual space and the aspects of conjugate duality.

3.2.1 Primal Representation

Rockafellar and Uryasev [2013] presented seven key theorems – cornerstones of the RQ framework: Quadrangle
Theorem, Scaling Theorem, Mixing Theorem, Reverting Theorem, Expectation Theorem, Regret Theorem, and
Convexity Theorem. These theorems hold for regular quadrangles and can be found in Rockafellar and Uryasev
[2013].

This section revisits the aforementioned theorems for subregular quadrangles and provides proofs where the
extension to subregularity is non-trivial.

We begin with a central theorem of the RQ framework:

Theorem 3.1 (Quadrangle Theorem). Let (R,V,D, E) be a subregular risk quadrangle with a statistic S. Then
(a) The relations D(X) = R(X)− EX and R(X) = EX + D(X) give a one-to-one correspondence between

subregular measures of risk R and subregular measures of deviation D. In this correspondence, R is positively
homogeneous if and only if D is positively homogeneous. On the other hand,

R is monotonic if and only if D(X) ≤ supX − EX for all X. (8)

(b) The relations E(X) = V(X) − EX and V(X) = EX + E(X) give a one-to-one correspondence between
subregular measures of regret V and subregular measures of error E. In this correspondence, V is positively
homogeneous if and only if E is positively homogeneous. On the other hand,

V is monotonic if and only if E(X) ≤ |EX| for X ≤ 0. (9)

(c) For any subregular measure of regret V, a subregular measure of risk R is obtained by

R(X) = inf
C

{
C + V(X − C)

}
. (10)

If V is positively homogeneous, R is positively homogeneous. If V is monotonic, R is monotonic.
(d) For any subregular measure of error E, a subregular measure of deviation D is obtained by

D(X) = inf
C

{
E(X − C)

}
. (11)

If E is positively homogeneous, D is positively homogeneous. If E satisfies the condition in (9), then D
satisfies the condition in (8).

(e) In both (c) and (d), as long as the expression being minimized is finite for some C, the set of C values for
which the minimum is attained is a nonempty, closed, bounded interval.3 Moreover, when V and E are paired
as in (b), the interval comes out the same and gives the associated statistic:

argmin
C

{
C + V(X − C)

}
= S(X) = argmin

C

{
E(X − C)

}
, with S(X + C) = S(X) + C. (12)

Proof. Parts (a) and (b) are easy to check, while part (c) follows easily from (d). Hence, we only need to prove
parts (d) and (e). To do this, we first note that Lemma 2.1 in Rockafellar and Royset [2015] remains valid for
subregular error measures.

Proposition 3.1. For a subregular error measure E : Lp(Ω) → [0,∞] and a sequence {Cn}∞n=1 of scalars,
the following holds: If sequences Xn ∈ Lp(Ω) and bn ∈ R converge to X ∈ Lp(Ω) and b ∈ R respectively,
and E(Xn − Cn) ≤ bn for all n, then sequence {Cn}∞n=1 is bounded, and any accumulation point C0 satisfies
E(X − C0) ≤ b.

3Typically, this interval reduces to a single point.
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Proof. By applying property (E2) to X ≡ −1 and X ≡ 1, we conclude that

(E2’) there exist constants K1 < 0 < K2 such that E(K1) > 0 and E(K2) > 0.

We will prove the statement of the Proposition for any closed convex functional E : Lp(Ω) → [0,∞] satisfying
(E1) and (E2’). By contradiction, assume that sequence {Cn}∞n=1 is unbounded. By passing to a subsequence
if necessary, we may assume that all Cn have the same sign (say, positive). Then we may also assume that
Cn ≥ |K1| for all n, and lim

n→∞
Cn = ∞. Then sequence λn = −K1/Cn, n = 1, 2, . . . is contained in [0, 1] and

converges to 0. Because E is convex and E(0) = 0, we have E(λY ) ≤ λE(Y ) for all Y ∈ Lp(Ω) and all λ ∈ [0, 1].
Hence,

λnbn ≥ λnE(Xn − Cn) ≥ E(λnXn +K1) ≥ 0.

Because lim
n→∞

λnbn = lim
n→∞

λn lim
n→∞

bn = 0 · b = 0 and lim
n→∞

(λnXn +K1) = 0 ·X +K1 = K1, the closedness of E
implies that E(K1) = 0, but this is a contradiction with (E2’).

Hence, the sequence {Cn}∞n=1 is bounded. This implies that it must have accumulation points. If C0 is
any such point, then, by passing to a subsequence if necessary, we may assume that lim

n→∞
Cn = C0. Then the

closedness of E implies that

E(X − C0) = E
(
lim
n→∞

(Xn − Cn)
)
≤ lim sup

n→∞
E(Xn − Cn) ≤ lim

n→∞
bn = b.

Now, we prove the statements (d) and (e).
The proof is similar to the proof of Theorem 2.2 in Rockafellar and Royset [2015]. Let us first prove that

“inf” in (11) is always attained. If D(X) = ∞, it is attained for all C. If D(X) < ∞, then there exists a
sequence {Cn}∞n=1 such that lim

n→∞
E(X−Cn) = D(X). Applying Proposition 3.1 with Xn = X, bn = E(X−Cn)

and b = D(X), we obtain that sequence Cn is bounded and has an accumulation point C0 for which we have
E(X −C0) ≤ b. On the other hand, E(X −C0) ≥ infC E(X −C) = D(X) = b, hence equality holds. Thus, “inf”
in (11) is always attained, and the set of minimizers S(X) is a non-empty set. Because E(X − C) is a convex
closed function of C, S(X) is a convex and closed subset of R, and therefore is a non-empty closed interval.
For any sequence {Cn}∞n=1 ⊆ S(X) we have E(X − Cn) = D(X), hence, by Proposition 3.1 with Xn = X and
bn = D(X) we conclude that {Cn}∞n=1 is bounded. Thus, S(X) is bounded.

We next prove that D in (11) is a subregular deviation measure. Because “inf” in (11) is always attained,
for any X,Y ∈ Lp(Ω) we have D(X) = E(X −CX) and D(Y ) = E(X −CY ) for some constants CX , CY . Then,
for any λ ∈ [0, 1],

λD(X) + (1− λ)D(Y ) = λE(X − CX) + (1− λ)E(Y − CY ) ≥ E(λX + (1− λ)Y − (λCX + (1− λ)CY ))

≥ inf
C
E(λX + (1− λ)Y − C) = D(λX + (1− λ)Y ),

which implies that D is a convex function. We next prove its closedness. Assume that Xn is a sequence
converging to X and D(Xn) ≤ b <∞ for all n. Because “inf” in (11) is always attained, there exists constants
Cn such that E(Xn − Cn) = D(Xn) ≤ b. Then by Proposition 3.1 with bn = b, there exists a constant C0 such
that E(X − C0) ≤ b. Then D(X) = infC E(X − C) ≤ E(X − C0) ≤ b, which proves the closedness of D.

Property (D1) of D follows immediately from property (E1) of E , so it is left to prove (D2). For any non-zero
Y ∈ Lp(Ω), let

f(Y ) = sup{λ ≥ 0 | E(λY ) = 0}.

Properties (E1) and (E2) imply that 0 ≤ f(Y ) <∞. Further, convexity and closedness of E in combination with
(E1) implies that E(λY ) = 0 for all λ ∈ [0, f(Y )]. Next, if a sequence {Yn}∞n=1 converges to Y and f(Yn) ≥ b
for all n and some constant b, then E(bYn) = 0 for all n, which implies that E(bY ) = 0, hence f(Y ) ≥ b. Thus,
the function f is upper semi-continuous.

Now, fix any non-constant r.v. X ∈ Lp(Ω). Let U be the set of unit vectors in R2. For any u = (u1, u2) ∈ U ,
let gX(u) := f(u1X − u2). Because u1X − u2 ̸≡ 0 for any u ∈ U , properties of f imply that function
gX(u) is non-negative, finite, and upper-semicontinuous on U . Because U is a compact set, this implies that
BX := supu∈U gX(u) <∞. Hence, for any constant µ > BX and every u = (u1, u2) ∈ U , we have µ > gX(u) =
f(u1X − u2), or equivalently E(µ(u1X − u2)) > 0.

Now, choose any λ > BX , any C ∈ R, and consider unit vector u = (λ/µ,C/µ), where µ =
√
λ2 + C2 > BX .

Then
0 < E(µ(u1X − u2)) = E(µ((λ/µ)X − C/µ)) = E(λX − C).

Because C ∈ R was arbitrary, and the infimum in (11) is always attained, this implies that D(λX) > 0, and
proves (D2), which completes the proof of Theorem 3.1.

