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Abstract

The calculus of variations, a venerable subject connected for centuries with physics, was largely
superseded in the 1960s by the theory of optimal control that arose then from modern engineering.
Mathematically, the new subject had in fact been anticipated mostly by the old, but its different
applications put much greater emphasis on inequality constraints tied to system dynamics. Inequal-
ity constraints had become prominent also, already in the 1950s, in finite-dimensional optimization
and the solution methods for that which arrived with the computer revolution.

These developments created a need for convex analysis and eventually its nonconvex extensions,
which pushed far beyond the traditions of calculus with its reliance on “smoothness.” That, in turn,
opened a new outlook on the calculus of variations and optimal control with the realization that the
problems there could be returned to neoclassical simplicity by posing them with functions allowed to
take on ∞ and appealing to subgradients instead of gradients. Rules for determining subgradients
could routinely then handle the many details of structure that problem formulation might be asked
to address. Here, that history is reviewed, its accomplishments are put in perspective, and prospects
for the future suggested.
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1 Overview and dedication

This paper has been put together as a tribute to Boris S. Mordukhovich for his 75th birthday in
appreciation of all that he has done, over decades, to expand the horizons of variational analysis.
The topic is fitting, because he has often declared that the neoclassical approach to the calculus of
variations and optimal control that began around 1970, relying first on methods of convex analysis
and later evolving with broader concepts of subgradients, was a key motivation for his early career.
The theory of generalized problems of Bolza, with its duality under full convexity, inspired him in
particular with its comprehensive novelty and mathematical beauty. That theory is laid out here with
indications of historical origins and subsequent advances in nonconvex trajectory optimization in the
same vein. Its echoes for the Hamilton-Jacobi-Bellman equation are explained, as well.

Nowadays, fashion has largely switched to other things, and research in the calculus of variations
and optimal control has entered a kind of backwater. But perhaps this paper can help to keep it
afloat. Before the engineering applications of control, the classical subject had crucial significance
for the physics of mechanical systems, and still does. Its neoclassical reincarnation, so readily able to
handle “nonsmoothness,” offers prospects of extending those applications into wider practical domains.
Moreover, extensions to the PDE-type variational settings that deal with elasticity and stress, for
instance, yet may be rife with nonsmoothness, have hardly been touched. So much more is on the
mathematical horizon, just waiting. Many more tools in second-order variational analysis are now
available, among other things. Hopefully, the review provided here might aid in sparking new research.

The brachistochrone problem of Johann Bernouli in 1696 was perhaps to first to look for an
“optimal trajectory.” If a ball is to roll by gravity down a curved ramp from a point A to a lower
point B, what shape should the curve have for the time taken to be minimal? That was the start of
the classical field known somewhat oddly as the calculus of variations, because of its central technique
of testing optimality by “varying” a solution candidate in one way or another.

A trajectory can be imagined for general purposes as a function from time t in an interval [t0, t1] to
points x(t) ∈ IRn that represent “states” of a system. In Newtonian notation for rates of change, the
first derivative is denoted by ẋ(t). An optimization problem can be posed by specifying constraints
on the endpoints x(t0) and x(t1) along with a “cost” that integrates over time in depending on the
states x(t) and velocities ẋ(t) as t goes from t0 to t1. Questions concern the existence of a trajectory
that minimizes the cost subject to the constraints and how to characterize the optimality in the global
sense or some local sense.

Such questions turn out to be much harder to answer than might be supposed. A major reason
is that the problem is infinite-dimensional and can’t even be made rigorous without restricting the
trajectories to some good “trajectory space,” for which the development of modern functional analysis
was essential. It’s relatively easy to establish conditions that are necessary for simple versions of local
optimality when assuming adequate levels of differentiability, but there’s a pitfall. Such conditions
can identify a unique trajectory that exhibits such differentiability, and yet that trajectory can fail
to be optimal, because lower values of the “cost” can be obtained by a sequence tending, in some
respects, toward a trajectory that lacks the specified differentiability. To get around that, bigger
spaces of trajectories need to be considered and different notions of convergence have to be sorted out.
To handle “costs” expressed by integral functionals, advanced integration theory with its concept of
measurability must be brought in. Getting all that in place took many years of effort and a change
from looser old-time modes of mathematical analysis to the standards of today. One of the great
virtues of the calculus of variations in its history has been the impetus it gave for so much of that.