Next, we establish the following property of the set of minimizers S(X).
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Proposition 3.2. Let E be a subregular error measure. Let {Xn}∞n=1 be the sequence or r.v.s Xn ∈ Lp(Ω)
converging to X ∈ Lp(Ω) such that D(Xn) ≤ b for all n = 1, 2, . . . and some b ∈ R, where D is defined in (11).
Then the union

U =

∞⋃
n=1

S(Xn)

is a bounded set.

Proof. Because S(Xn) is bounded for every n by item (e) of Theorem 3.1, unboundedness of U would imply
the existence of an unbounded sequence {Cn}∞n=1 such that Cn ∈ S(Xn) for all n. But then E(Xn − Cn) =
D(Xn) ≤ b. Applying Proposition 3.1 with bn = b, we obtain that sequence {Cn}∞n=1 is bounded, which is a
contradiction.

Given a set of regular quadrangles (Ei,Vi,Di,Ri), i = 1, . . . , r, one can construct a new quadrangle by
mixing, scaling, or reverting operations (see Rockafellar and Uryasev [2013]). The following theorem justifies
the application of a mixing operation to subregular quadrangles.

Theorem 3.2 (Mixing Theorem). For k = 1, . . . , r let (Rk,Dk,Vk, Ek) be a subregular quadrangle quartet with
statistic Sk, and consider any weights λk > 0 with λ1+· · ·+λr = 1. A subregular quadrangle quartet (R,D,V, E)
with statistic S is given then by

S(X) = λ1S1(X) + · · ·+ λrSr(X),

R(X) = λ1R1(X) + · · ·+ λrRr(X),

D(X) = λ1D1(X) + · · ·+ λrDr(X),

V(X) = min
C1,...,Cr

{ ∑r

k=1
λkVk(X − Ck)

∣∣∣ ∑r

k=1
λkCk = 0

}
,

E(X) = min
C1,...,Cr

{ ∑r

k=1
λkEk(X − Ck)

∣∣∣ ∑r

k=1
λkCk = 0

}
.

Moreover (R,D,V, E) is monotonic if every (Rk,Dk,Vk, Ek) is monotonic, and (R,D,V, E) is positively homo-
geneous if every (Rk,Dk,Vk, Ek) is positively homogeneous.

Proof. To prove the theorem, it suffices to verify that the equation

E(X) = inf
C1,...Cr

λ1C1+···+λrCr=0

λ1E1(X − C1) + · · ·+ λrEr(X − Cr), (13)

defines a subregular measure of error, and that if E(X) < ∞, then the set of minimizers in (13) is a non-
empty bounded closed convex subset of Rr. The rest of the proof follows from the original Mixing Theorem in
Rockafellar and Uryasev [2013] in combination with Theorem 3.1.

Fix any X with E(X) <∞. Then Theorem 3.1 implies that for every k = 1, . . . , r set Sk(X) = argminC Ek(X−
C) is a non-empty closed bounded interval in R, which we will write as [J−

k (X), J+
k (X)]. Note that

fk(C) = Ek(X − C)

are convex functions of C with minimum on Sk(X), hence they are strictly decreasing on (−∞, J−
k (X)) and

strictly increasing on (J+
k (X),+∞). Let

M−(X) =

{
(C1, . . . , Cr) ∈ Rr :

r∑
k=1

λkCk = 0, Ck ≥ J−
k (X), k = 1, . . . , r

}
,

M+(X) =

{
(C1, . . . , Cr) ∈ Rr :

r∑
k=1

λkCk = 0, Ck ≤ J+
k (X), k = 1, . . . , r

}
,

and M(X) = M−(X) ∪M+(X). We claim that for every (C1, . . . Cr) ̸∈M(X) satisfying
∑r

k=1 λkCk = 0 there
exists (C ′

1, . . . C
′
r) ∈M(X) such that

r∑
k=1

Ek(X − Ck) >

r∑
k=1

Ek(X − C ′
k). (14)

Indeed, (C1, . . . Cr) ̸∈ M(X) implies that there exists indices i and j such that Ci < J−
i (X) and Cj > J+

j (X).

Let δ = min

(
J−
i (X)−Ci

λj
,
Cj−J+

j (X)

λi

)
, and let C ′

i = Ci + δλj , C ′
j = Cj − δλi, and C ′

k = Ck for k ̸∈ {i, j}. Then

r∑
k=1

λkC
′
k = λi(δλj) + λj(−δλi) +

r∑
k=1

λkCk = 0
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and
r∑

k=1

Ek(X − C ′
k)−

r∑
k=1

Ek(X − Ck) = (fi(C
′
i)− fi(Ci)) + (fj(C

′
j)− fj(Cj)).

Because J−
i (X) ≥ C ′

i > Ci and fi is strictly decreasing on (−∞, J−
i (X)), we have fi(C

′
i) < fi(Ci). Similarly,

J+
j (X) ≤ C ′

j < Cj implies that fj(C
′
j) < fj(Cj). This proves (14). If (C ′

1, . . . C
′
r) ∈M(X), the claim is proved.

Otherwise, we can repeat this process. At every step, the number of coordinates Ck lying outside of the interval
Sk(X) decreases. Hence, after a finite number of steps, we obtain (C ′

1, . . . C
′
r) ∈M(X), and the claim follows.

The claim implies that (13) is equivalent to

E(X) = inf
(C1,...,Cr)∈M(X)

λ1E1(X − C1) + · · ·+ λrEr(X − Cr) (15)

Because M(X) is a compact subset of Rr, and the objective function is convex and lower-semicontinuous, it
follows that the infimum in (15) is attained, and the set of minimizers is a non-empty, bounded, closed convex
set.

We next prove that E(.) is a subregular error measure. Its convexity and property (E1) are obvious corollaries
from the corresponding properties of Ek, so we only need to prove (E2) and lower-semicontinuity. We start with
(E2). Fix any non-zero X ∈ Lp(Ω). First, assume that X is non-constant. By Theorem 3.1 functionals

Dk(X) = inf
C
Ek(X − C)

are subregular deviation measures, hence, by (D2), there exist positive constants µk, k = 1, . . . , r, such that
Dk(µkX) > 0. Then convexity of Dk together with Dk(0) = 0 imply that Dk(µX) > 0 for µ = max1≤k≤r µk, or
equivalently, Ek(µX − Ck) > 0 for all k and all constants Ck. But this implies that

∑r
k=1 λkEk(µX − Ck) > 0

for any positive constants λk. Because infimum in (13) is always attained, this implies that E(µX) > 0 and
proves (E2) for non-constant X.

If X is a constant, it is sufficient to consider cases X = ±1, that is, prove property (E2’) formulated in
the proof of Proposition 3.1. By property (E2’) for each Ek, there are exist constants K−

k < 0 < K+
k such

that Ek(K−
k ) > 0 and Ek(K+

k ) > 0. If K ∈ R is any constant such that E(K) = 0, then there exist constants
(C1, . . . , Cr) such that

r∑
k=1

λkCk = 0 and
r∑

k=1

λkEk(K − Ck) = 0.

Because all λk > 0, this is possible only if Ek(K − Ck) = 0 for all k. But then

K−
k < K − Ck < K+

k , k = 1, . . . , r.

Multiplying these inequalities by λk and adding, we obtain

r∑
k=1

λkK
−
k < K

r∑
k=1

λk −
r∑

k=1

λkCk = K <

r∑
k=1

λkK
+
k

This implies that (E2’) for E(.) holds with constants K− =
∑r

k=1 λkK
−
k < 0 and K+ =

∑r
k=1 λkK

+
k > 0.

Now let us prove lower-semicontinuity of E(.). We need to prove that for any sequence Xn converging to X,
we have lim inf

n→∞
E(Xn) ≥ E(X). By passing to a subsequence if necessary, we may assume that L = lim

n→∞
E(Xn)

exists. If L =∞, the inequality L ≥ E(X) is trivial, so we may assume that L <∞. Then there is a constant
c such that E(Xn) ≤ c for all n.

Because the infimum in (13) is attained, there exist vectors Cn = (Cn1, . . . , Cnk) such that

r∑
k=1

λkCnk = 0 and E(Xn) =

r∑
k=1

λkEk(Xn − Cnk), n = 1, 2, . . .

We have proved above that Cn ∈M(Xn) for all n.
Inequality c ≥ E(Xn) implies that

b :=
c

min{λ1, . . . , λk}
≥ Ek(Xn − Cnk) ≥ min

C
Ek(Xn − C), k = 1, . . . , r.

Hence, by Proposition 3.2,

Uk =

∞⋃
n=1

Sk(Xn), k = 1, . . . , r

are bounded sets. This implies that set

M∗ =

∞⋃
n=1

M(Xn)
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is a compact subset of Rr. Because Cn ∈ M∗ for all n, we may assume, after passing to a subsequence if
necessary, that sequence Cn converges component-wise to a vector C = (C1, . . . , Cr). Then

∑r
k=1 λkCk = 0.

Also, for each k, the sequence Xn − Cnk converges to X − Ck in Lp(Ω). By lower-semicontinuity of Ek, this
implies that

Ek(X − Ck) ≤ lim inf
n→∞

Ek(Xn − Cnk).

Then

E(X) ≤
r∑

k=1

λkEk(X − Ck) ≤
r∑

k=1

λk lim inf
n→∞

Ek(Xn − Cnk)

≤ lim inf
n→∞

r∑
k=1

λkEk(Xn − Cnk) = lim inf
n→∞

E(Xn) = L.

Note that the scaling and reverting theorems from Rockafellar and Uryasev [2013] hold for the subregular
risk quadrangles. The proofs are similar to that of the mixing theorem, with an appropriate change of variables.
Below, we provide the formulations of these theorems for completeness.

Theorem 3.3 (Reverting Theorem). For i = 1, 2, let (Ri,Di,Vi, Ei) be a subregular quadrangle quartet with
statistic Si. Then a subregular quadrangle quartet (R,D,V, E) with statistic S is given by

S(X) = 1
2 [S1(X)− S2(−X)],

R(X) = EX + 1
2 [R1(X) +R2(−X)],

D(X) = 1
2 [D1(X) +D2(−X)] = 1

2 [R1(X) +R2(−X)],

V(X) = EX +min
C

{
1
2 [V1(C +X) + V2(C −X)]− C

}
,

E(X) = min
C

{
1
2 [E1(C +X) + E2(C −X)]

}
.

Positive homogeneity is preserved in this construction, but not monotonicity.

Theorem 3.4 (Scaling Theorem). Let (R0,D0,V0, E0) be a subregular quadrangle quartet with statistic S0 and
consider any λ ∈ (0,∞). Then a subregular quadrangle quartet (R,D,V, E) with statistic S is given by

S(X) = S0(X),

R(X) = (1− λ)EX + λR0(X), D(X) = λD0(X),

V(X) = (1− λ)EX + λV0(X), E(X) = λE0(X),

(16)

or alternatively by
S(X) = λS0(λ−1X),

R(X) = λR0(λ
−1X), D(X) = λD0(λ

−1X),

V(X) = λV0(λ−1X), E(X) = λE0(λ−1X).

Monotonicity and positive homogeneity are preserved in these constructions, except that monotonicity requires
λ ≥ 1 in (16).

In some examples in Section 2, the error and regret measures are given by

E(X) = E[e(X)] (17)

and
V(X) = E[v(X)] (18)

for some functions e : R→ [0,∞] and v : R→ (−∞,∞]. Then E and V are related by (Q3) if and only if e and
v are related by

e(x) = v(x)− x, v(x) = x+ e(x). (19)

Theorem 3.5 (Expectation Theorem). For functions e : R→ [0,∞] and v : R→ (−∞,∞] related by (19), the
properties

e is closed convex, e(0) = 0, e(x) ≥ 0 for all x, and e(a) > 0, e(b) > 0 for some a < 0 < b (20)

amount to

v is closed convex, v(0) = 0, v(x) ≥ x for all x, and v(a) > a, v(b) > b for some a < 0 < b (21)

and ensure that the functionals
V(X) = E[v(X)], E(X) = E[e(X)],
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form a corresponding pair consisting of a subregular measure of regret and a subregular measure of error. For
X ∈ V = domV = dom E let C+(X) = sup

{
C
∣∣X − C ∈ V

}
and C−(X) = inf

{
C
∣∣X − C ∈ V

}
. The

associated statistic S in the quadrangle generated from V and E is characterized then by

S(X) =
{
C
∣∣∣E[e′−(X − C)] ≤ 0 ≤ E[e′+(X − C)]

}
=
{
C
∣∣∣E[v′−(X − C)] ≤ 1 ≤ E[v′+(X − C)]

}
subject to the modification that, in both cases, the right side is replaced by ∞ if C ≤ C−(X) and the left side is
replaced by −∞ if C ≥ C+(X). The quadrangle is completed then by setting

D(X) = E[e(X − C)] and R(X) = C + E[v(X − C)] for any/all C ∈ S(X).

Having V and R be monotonic corresponds (in tandem with convexity) to having v(x) ≤ 0 when x < 0, or
equivalently e(x) ≤ |x| when x < 0. Positive homogeneity holds in the quadrangle if and only if v and e have
graphs composed of two linear pieces linked at 0.

Proof. Assume that (17) is a subregular error measure. For any constant x, (17) implies that E(x) = E[e(x)] =
e(x). Hence, convexity and closedness of E imply the corresponding properties of e, axiom (E1) in Definition
3.10 implies that e(0) = 0 and e(x) ≥ 0 for all x ∈ R, while axiom (E2) implies that for any x ̸= 0 there exists
λ > 0 such that e(λx) > 0. Applying this property to x = −1 and x = 1, we deduce that e(a) > 0 and e(b) > 0
for some a < 0 < b.

Conversely, assume that functional E(X) is given by (17) for some function e : R → [0,∞] satisfying (20).
Then convexity and closedness of E follow from the corresponding properties of e and the linearity of expectation.
Further, E(0) = E[e(0)] = e(0) = 0, and, for any r.v. X, E(X) = E[e(X)] ≥ 0. It is left to prove (E2). For
any non-zero X ∈ Lp(Ω) there exists ϵ > 0 such that P(A) > 0, where A = {w ∈ Ω : |X(ω)| ≥ ϵ}. Let
λ = max(|a|,|b|)

ϵ . Then for every ω ∈ A we have either λX(ω) ≤ a or λX(ω) ≥ b, which by (20) implies that
e(λX(ω)) > 0. Then

E(λX) = E[e(λX)] =

∫
Ω

e(λX(ω))dP ≥
∫
A

e(λX(ω))dP > 0.

The regret part follows from the error part together with relations (19).

Any quadrangle generated from an error measure of the form (17) will be called an expectation quadrangle.
The Quantile Symmetric Average Union Quadrangle in Example 5 is an example of the expectation quadrangle
that is not regular.

Construction of quadrangles. Any subregular error measure uniquely defines a quadrangle: the correspond-
ing deviation measure is uniquely defined via (Q1), and then the risk and regret are uniquely defined via (Q3).
The same is true for any subregular regret measure. However, any given subregular deviation measure D belongs
to infinitely many subregular quadrangles. For example, for any α > 0 functional E(X) = D(X) + α|E[X]| is
a subregular error measure whose projected deviation measure is D. Similarly, any subregular risk measure R
belongs to infinitely many subregular quadrangles.

If risk measure R is subredular and coherent (in the general sense), then it is easy to check that

E(X) := R(|X|) (22)

is a sub-regular error measure, which can then be used to define a quadrangle. This is the way we constructed
the Quantile Symmetric Average Quadrangle in Example 4 starting from risk measure R(X) = CVaRα(X).
Note, however, then the risk measure in this quadrangle is not CVaRα(X).

3.2.2 Dual Representation and Conjugate Functionals

This subsection can be viewed as an extension of the Envelope Theorem from Rockafellar and Uryasev [2013]
to the subregular quadrangle.

Up to now, we have been working with functionals on Lp(Ω) for any p ∈ [1,∞], but to bring in duality, we
restrict henceforth to p ∈ [1,∞) to ensure that the Banach space dual to Lp(Ω) is Lq(Ω) for q ∈ (1,∞], where
1
p + 1

q = 1 when p > 1 and q =∞ when p = 1. Moreover, in the case of Lq(Ω) for q =∞ we replace the norm
topology by the weak-∗ topology induced by the pairing with L1(Ω) so as to have a topological vector space for
which the dual is L1(Ω). This should be kept in mind in general statements below that refer to closedness of
sets and functionals on Lq(Ω) when specializing to q =∞.

In this framework of paired spaces, the conjugate to a closed proper convex functional F : Lp(Ω)→ (−∞,∞]
is the functional F∗ : Lq(Ω)→ (−∞,∞] given by

F∗(Q) = sup
X∈Lp(Ω)

(E[XQ]−F(X)), ∀Q ∈ Lq(Ω). (23)
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It is well-known that F∗ is closed, proper and convex, and

F(X) = sup
Q∈Lq(Ω)

(E[XQ]−F∗(Q)), ∀X ∈ Lp(Ω). (24)

Let
Q = {Q ∈ Lq(Ω) | F∗(Q) <∞} = domF∗

be the effective domain of F∗.

Proposition 3.3. Let F : Lp(Ω)→ (−∞,∞] be a closed proper convex functional, and let F∗ be its conjugate.
Then

(i) F is a subregular error measure if and only if F∗ satisfies:

(E1*) F∗(Q) ≥ F∗(0) = 0 for every Q ∈ Lq(Ω);

(E2*) for any non-zero X ∈ Lp(Ω) there exists Q ∈ Q such that E[XQ] > 0.