The basic problem in which the “cost” of a trajectory depends on x(t) and ẋ(t) while the in-
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terval [t0, t1] is fixed can be elaborated, of course, in many ways. The cost could also depend on
second derivatives ẍ(t), but tricks can be used to reduce that to just first derivatives, much as in the
methodology of ordinary differential equations. The terminal time t1 can become a variable subject
to optimization, too, as in the brachistochrone problem in its search for something quickest. For
that, there are again reformulation tricks to reduce back to fixed t1. More demanding, though, are
constraints on x(t) and ẋ(t) that operate along the entire trajectory instead of just at the endpoints,
or relaxations from fixed endpoints to more complicated conditions the may combine with endpoint
costs, perhaps as penalties. Moreover the constraints can be in the form of inequalities, not merely
equations. All those complications were nevertheless mastered in mathematical theory, at least to
classical satisfaction, as the calculus of variations matured in the middle of the last century and the
computer revolution loomed. The important questions seemed to have been answered, and researchers
were turning to other endeavors.

Computers brought the birth of modern optimization in the United States in the form of the
Dantzig’s simplex method for linear programming (1949) and so much that followed from it, with
numerical emphasis in finite dimensions in exploring convexity, duality, and the complications caused
by inequality constraints. In the Soviet Union, in contrast, optimal control of trajectories was the
new topic. It surged with the Pontriagin “maximum principle” being its centerpiece as a necessary
condition for local optimality. In fact, most of what became important to understand at that time
about inequality constraints or optimal trajectories in control had already been worked out in the
“finalized” classical theory. Hestenes, who had been a participant, explained that well in his 1966
book [12]. But a huge shift had arrived in the research paradigm and the vision of applications.

2 Classical framework

In classical analysis, functions are usually assumed, or expected, to be arbitrarily smooth: continuously
differentiable as many times as might be helpful. The bedrock problem for trajectories in IRn is the
problem of Lagrange. It seeks to

minimize

∫ t1

t0
L(t, x(t), ẋ(t))dt subject to x(t0) = a0, x(t1) = a1, (2.1)

for choice of points a0 and a1 in IRn and a differentiable function L of (t, x, v) ∈ [t0, t1]× IRn × IRn,
which is called the Lagrangian. Here a conflict in notation needs to be avoided. The x in L(t, x, v)
stands for a vector, so it can’t also stand for the trajectory in (2.1). That’s denoted therefore instead
by x(·). The problem then is to minimize an integral functional on a space of trajectories2 x(·).

But what is that trajectory space? And what might be the distances used in it when designating
a local minimum? Classically, in taking trajectories x(·) to be continuously differentiable on (t0, t1)
with the derivative ẋ(·) having a continuous extension to [t0, t1], one can identify x(·) with the pair
(x(t0), ẋ(·)) ∈ IRn × Cn[t0, t1], where Cn[t0, t1] is the Banach space of continuous functions from [t0, t1]
to IRn under the uniform norm || · ||∞. A neighborhood of x(·) can be built from a neighborhood of
x(t0) in IRn and a neighborhood of ẋ(·) in Cn[t0, t1]. A weak local minimum refers traditionally to a
neighborhood in that sense, while a strong local minimum refers to a neighborhood of x(·) as itself an
element of Cn[t0, t1], without invoking closeness of derivatives.

The standard first-order necessary condition for a weak local minimum is the Euler-Lagrange

2Although the term “trajectory” is preferred here, much of the literature speaks of x(·) as an “arc.”
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equation, which has often been written in the potentially puzzling form

d

dt
∇vL(t, x(t), ẋ(t)) = ∇xL(t, x(t), ẋ(t)), (2.2)

as for instance in the textbook [11]. This involves the partial gradients of the function L(t, x, v) in
the x and v arguments and the implicit claim that the composed function t 7→ ∇vL(t, x(t), ẋ(t)) is
differentiable for the candidate trajectory x(·). A better statement of the condition is that there exists
a trajectory p(·) such that

(ṗ(t), p(t)) = ∇x,vL(t, x(t), ẋ(t)). (2.3)

This is important because it opens the way to duality , with p(·) being called the adjoint trajectory
associated with x(·) in local optimality. With “full convexity,” p(·) will be seen later to solve a problem
that’s dual to the one solved by x(·). That’s noteworthy as an entirely natural development from the
perspective of modern optimization, but for which there was no inkling in classical imagination.

Next comes an operation called the Legendre transform, which aims to produce from L(t, x, v)
a function H(t, x, p) on [t0, t1] × IRn × IRn called the Hamiltonian. The usual description of it is
troublesome for the absence of clear assumptions, without which it won’t work. The prescription is
first to solve the equation p = ∇vL(t, x, v) for v as a function of (t, x, p), with v = V (t, x, p) say, and
then to set

H(t, x, p) = p·V (t, x, p)−H(t, x, V (t, x, p)). (2.4)

The standard implicit function theorem is evidently the tool for obtaining V (t, x, p), however that’s
a local thing. Here it seems to be invoked globally — to get H defined everywhere and moreover itself
continuously differentiable to whatever degree. Or if H isn’t defined everywhere, what might be its
domain? The classical literature is silent, but the assumptions needed were finally worked out in [24].
They are much more restrictive and convexity-dependent than textbooks ever indicate. Anyway, the
powerful observation is that Euler-Lagrange equation (2.3) can in this way be written equivalently as
an ordinary differential equation in the pair (x(·), p(·)), which is called the Hamiltonian equation:

ẋ(t) = ∇pH(t, x(t), p(t)), ṗ(t) = −∇xH(t, x(t), p(t)). (2.5)

In another technical reformulation with valuable consequences, the time t can be recast as another
state variable. Details aside, this leads to a companion relation to (2.5) which comes out as

d

dt
H(t, x(t), p(t)) = ∇tH(t, x(t), p(t)). (2.6)

A conclusion is that, if L(t, x, v) is just L(x, v), the so-called autonomous case, where also H(t, x, p)
is just H(x, p), then H(x(t), p(t)) must be constant in time. Such properties are famous in physics
in application to the dynamics of mechanical systems. There, p(t) is the momentum associated with
the velocity ẋ(t), and the Hamiltonian represents energy. Its constancy along the trajectory pair
(x(t), p(t)) is a law of conservation, and there is much more along those lines in connection with the
Hamiltonian.

In the case of a strong local minimum, the Euler-Lagrange equation is partnered in necessity with
the Weierstrass condition, under which the inequality

L(t, x(t), v) ≥ L(t, x(t), ẋ(t)) + p(t)·[v − ẋ(t)] for p(t) = ∇vL(t, x(t), ẋ(t)) (2.7)

must hold for all v. To contemporary eyes, this is clearly a convexity type of the property of the
function L(t, x(t), ·) at the point ẋ(t). But convexity was not something perceived in mathematical
analysis of the past as a topic worthy of investigation in its own right.
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The problem of Lagrange has the trajectory endpoints fixed, but what if they are free, subject to
an additional cost tied to their location? The task then is to

minimize

∫ t1

t0
L(t, x(t), ẋ(t))dt+ l(x(t0), x(t1)) (2.8)

for some function l on IRn × IRn. The adjustment needed in characterizing local optimality is to
combine the Euler-Lagrange equation with the transversality condition

(p(t0),−p(t1)) = ∇l(x(t0), x(t1)). (2.9)

Free endpoints and fixed endpoints are the two extremes, but there can be so much in between.
One or the other endpoint could be fixed while the other is free, perhaps with an attached cost. Or
parts of each could be fixed while other parts have costs. Besides constraints on the components of
(x(t0), x(t1)), there could be constraints at each time t on the components of (x(t), ẋ(t)). Altogether,
we can contemplate trying to

minimize
∫ T
0 L0(t, x(t), ẋ(t))dt+ l0(x(t0), x(t1)) subject to

Li(t, x(t), ẋ(t))

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

lj(x(t0), x(t1))

{
≤ 0 for j = 1, . . . , q,
= 0 for j = q + 1, . . . , r.