(ii) F is a subregular regret measure if and only if F∗ satisfies:

(V1*) F∗(Q) ≥ F∗(1) = 0 for every Q ∈ Lq(Ω);

(V2*) for any non-zero X ∈ Lp(Ω) there exists Q ∈ Q such that E[XQ] > E[X].

(iii) F is a subregular deviation measure if and only if F∗ satisfies:

(D1*) F∗(Q) ≥ F∗(0) = 0 for every Q ∈ Lq(Ω);

(D2*) E[Q] = 0 for every Q ∈ Q;

(D3*) for any non-constant X ∈ Lp(Ω) there exists Q ∈ Q such that E[XQ] > 0.

(iv) F is a subregular risk measure if and only if F∗ satisfies:

(R1*) F∗(Q) ≥ F∗(1) = 0 for every Q ∈ Lq(Ω);

(R2*) E[Q] = 1 for every Q ∈ Q;

(R3*) for any non-constant X ∈ Lp(Ω) there exists Q ∈ Q such that E[XQ] > E[X].

Proof. Let us prove (i). If F is a subregular error measure, then, by (23),

F∗(0) = sup
X∈Lp(Ω)

(0−F(X)) = − inf
X∈Lp(Ω)

F(X) = 0,

where the last equality follows from (E1). Further, for any Q ∈ Lq(Ω),

F∗(Q) = sup
X∈Lp(Ω)

(E [XQ]−F(X)) ≥ E [0 ·Q]−F(0) = 0.

This proves (E1*). Now, let X ∈ Lp(Ω) be any non-zero r.v. Then by (E2) there exists λ > 0 such that
F(λX) > 0. Then (24) implies that

0 < F(λX) = sup
Q∈Lq(Ω)

(λE[XQ]−F∗(Q))

Hence, there exists Q̄ ∈ Lq(Ω) such that λE[XQ̄]−F∗(Q̄) > 0. Because F∗(Q̄) ≥ 0, this implies that F∗(Q̄) <∞
and E[XQ̄] > 0, and (E2*) follows.

Conversely, assume that F∗ satisfies (E1*) and (E2*). Then F satisfies (E1) by the argument exactly as
above. To prove (E2), fix any non-zero X ∈ Lp(Ω). Then (E2*) implies that E[XQ̄] > 0 for some Q̄ ∈ Q. Then
(24) implies that for any λ > F∗(Q̄)

E[XQ̄]
,

F(λX) = sup
Q∈Lq(Ω)

(λE[XQ]−F∗(Q)) ≥ λE[XQ̄]−F∗(Q̄) > 0.

This proves (E2).
Let us now prove (ii). F is a subregular regret measure if and only if E(X) = F(X)− E[X] is a subregular

error measure. Then its conjugate

E∗(Q) = sup
X∈Lp(Ω)

(E[XQ]− E(X)) = sup
X∈Lp(Ω)

(E[X(Q+ 1)]−F(X)) = F∗(Q+ 1).

By (i), E(X) = F(X)−E[X] is a subregular error measure if and only if E∗(Q) = F∗(Q+1) satisfies (E1*) and
(E2*). This happens if and only if F∗(Q) satisfies (V1*) and (V2*).
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We next prove (iii). The equivalence of F(X) ≥ F(0) = 0 and (D1*) is already established when proving
(i). We next prove that F(C) ≤ 0 for constants C if and only if (D2*) holds. Indeed,

F(C) = sup
Q∈Lq(Ω)

(CE[Q]−F∗(Q)) ≤ 0 ∀C ∈ R

if and only if
CE[Q] ≤ F∗(Q) ∀Q ∈ Lq(Ω), ∀C ∈ R.

The last inequality holds if, for every Q ∈ Lq(Ω), we have either F∗(Q) = ∞ or E[Q] = 0. But this property
is exactly (D2*). The equivalence of (D2) for F and (D3*) for F∗ can be proved exactly as the equivalence of
(E2) and (E2*) in part (i), with the only difference that we start with non-constant r.v. X ∈ Lp(Ω) instead of
non-zero one.

Finally, part (iv) follows from part (iii) in exactly the same way as part (ii) follows from (i).

A functional F : Lp(Ω)→ (−∞,∞] is called positively homogeneous if

(F1) F(λX) = λF(X) for all X ∈ Lp(Ω) and every λ ≥ 0.

Every closed proper convex functional that is potitively homogeneous can be represented in the form

F(X) = sup
Q∈Q

E[QX] (25)

for some convex closed set Q ⊆ Lq(Ω) called the risk envelope of F . The risk envelope can be recovered from
F by the formula

Q = {Q ∈ Lq(Ω)
∣∣E[QX] ≤ F(X) for all X ∈ Lp(Ω)}. (26)

Then Proposition 3.3 implies that:

(E’) F is a subregular error measure if and only if Q contains 0, and, for any non-zero X, an r.v. Q such that
E[XQ] > 0;

(V’) F is a subregular regret measure if and only if Q contains 1, and, for any non-zero X, an r.v. Q such that
E[XQ] > E[X];

(D’) F is a subregular deviation measure if and only if Q contains 0, we have E[Q] = 0 for every Q ∈ Q, and,
for any non-constant X, Q contains an r.v. Q such that E[XQ] > 0;

(R’) F is a subregular risk measure if and only if Q contains 1, we have E[Q] = 1 for every Q ∈ Q, and, for
any non-constant X, Q contains an r.v. Q such that E[XQ] > E[X].

The conditions above can be equivalently reformulated in more geometric way as follows.

(E’) F is a subregular error measure if and only if Q is a closed, convex subset of Lq(Ω) that contains the
constant 0 in its quasi-interior; in other words, 0 ∈ Q and every closed hyperplane H containing 0 has
elements of Q in both of its associated open half-spaces;

(V’) F is a subregular regret measure if and only if Q is a closed, convex subset of Lq(Ω) that contains the
constant 1 in its quasi-interior; in other words, 1 ∈ Q and every closed hyperplane H containing 1 has
elements of Q in both of its associated open half-spaces;

(D’) F is a subregular deviation measure if and only if Q is a closed, convex subset of the closed hyperplane
H0 = {Q : E[Q] = 0} in Lq(Ω) that contains the constant 0 in its quasi-interior relative to H0; in other
words, 0 ∈ Q and every closed hyperplane H ̸= H0 containing 0 has elements of Q in both of its associated
open half-spaces.

(R’) F is a subregular risk measure if and only if Q is a closed, convex subset of the closed hyperplane
H1 = {Q : E[Q] = 1} in Lq(Ω) that contains the constant 1 in its quasi-interior relative to H1; in other
words, 1 ∈ Q and every closed hyperplane H ̸= H1 containing 1 has elements of Q in both of its associated
open half-spaces.

3.3 Parent Functionals and Corresponding Positive Homogeneous Families
Consider an arbitrary non-constant quasi-convex closed functional J : Lq(Ω)→ [−∞,∞]. Let

A = inf
Q∈Lq(Ω)

J (Q), and B = sup
Q∈Lq(Ω)

J (Q). (27)

Because J is non-constant, A < B. For any τ ∈ (A,B), let

Qτ = {Q ∈ Lq(Ω) | J (Q) ≤ τ}. (28)

Then Qτ , A < τ < B is a family of non-empty convex closed proper subsets of Lq(Ω), that is nested in the
sense that
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(Q1) Qτ ⊆ Qt whenever τ ≤ t.

Let g be any continuous, strictly increasing function mapping the interval [A,B] onto [0,+∞]. Then the
functional J ′ : Lq(Ω) → [0,∞] defined by J ′(X) := g(J (X)) produces via (28) exactly the same family of
nested convex closed sets, just with parameter ranging over (0,∞). Hence, if we are interested in studying the
family Qτ , then without loss of generality, we may assume that A = 0 and B =∞, that is, J : Lq(Ω)→ [0,∞]
and

inf
Q∈Lq(Ω)

J (Q) = 0 and sup
Q∈Lq(Ω)

J (Q) = +∞. (29)

Because Qτ are non-empty convex closed sets, the formula

Fτ (X) = sup
Q∈Qτ

E[QX] = sup
Q:J (Q)≤τ

E[QX], τ > 0, (30)

defines a one-parameter family of positive homogeneous convex closed functionals Fτ : Lp(Ω) → (−∞,∞].
Because Qτ are proper subsets of Lq(Ω), the functionals Fτ are proper, that is, not identically +∞. The
property (Q1) translates into the fact that

(T1) for every fixed X ∈ Lq(Ω), Fτ (X) is a non-decreasing function of τ on (0,+∞).

Conversely, for any one-parameter family of positive homogeneous convex closed proper functionals Fτ :
Lp(Ω) → (−∞,∞], τ > 0 satisfying (T1), the corresponding risk envelopes Qτ , τ > 0, can be recovered
by

Qτ = {Q ∈ Lq(Ω)
∣∣E[QX] ≤ Fτ (X) for all X ∈ Lp(Ω)}, τ > 0, (31)

see (26), and are non-empty closed convex proper subsets of Lq(Ω) satisfying (Q1). This family form level sets
(28) of the unique non-constant quasi-convex closed functional J : Lq(Ω)→ [0,∞] defined by

J (Q) = inf{τ > 0 |Q ∈ Qτ} = inf{τ > 0 |E[QX] ≤ Fτ (X) for all X ∈ Lp(Ω)} (32)

Hence, we obtained the following result.

Proposition 3.4. Relations (30)–(32) define a one-to-one correspondence between quasi-convex closed func-
tionals J : Lq(Ω) → [−∞,∞] satisfying (29) and one-parameter families Fτ , τ > 0, of positive homogeneous
convex closed proper functionals Fτ : Lp(Ω)→ (−∞,∞] satisfying (T1).

We next investigate how various properties of J translate into Fτ and vice versa. We first record the obvious
equivalence of the following statements.

• The infimum in (29) is attained and can be replaced by the minimum.

• There exists Q̄ ∈ Lq(Ω) such that J (Q̄) = 0.

• The intersection of all sets Qτ , τ > 0 is non-empty.

• There exists Q̄ ∈ Lq(Ω) such that Fτ (X) ≥ E[Q̄X] for all X ∈ Lp(Ω) and all τ > 0.

We next record the consequences of the uniqueness of the minimizer. The following statements are equivalent.

• argminJ is a singleton.

• The intersection of all sets Qτ , τ > 0 is a singleton.

• There exists a unique Q̄ ∈ Lq(Ω) such that lim
τ→0+

Fτ (X) = E[Q̄X] for all X ∈ Lp(Ω).

If Q̄ is the unique minimizer in (29), then J (Q̄) = 0, and we can interpret J as a “measure of distance”
from Q to Q̄. Then sets Qτ can be interpreted as sets of r.v.s Q at “distance” at most τ from Q̄.

In particular, substituting Q̄ = 1, we obtain the following equivalence

argminJ = {1} ⇔ lim
τ→0+

Fτ (X) = E[X] for all X ∈ Lp(Ω),

while substituting Q̄ = 0, we obtain the following

argminJ = {0} ⇔ lim
τ→0+

Fτ (X) = 0 for all X ∈ Lp(Ω).

What about the opposite limit, as τ →∞? It is easy to see that

lim
τ→∞

Fτ (X) = sup
Q∈C

E[QX], where C := cl domJ .
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In particular, if
cl domJ = P := {Q ∈ Lq(Ω) |Q ≥ 0 and E[Q] = 1} (33)

then
lim
τ→∞

Fτ (X) = supX.

Also, property Q ≥ 0 in (33) implies that each Fτ is monotonic in sense that Fτ (X) ≥ 0 whenever X ≥ 0, while
property E[Q] = 1 in (33) implies that Fτ (C) = C for constants C.

As another example, if
cl domJ = {Q ∈ Lq(Ω) |Q ≥ 0} (34)

then

lim
τ→∞

Fτ (X) =

{
0, if supX ≤ 0

+∞, if supX > 0 .
(35)

We continue with the following observation.

Proposition 3.5. Let J : Lq(Ω) → [−∞,∞] and Fτ , τ > 0 be related by (30)–(32) as in Proposition 3.4.
Then J is convex if and only if the family Fτ satisfies (T1) and

(T2) for every fixed X ∈ Lp(Ω), Fτ (X) is a (non-decreasing and) concave function of τ on (0,+∞).

These properties are also equivalent to the property

(Q2) (1− λ)Qτ1 + λQτ2 ⊆ Qτ for τ = (1− λ)τ1 + λτ2 for all τ1 > 0, τ2 > 0 and λ ∈ [0, 1]

for the corresponding family Qτ , τ > 0.

Proof. By definition, concavity (T2) means that Fτ (X) ≥ (1 − λ)Fτ1 + λFτ2 for all τ1 > 0, τ2 > 0 and
λ ∈ [0, 1], where τ = (1− λ)τ1 + λτ2. By (26), this translates into (Q2). Further, with (32), (Q2) is equivalent
to the statement that if Q = (1 − λ)Q1 + λQ2 with J (Q1) ≤ τ1 and J (Q2) ≤ τ2 then J (Q) ≤ τ , where
τ = (1− λ)τ1 + λτ2. But this is exactly the convexity of J .

We remark that for non-constant convex functionals, the supremum condition in (29) is automatically
satisfied, hence (29) reduces to the infimum condition.

Definition 3.12 (Divergence root). A convex closed functional J : Lq(Ω) → [0,∞] satisfying (29) such that
argminJ = {1} and cl domJ = {Q ∈ Lq(Ω) |Q ≥ 0} is called a divergence root.

The discussion above implies the following result.

Proposition 3.6. If a functional J : Lq(Ω) → [0,∞] is a divergence root then the corresponding family of
positive homogeneous convex closed functionals Fτ in (30) satisfies (T1), (T2), lim

τ→0+
Fτ (X) = E[X], (35), and

each Fτ is monotonic. In particular, Fτ is a subregular regret measure for every τ > 0.

Proof. Only the last statement is new and requires proof. The inequality Fτ (X) ≥ E[X] is obvious from (T1)
and lim

τ→0+
Fτ (X) = E[X]. Hence, (V1) in Definition 3.9 holds. If (V2) fails, then there exists a non-zero X

such that Fτ (X) = E[X]. But then (T1) and (T2) imply that Fτ (X) = E[X] for all τ > 0, which contradicts
(35).

Definition 3.13 (Stochastic divergence). A convex closed functional J : Lq(Ω) → [0,∞] satisfying (29) such
that argminJ = {1} and cl domJ = P is called a stochastic divergence.

The discussion above implies the following result.

Proposition 3.7. If functional J : Lq(Ω) → [0,∞] is a stochastic divergence, then the corresponding fam-
ily of positive homogeneous convex closed functionals Fτ in (30) satisfies (T1), (T2), lim

τ→0+
Fτ (X) = E[X],

lim
τ→∞

Fτ (X) = supX, each Fτ is monotonic and satisfies Fτ (C) = C for constants C. In particular, Fτ is a
subregular (in fact, a coherent) risk measure for every τ > 0.

Proof. Only the last statement is new and requires proof. The inequality Fτ (X) ≥ E[X] is obvious from (T1)
and lim

τ→0+
Fτ (X) = E[X]. Hence, (R1) in Definition 3.7 holds. If (R2) fails, then there exists a non-constant X

such that Fτ (X) = E[X]. But then (T1) and (T2) imply that Fτ (X) = E[X] for all τ > 0, which implies that
E[X] = lim

τ→∞
Fτ (X) = supX. But this is possible only if X is a constant.
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Stochastic divergence as a measure of distance. A stochastic divergence J can also be interpreted as a
distance between probability measures. Recall that the underlying probability space (Ω,M,P) comes with some
“reference” probability measure P, and when we write E[Q] for an r.v. Q, we actually mean EP[Q]. Any r.v.
Q ∈ P satisfies Q ≥ 0 and E[Q] = 1. Hence, we can define the probability measure PQ as PQ(A) = EP[QIA] for
any event A, where IA is the indicator function. Then EPQ

[X] = E[QX] for any r.v. X. Hence, for any Q ⊆ P,

sup
Q∈Q

E[QX] = sup
PQ∈P(Q)

EPQ
[X],

where P(Q) is the set of probability measures corresponsing to r.v.s Q ∈ Q. In particular, (30) reduces to

Fτ (X) = sup
PQ∈P(Qτ )

EPQ
[X], where P(Qτ ) = {PQ : J (Q) ≤ τ} = {PQ : G(PQ) ≤ τ}, (36)

where G(PQ) := J (Q). The functional G maps probability measures absolutely continuous with respect to P to
[0,∞]. It is convex, closed with G(P) = 0, and, for PQ ̸= P, G(PQ) can be interpreted as the “distance” from PQ

to P. By Proposition 3.7, Fτ is a coherent risk measure in the basic sense for every such G and every τ > 0.
A popular example of such “distance” is the Wasserstein divergence

W (P1,P2) = inf
γ∈Π(P1,P2)

∫
Ω×Ω

d(x, y) dγ(x, y)

where:

• Π(P1,P2) is the set of all joint probability measures γ on Ω× Ω with marginals P1 and P2;

• d(x, y) is a metric on Ω.

A family of risk measures (36) with G(PQ) = W (PQ,P) is discussed in Rockafellar [2024].
We next consider the case when

J (Q) = E(φ(Q)), Q ∈ Lq(Ω) (37)

and investigate under what conditions on φ : R→ (−∞,∞] functional (37) has the properties listed above. We
have the following implications.