(2.10)

This broad challenge, covering a myriad of special cases, is a problem of Bolza.3 Of course, a function
Li may depend only on part of the velocity, or part of the state, and a function lj may involve just a
particular aspect of one of the endpoints. In adapting optimality conditions to all these constraints,
Lagrange multipliers have to be brought in, and updated methodology was needed for that.

Problems of optimal control look different from this, at least on the surface, because they center
on a the choice of a control function u(·) from [t0, t1] to a set U(t) ⊂ IRd which determines a trajectory
x(·) through an ordinary differential equation (ODE):

minimize
∫ t1
t0

f0(t, x(t), u(t))dt+ l0(x(t0), x(t1)) subject to

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t),

lj(x(t0), x(t1))

{
≤ 0 for j = 1, . . . , q,
= 0 for j = q + 1, . . . , r.

(2.11)

The idea behind “control” is that fixing u(·) produces a mapping F (t, x) = f(t, x, u(t)), and in that
way determines x(·) from the ODE ẋ(t) = F (t, x(t)) and knowledge of x(t0) or x(t1). The endpoint
constraints in (2.11) are written very generally, but in particular they could require x(t0) to be some
a0 or x(t1) to be some a1. Conditions on f and u(·) must then be imposed to ensure the properties of
F needed for getting x(·) uniquely as a trajectory over the entire interval [t0, t1].

But there is an alternative way of looking at (2.11) which provides important insights. Instead
of it revolving around a choice of u(·) that acts to generate a trajectory x(·), the problem can be
understood in terms of optimizing the choice of both x(·) and u(·) subject to the differential equation

3Bolza problems, as recalled in the 1966 textbook of Hestenes [12], can also involve constraints on additional expres-
sions of the kind being minimized in (2.10). However, such problems can be reformulated to the statement here through
the incorporation of more state variables.

5



as a constraint on that joint choice.4 Moreover, u(·) can harmlessly be posed as the derivative ẏ(·) of
a trajectory y(·) in IRd. That way, (2.11) seeks to

minimize
∫ t1
t0

f0(t, x(t), ẏ(t))dt+ l0(x(t0), x(t1)) subject to

ẋ(t)− f(t, x(t), ẏ(t)) = 0, ẏ(t) ∈ U(t),

lj(x(t0), x(t1))

{
≤ 0 for j = 1, . . . , q,
= 0 for j = q + 1, . . . , r.

(2.12)

When supplemented by a representation of the set U(t) by a system of equations and/or inequalities,
(2.12) can be reconstituted as a problem of Bolza with respect to the trajectory (x(·), y(·)) in IRn+d:

minimize
∫ t1
t0

L̃0(t, x(t), y(t), ẋ(t), ẏ(t))dt+ l̃0(x(t0), y(t0), x(t1), y(t1)) subject to

L̃i(t, x(t), y(t), ẋ(t), ẏ(t))

{
≤ 0 for i = 1, . . . , s̃,
= 0 for i = s̃+ 1, . . . , m̃,

l̃j(x(t0), y(t0), x(t1), y(t1))

{
≤ 0 for j = 1, . . . , q̃,
= 0 for j = q̃ + 1, . . . , r̃.

(2.13)

It’s from this angle that optimal control theory can be seen as not so different from the classical calculus
of variations that preceded it, with the Pontriagin maximum principle essentially corresponding to
the Weierstrass necessary condition — a point of view emphasized in the book of Hestenes [12]. But
optimal control has a different engineering-oriented emphasis that leads to different technical demands.

Simple examples in control indicate that optimality may be out of reach if only continuous functions
u(·) are admitted. So-called bang-bang control functions that are piecewise constant, or at least able
to make jumps at certain times, may be natural in some applications. Continuous differentiability
of trajectories x(·) can’t then be taken for granted. But concepts like merely piecewise continuity
of derivatives, already contemplated in the calculus of variations and tied there to the Erdmann
conditions in necessity, aren’t adequate either. They can fail to be preserved in taking limits, that
makes them unsuitable for establishing the existence of solutions, among other things.

Perhaps, instead of having ẋ(·) in the space Cn[t0, t1], it should be allowed to be in a space Lp
n[t0, t1]?