• If φ is closed proper convex, then so is J ;

• If φ is non-constant, then so is J ;

• If infy∈R φ(y) = 0 and supy∈R φ(y) =∞, then (29) holds;

• In particular, if φ is convex, non-constant, and infy∈R φ(y) = 0, then (29) holds;

• If the infimum infy∈R φ(y) is attained and can be replaced by a minimum, then the same is true for the
infimum in (29);

• If argminφ = {C} is a singleton, then argminJ = {C};

• In particular, argminφ = {0} ⇒ argminJ = {0} and argminφ = {1} ⇒ argminJ = {1};

• If φ is convex, then cl domφ = [a, b] is a closed convex interval, where −∞ ≤ a < b ≤ ∞. Then
cl domJ = {Q ∈ Lq(Ω) | a ≤ Q ≤ b};

• In particular, if cl domφ = [0,∞], then (34) holds;

• If φ is convex, closed, miny∈R φ(y) = 0, argminφ = {1}, and cl domφ = [0,∞], then J is a divergence
root.

Assume that J is convex, and let F be the conjugate functional to J defined in (24). Then Rockafellar
[2024] points out that it is a basic formula in convex analysis that

Fτ (X) = inf
λ>0

λ[F(λ−1X) + τ ]. (38)

Proposition 3.8. If F is a subregular error, regret, deviation, or risk measure, then Fτ is a positive homoge-
neous subregular error, regret, deviation, or risk measure, respectively.

Proof. If F is, for example, an error measure, then F∗ satisfy the conditions (E1*) and (E2*) in Proposition
3.3. Then (E1*) implies (29), while (E2*) implies that for any non-constant r.v. X there exists Q̄ such that
F∗(Q̄) <∞ and 0 < E[XQ̄]. Let λ = min{ τ

F∗(Q̄)
, 1} if F∗(Q̄) > 0 and λ = 1 if F∗(Q̄) = 0. Then the convexity

of F∗ implies that
F∗(λQ̄) = F∗(λQ̄+ (1− λ) · 0) ≤ λF∗(Q̄) + (1− λ) · 0 ≤ τ.

Then for Q′ = λQ̄ we have Q′ ∈ Qτ and 0 < E[XQ′]. Also, Qτ contains 0. Hence, it satisfies the condition (E’)
in Section 3.2.2, which implies that it is a dual set of an error measure. The proofs for the regret, deviation,
and risk measures are similar.
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If (38) holds, we will call F the parent functional for a family Fτ , τ > 0. In particular, if J : Lq(Ω)→ [0,∞]
is a divergence root, then its conjugate F is a subregular regret measure, which is the parent of the family Fτ

of subregular regret measures corresponding to J via Proposition 3.6.

Proposition 3.9. Let (E ,V,D,R) be a quadrangle generated starting from a subregular error measure E (or
from subregular regret measure V) via relations (Q2), (Q3). Let τ > 0 and let Eτ , Vτ , Dτ , and Rτ be positive
homogeneous subregular error, regret, deviation, and risk measures defined in (38). Then Eτ , Vτ , Dτ and Rτ

are also related by (Q2), (Q3).

Proof. We first prove (6). Indeed,

Vτ (X) = inf
λ>0

λ[V(λ−1X) + τ ] = inf
λ>0

λ[E(λ−1X) + E[λ−1X] + τ ]

= E[X] + inf
λ>0

λ[E(λ−1X) + τ ] = E[X] + Eτ (X).

The proof of (5) is similar. Next,

Dτ (X) = inf
λ>0

[λD(λ−1X) + λτ ] = inf
λ>0

[λ inf
C1

E(λ−1X − C1) + λτ ] = inf
λ>0

inf
C
[λE(λ−1(X − C)) + λτ ],

where C = λC1. We can then exchange the order of infimums and obtain

Dτ (X) = inf
C

inf
λ>0

[λE(λ−1(X − C)) + λτ ] = inf
C
Eτ (X − C).

This proves (Q1), and (Q2) can be proved similarly.

As a simple example, if we start with an error measure

E(X) = E[X2],

then, for any τ > 0,

Eτ (X) = inf
λ>0

λ[E[(λ−1X)2] + τ ] = inf
λ>0

[λ−1E[X2] + λτ ] = 2
√
τ
√
E[X2] = 2

√
τ ||X||2.

The projected deviation measure is then
Dτ (X) = 2

√
τσ(X),

see Example 1 in Rockafellar and Uryasev [2013]. Equivalently, we may first note that the projected deviation
measure for E is

D(X) = σ2(X),

see Example 2 in Rockafellar and Uryasev [2013], and then by (38)

Dτ (X) = inf
λ>0

λ[σ2(λ−1X) + τ ] = 2
√
τσ(X).

As another example, Rockafellar [2024] proved that if V is the indicator of the set

X = {X| ∃Y ≥ 1, such that E[X + Y ] = 1, X + Y ≥ 0}

then the corresponding risk measure Rτ is the conditional value-at-risk with τ = α
1−α . We remark that the set

X can be written in a simpler form. Indeed, with Z = Y − 1 we obtain

X = {X| ∃Z ≥ 0, such that E[X + Z] = 0, X + Z ≥ −1}.

We claim that X ∈ X if and only if E[max(−1, X)] ≤ 0. Indeed, Z ≥ 0 implies that X + Z ≥ X. Hence,
X + Z ≥ max(−1, X), and E[max(−1, X)] ≤ E[X + Z] = 0. On the other hand, if E[max(−1, X)] ≤ 0, then
there exist a constant c > 0 such that E[max(−1+c,X+c)] = 0, and we may take Z = max(−1+c,X+c)−X.
In conclusion,

X = {X|E[max(−1, X)] ≤ 0} = {X|E[X + 1]+ ≤ 1},
and

V(X) =

{
0, if E[X + 1]+ ≤ 1

+∞, otherwise.

This functional is a subregular regret measure. Indeed, inequality V(X) ≥ E[X] is trivial if V(X) = ∞. If,
conversely, V(X) = 0, then 1 ≥ E[X + 1]+ ≥ E[X + 1] implies that 0 ≥ E[X], and (V1) follows. From this
argument, it is clear that equality V(X) = E[X] holds if and only if X belongs to the set A = {X : E[X] =
0, P(X ≥ −1) = 1}. Obviously, for any non-zero X ∈ A there exists λ > 0 such that λX ̸∈ A. This implies
(V2). The corresponding risk measure is

R(X) = inf{C |E[X + 1− C]+ ≤ 1}.

Also, for any τ > 0,

Vτ (X) = inf
λ>0

λ[V(λ−1X) + τ ] = τ inf{λ > 0 : E[λ−1X + 1]+ ≤ 1}.
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4 Generalized Regression and Statistical Estimation

4.1 Functional Regression
Regression is one of the central concepts in statistical estimation theory. Given a random variable Y ∈ Lp(Ω)
(the regressant or independent variable) and a collection of random variables Xi ∈ Lp(Ω), i = 1, . . . , n, (the
regressors or independent variables), the task of functional regression (see Kendall [1951, 1952]) is to find a
function f : Rn → R, belonging to a class of measurable functions C, that minimizes the regression residual
Zf := Y − f(X), X = (X1, . . . , Xn), with respect to a particular error E (e.g., mean squared error, mean
absolute error). Specifically, the goal is to solve the following stochastic optimization problem:

min
f∈C

E(Zf ). (39)

In general, different choices of error result in different optimal solutions of (39).
From the statistical estimation perspective, given the regressant Y and the vector of regressors X, the

aim is to estimate (track) a desired conditional statistic S(Y |X) (e.g., conditional mean E[Y |X] or conditional
quantile VaRα(Y |X)) via regression. The classical approach to this problem is to find an appropriate loss
function ℓ : R→ R and solve (39), where E(Zf ) = E[ℓ(Zf )].

4 Then (see Bach [2024])

f∗(x) ∈ argmin
C∈R

E[Y − C|X = x], (40)

where the equality X = x is understood pointwise.
Of course, the above approach works provided a loss function exists for a given statistic. Statistics for which

such a loss function exists are called elicitable (see Lambert et al. [2008]). For non-elicitable statistics, however,
the expected loss approach is infeasible, and thus other approaches should be considered. The RQ provides
a unified framework for both elicitable and non-elicitable statistics by considering axiomatically defined errors
beyond expected losses.

Theorem 4.1 (Regression Theorem). Consider problem

minimize E(Zf ) over all f ∈ C, where Zf = Y − f(X) (41)

for random variables X and Y in the case of E being a subregular measure of error and C being a class of
functions f : Rn → R such that

f ∈ C =⇒ f + C ∈ C for all C ∈ R. (42)

Let D and S correspond to E as in the Quadrangle Theorem. Problem (41) is equivalent then to:

minimize D(Zf ) over all f ∈ C such that 0 ∈ S(Zf ). (43)

Moreover if E is of expectation type and C includes a function f satisfying

f(x) ∈ S(Y |x) almost surely for x ∈ D,
where Y |x = Y |X = x (conditional distribution),

(44)

with D being the support of the distribution in Rn induced by X,5 then that f solves the regression problem and
tracks this conditional statistic6 in the sense that

f(X) ∈ S(Y |X) almost surely. (45)

The Regression Theorem 4.1 of Rockafellar and Uryasev [2013] remains valid for the subregular functionals
with the same proof.

In general, the inclusion (45) holds only for the errors of expectation type. However, more can be said in
the case of linear regression.

4.2 Linear Regression
Consider the linear regression problem

min
(c0,c1,...,cn)∈Rn+1

E

(
Y − c0 −

n∑
i=1

ciXi

)
, (46)

where E is a subregular error measure. Theorem 3.1 in Rockafellar et al. [2008] proves that the solution set in
(46) is non-empty under some additional assumptions on E such as positive homogeneity. Here we prove the
same result for any subregular error measure with no additional assumptions.

4Such errors are referred to as the errors of expectation type according to Rockafellar and Uryasev [2013].
5Almost surely, in (44), refers to this distribution.
6It is assumed, for this part, that the distribution of Y |x for x ∈ D belongs to Lp(Ω), and the same then for the random variable

Y |X obtained from it.
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Proposition 4.1. Let E be a subregular error measure. Then the set of minimizers in (46) is a non-empty,
closed, convex subset of Rn+1.

Proof. The convexity and closedness of the set of minimizers follow from the convexity and lower-semicontinuity
of the objective function, so we only need to prove its non-emptiness. Let X be the set of all r.v.s X representable
as X = c0 +

∑n
i=1 ciXi for some (c0, c1, . . . , cn) ∈ Rn+1. Optimization problem (46) can be rewritten as

min
X∈X

E (Y −X) ,

and, in this formulation, it is clear that we may assume that the random variables X1, . . . , Xn satisfy the linear
independence condition that

∑n
i=1 ciXi in not constant unless c1 = · · · = cn = 0, because otherwise we can

remove some of the Xi without changing set X .
Function

f(d, c0, c1, . . . , cn) = E

(
dY − c0 −

n∑
i=1

ciXi

)
is a convex lower-semicontinuous function on Rn+2, satisfying f(x) ≥ 0 for all x ∈ Rn+2 and f(0) = 0. We need
to minimize f subject to the constraint that d = 1. If f(1, c0, c1, . . . , cn) is identical +∞ then the statement of
the Proposition trivially holds. Otherwise select some c0, c1, . . . , cn such that f(1, c0, c1, . . . , cn) = C <∞. Let
DC := {x ∈ Rn+2 : f(x) ≤ C} and D′

C be the set of vectors in DC with first coordinate 1. If DC is a bounded
subset of Rn+2, then so is D′

C . Because D′
C is also non-empty and closed, and f is lower-semicontinuous, this

implies that the set of minimizers is non-empty.
It is left to consider the case when the set DC is unbounded. Then there is a sequence {xk}∞k=0 such that

lim
k→∞

||xk|| = ∞ and f(xk) ≤ C for all k, where || · || is the usual Euclidean norm in Rn+2. Then yk = xk

||xk|| ,

k = 1, 2, . . . are unit vector belonging to the compact set {x ∈ Rn+2 : ||x|| = 1}, hence, by passing to a
subsequence if necessary, we may assume that lim

k→∞
yk = y∗ for some unit vector y∗ ∈ Rn+2. Now, for any

λ > 0, let Kλ be an integer such that ||xk|| ≥ λ for all k ≥ Kλ. Then the convexity of f implies that

f(λyk) = f

((
1− λ

||xk||

)
0 +

λ

||xk||
xk

)
≤
(
1− λ

||xk||

)
f(0) +

λ

||xk||
f(xk) ≤

λ

||xk||
C,

for all k ≥ Kλ. Hence,

0 ≤ lim
k→∞

f(λyk) ≤ lim
k→∞

λ

||xk||
C = 0,

from which we conclude that lim
k→∞

f(λyk) = 0. Now lower semicontinuity of f implies that

0 ≤ f(λy∗) = f

(
lim
k→∞

(λyk)

)
≤ lim

k→∞
f(λyk) = 0,

hence f(λy∗) = 0 for all λ > 0. Let us write y∗ in the coordinate form as y∗ = (d∗, c∗0, . . . , c
∗
n). If d∗ = 0, then

0 = f(λy∗) = E (λX∗) for all λ > 0, where X∗ = −c∗0 −
n∑

i=1

c∗iXi) ∈ X ,

which is a contradiction with (E2) unless X∗ = 0. By the linear independence condition, X∗ = 0 is possible
only if c∗0 = · · · = c∗n = 0, but this is a contradiction with ||y∗|| = 1.

Hence, d∗ ̸= 0. But then for λ = 1/d∗ we have

0 = f(λy∗) = E

(
Y − (λc∗0)−

n∑
i=1

(λ∗ci)Xi

)
,

which implies that the minimum in (46) is 0 and the set of minimizers in non-empty.

It is easy to check that Proposition 4.1 does not hold without condition (E2). Indeed, fix any non-constant
X ∈ X and consider functional

E(Z) =


0, if Z = 0;
a2

b , if Z = aY + bX for some constants a ≥ 0 and b > 0;

+∞, otherwise.

The convexity of E(Z) follows from the convexity of function f(a, b) = a2

b in the region {a ≥ 0, b > 0}. Also,
E is closed and satisfies (E1). On the other hand, E(Z) = 0 if and only Z = bX for some b > 0. If Y ̸∈ X ,
then Y − c0−

∑n
i=1 ciXi is never of this form, hence the objective function in (46) is never 0. However, for any
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b > 0, E(Y + bX) = 1
b , hence, if b→∞, then the objective function in (46) can be arbitrary close to 0. Hence,

the set of minimizers in this example is the empty set.
The regression decomposition theorem (Theorem 3.2 in Rockafellar et al. [2008]) remains valid for any

subregular error measure, with essentially the same proof.
Now we turn to conditional statistic tracking. For this, we need the following definition.

Definition 4.1 (Representation of risk identifiers, Rockafellar and Royset [2015]). A risk identifier QY at
Y ∈ Lp(Ω) for a regular measure of risk will be called representable if there exists a Borel-measurable function
hY : R→ R, possibly depending on Y , such that

QY (ω) = hY (Y (ω)) for a.e. ω ∈ Ω.

The following is a reformulation of Theorem 5.1 of Rockafellar and Royset [2015].

Theorem 4.2 (Statistic tracking in regression). For given c∗0 ∈ R and c∗ ∈ Rn, assume that

Y (ω) = c∗0 + c∗⊤X+ ε(ω) for all ω ∈ Ω (47)

with ε ∈ Lp(Ω) independent of Xi, i = 1, . . . , n and S(ε) = 0. Let (S,R,D, E) be a subregular quadrangle
quartet. If R has a representable risk identifier at ε and ε ∈ int(domR), then

c∗0 + c∗⊤X ∈ S(Y |X) a.s. (48)

The proof of the theorem remains the same.

5 Stochastic Optimization and Distributional Robustness
The notion of risk has become central in modern stochastic optimization and closely related fields such as
machine learning. Whenever the uncertainty is modeled probabilistically, the decision-maker aims to select a
decision that minimizes the risk of future losses, i.e., solve

min
w∈W

R(ℓ(w, ω)), (49)

where R : Lp(Ω,A,P0) → (−∞,∞] is a subregular risk measure and ℓ : W × Ω → R is a real-valued random
loss function assumed to be convex in w over a closed, convex, and nonempty set W ⊆ Rn.

Equation (24) allows equivalently rewriting (49) as follows

min
w∈W

sup
Q∈QR

EP0
[Qℓ(w, ω)−R∗(Q)]. (50)

Then for positive homogeneous risk functionals R, (50) is

min
w∈W

sup
Q∈QR

EP0
[Qℓ(w, ω)], (51)

where QR = {Q ∈ Lq(Ω) |EP0
[Q] = 1, R∗(Q) <∞} .

The stochastic optimization problem (51) can be interpreted as a relaxed robust optimization problem, where
the random variable Q serves as a “normalized” random weighting function. Therefore, instead of hedging against
the worst-case scenario ω ∈ Ω (see Ben-Tal et al. [2009]), the decision-maker selects the worst weighting function
Q̄ ∈ QR and minimizes EP0

[Q̄ℓ(w, ω)] over w ∈ W. Classical robust optimization takes Q̄ such that it is 0 for
almost all ω ∈ Ω except the one ω̄ ∈ Ω that maximizes the loss function ℓ(w∗, ω̄) at optimal w∗ ∈ W.

In turn, for positive homogeneous and monotonic risk functionals R, problem (51) is as follows

min
w∈W

sup
Q∈QR

0

EP0
[Qℓ(w, ω)], (52)

where QR
0 = {Q ∈ Lq(Ω) |Q ≥ 0, EP0 [Q] = 1, R∗(Q) <∞} . Here the Radon-Nikodym theorem implies that

for any probability measure P absolutely continuous w.r.t. P0, the random variable Q ∈ QR
0 is the Radon-

Nikodym density, i.e., Q =
dP
dP0

. Thus the set QR
0 has a one-to-one correspondence with the set of probability

measures
PR =

{
P≪ P0 |R∗

(
dP
dP0

)
<∞

}
. (53)

and problem (52) can be equivalently rewritten as follows

min
w∈W

sup
P∈PR

EP[ℓ(w, ω)]. (54)
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As Subsection 3.3 mentions, R∗ can be interpreted as a “measure of distance” between two elements from Lq(Ω).
Hence when the risk is positively homogeneous and monotone, R∗ may serve as a “statistical divergence” between
two probability measures P and P0. Indeed, by item (R1*) of Proposition 3.3, R∗(Q) ≥ R∗(1) = 0 for every

Q ∈ Lq(Ω), where 0 is the minimum value of R∗ hence, whenever P = P0, R∗
(

dP
dP0

)
= 0. This observation

allows establishing a link between the theory of risk and modern distributionally robust optimization.
Note that the set PR considers all probability measures P having a finite “distance” to P0 induced by R∗.

One may argue that this approach is too conservative, as one may be interested in probability measures P in
the proximity of P0. This suggests considering sets

PR
τ =

{
P≪ P0 |R∗

(
dP
dP0

)
≤ τ

}
, τ > 0. (55)

Replacing PR with PR
τ in (54) and relying on (38), problem (54) is as follows

min
w∈W

Rτ (ℓ(w, ω)), (56)

where Rτ (ℓ(w, ω)) = inf
λ>0

λ[R(λ−1ℓ(w, ω)) + τ ]. Moreover, functional Rτ is itself positively homogeneous and

monotone subregular risk (see Proposition 3.8).
In modern distributionally robust optimization (cf. Shapiro [2017]), the decision-maker first selects R∗ and

then solves (56). This is equivalent to choosing the risk R and solving (56). Moreover, the option of choosing
a known risk first may be beneficial, as there might exist an efficient way of optimizing it through regret.
Proposition 3.9 implies that (56) can be rewritten as

min
w∈W, C∈R

C + Vτ (ℓ(w, ω)− C). (57)

Indeed, formulation (57) is usually more computationally efficient than (56).
Coming back to the formulation (51), instead of sets QR one may consider sets

QR
τ = {Q ∈ Lq(Ω) |EP0 [Q] = 1, R∗(Q) ≤ τ}

and solve (56), where the subregular risk is positively homogeneous but no longer a monotone functional. This
perspective was used in Peng et al. [2024] to construct the extended φ–Divergence-based Quadrangle.

Example A. The first is an interpretation of Markowitz portfolio optimization [Markowitz, 1952], Large
Margin Distribution Machine [Zhang and Zhou, 2014], and least squares regression as relaxed robust loss mini-
mization. For the first example, we define the uncertainty set QR

φ,τ of random variables Q as a Euclidean ball
of radius

√
τ centered at 1 with expected value of 1 :

QR
φ,τ = {Q ∈ Lp : E[Q] = 1,E[φ(Q)] ≤ τ}, φ(x) = (x− 1)2. (58)

Set QR
φ,τ appears in portfolio optimization, classification, and regression problems. Consider a random portfolio

loss ℓ(w) = wT r, where w ∈ Rd is a vector of portfolio weights and r is a random vector of negative asset
returns. Let 1 = (1, . . . , 1)⊤ ∈ Rd. Then the following two problems have the same optimal objective function
value and the same set of solution vectors:

Markowitz portfolio optimization

min
1⊤w=1

E[ℓ(w)] +
√
τσ(ℓ(w)), (59)

Robust expected loss minimization

min
1⊤w=1

max
Q∈QR

φ,τ

E[QX(w)] . (60)

Problem (60) is the robust version of the expected loss minimization problem min
1⊤w=1

E[X(w)].

The following is an interpretation of the Large Margin Distribution Machine classification algorithm as a
robust optimization. Consider an attribute (random vector of features) X, label Y, and decision vector w. The
margin is defined by L(w, b) = Y (w⊤X − b). Denote by γ(w) a regularization function. The following two
problems have the same optimal objective function value and the same set of solution vectors:

Large Margin Distribution Machine

min
w,b

E[−L(w, b)] +
√
τσ(−L(w, b)) + γ(w), (61)

Robust expected margin maximization

min
w,b

max
Q∈QR

φ,τ

E[−QL(w, b)] + γ(w) . (62)

Problem (62) is the regularized robust version of the expected margin maximization problem max
w

E[L(w, b)].
The following is an interpretation of least squares regression as robust optimization. Consider a regressant

Y , a vector of regressors X = (X1, . . . , Xn), a class of functions C, and an intercept c ∈ R. The regression
residual is defined by Zf = Y −f(X)−c, and the residual without the intercept C is defined by Zf = Y −f(X).
The following two problems have the same optimal solution (f, c):
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Least squares regression

min
f∈C,c∈R

||Zf ||2 , (63)

Deviation minimization

min
f∈F

max
Q∈QR

φ,τ

E[QZf ]− E[Zf ] (64)

calculate c = E[Zf ] . (65)

The interpretation of (60) and (64) as a robust optimization is obtained from the dual representation of risk
and deviation in the Extended Pearson Divergence Quadrangle

Rφ,τ (X) = max
Q∈QR

φ,τ

E[QX],

Vφ,τ (X) = max
Q∈QV

φ,τ

E[QX],

Dφ,τ (X) = max
Q∈QR

φ,τ

E[QX]− E[X],

Eφ,τ (X) = max
Q∈QV

φ,τ

E[QX]− E[X],

Sφ,τ (X) = E[X],

where QR
φ,τ is defined in (58) and the uncertainty set QV

φ,τ of random variables Q removes the condition E[Q] = 1
in (58)

QV
φ,τ = {Q ∈ Lp : E[φ(Q)] ≤ τ}, φ(x) = (x− 1)2. (66)

Example B. The next example shows the relation between CVaR optimization [Rockafellar and Uryasev,
2000], ν-support vector machine [Schölkopf et al., 2000], quantile regression [Koenker and Bassett Jr, 1978] and
robust optimization. Let ν = 1− α. The equivalence of ν-SVM and CVaR optimization was studied by Gotoh
and Takeda [2004]; Takeda and Sugiyama [2008]. Define the uncertainty set QR

φ,τ

QR
φ,τ = {Q ∈ Lp | E[Q] = 1,E[φ(Q)] ≤ τ}, φ(x) =

{
0, x ∈ [0, 1

1−α ]

+∞, otherwise
. (67)

QR
φ,τ will appear in portfolio optimization, classification, and regression problems. Similarly to Example A, in

each of the following three pairs of problems, the optimizations on the left and right have the same optimal
objective function value and the same set of solution vectors:

CVaR portfolio optimization

min
1Tw=1

CVaRα(ℓ(w)) , (68)

Robust loss minimization

min
1Tw=1

max
Q∈QR

φ,τ

E[Qℓ(w)] , (69)

ν-SVM

min
w,b

CVaRα(−L(w, b)) + γ(w), (70)

Robust expected margin maximization

min
w

max
Q∈QR

φ,τ

E[−QL(w, b)] + γ(w) . (71)

Quantile regression

min
f∈C,c∈R

Eα(Zf ) , (72)

Deviation minimization

min
f∈C

max
Q∈QR

φ,τ

E[QZf ]− E[Zf ] (73)

calculate c ∈ VaRα[Zf ] . (74)

CVaR portfolio optimization, ν-SVM, and quantile regression are connected by the quantile quadrangle
(Example 2, Rockafellar and Uryasev [2013]). The interpretation as robust optimization is obtained from the
dual representation, which is presented below together with the primal representation.

Quantile-based Quadrangle

Rα(X) = CVaRβ(X) = max
Q∈QR

φ,τ

E[QX],

Vα(X) =
1

1− β
E[X+] = max

Q∈QV
φ,τ

E[QX],

Dα(X) = CVaRα(X)− E[X] = max
Q∈QR

φ,τ

E[QX]− E[X],

Eα(X) = E
[ α

1− α
X+ +X−

]
= max

Q∈QV
φ,τ

E[QX],

Sα(X) = VaRα(X) ,
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where the uncertainty set QV
φ,τ is defined by

QV
φ,τ = {Q ∈ Lp : E[φ(Q)] ≤ τ}, φ(x) =

{
0, x ∈ [0, 1

1−α ]

+∞, otherwise
. (75)

The robust representations (69), (71), (73) are implied by the dual representations of risk and deviation in the
quantile quadrangle.
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