The most attractive in this direction as trajectory space is

A1
n[t0, t1] =

{
x(·) ∈ Cn[t0, t1]

∣∣∣ ẋ(·) ∈ L1
n[t0, t1]

}
, (2.14)

which consists of the absolutely continuous functions from [t0, t1] to IRn, characterized by being
expressible as x(t) = x0+

∫ t
t0
v(s)ds for some x0 ∈ IRn and v(·) ∈ L1

n[t0, t1] (in which case x(t0) = x0 and
ẋ(t) = v(t) almost everywhere). It’s a Banach space with respect to the norm ||x(·)|| = |x(t0)|+||ẋ(·)||1.
(For vectors in IRn, | · | stands for the canonical norm there.)

3 Neoclassical framework

The development of convex analysis brought many innovations. One of the most striking was allowing a
function f on IRn to be extended-real-valued and identifying it then with its epigraph in IRn×IR instead
of its graph in IRn× [−∞,∞]. That way, constraints could be represented implicitly; minimizing f(x)
over x ∈ IRn is the same as minimizing it over dom f , the set of points x where f(x) < ∞. Furthermore,
gradients could be replaced by subgradients with their useful calculus.

4This could be useful, for example, in an iterative scheme of approximation or computation in which the control
function and state trajectory only satisfy the ODE in the limit.

6



Might the same approach be interesting in the optimization of trajectories? Why not work with a
generalized problem of Bolza, where the goal is to

minimize JL,l(x(·)) :=
∫ t1

t0
L(t, x(t), ẋ(t))dt+ l(x(t0), x(t1)) (3.1)

with respect to trajectories x(·) ∈ A1
n[t0, t1], and both L and l can be extended-real-valued? With the

understanding (in the technical framework to come) that JL,l(x(·)) < ∞ entails

(x(t), ẋ(t)) ∈ domL(t, ·, ·), (x(t0), x(t1)) ∈ dom l, (3.2)

the classical problem of Bolza in (2.10) would correspond to taking L here to be the sum of L0 and
the indicator of specified constraints on time, state and velocity, and likewise for l and the constraints
on endpoints. Maybe subgradient versions of the Euler-Lagrange equation (2.3) and the transversality
condition (2.9) could serve then in capturing optimality?

This innocent tactic reduces even the most complicated classical problems to a simple-looking neo-
classical formulation and at the same time offers fresh perspectives in optimal control. And there’s no
loss in such notational simplification — from the prospective of subgradient calculus and its Lagrange
multiplier component being able in the end to handle the structure behind ∞ values of L and l.

But a serious technical issue has to be confronted right away. Is the functional in (3.1) well defined
on A1

n[t0, t1]? The (Lebesgue) measurability of the function t 7→ L(t, x(t), ẋ(t)) is required, along with
assurance that the integral has an unambiguous value in (−∞,∞]. The theory of “normal integrands”
was developed in [25] (convexity-based) and then more broadly in [35] and [41, Chapter 14] in order to
help with this. It relies on the available results about measurable selections from set-valued mappings
and the notion that a mapping from [t0, t1] to closed subsets C(t) of a space IRd, say, is measurable if,
for every open set O ⊂ IRd, the set { t |C(t) ∩ O ̸= ∅} is measurable in [t0, t1]. (This is equivalent to
many other useful properties of the mapping.)

A normal integrand on [t0, t1]×IRd is ultimately a function f(t, u) such that the epigraphical map-
ping t 7→ epi f(t, ·) ⊂ IRd+1 is closed-valued and measurable, with the closed-valuedness corresponding
of course to the lower semicontinuity of f(t, ·) on IRd for each t. A key consequence is indeed the
measurability of the function t 7→ f(t, u(t)) for any measurable function t 7→ u(t). Then, as long as
f(t, u(t)) is bounded from below by some measurable function β(t) that is finitely integrable in the
Lebesgue sense, the integral

∫ t1
t0

f(t, u(t))dt will unambiguously have a value that is either finite or
∞ (not −∞). That will here be termed the integrability of f(·, u(·)), with finiteness of the value in
question called summability, in contrast, and entailing that f(t, u(t)) < ∞ for a.e. t.

Accordingly, the functional JL,l in problem (3.1) will be well defined on the space A1
n[t0, t1] under

the assumption henceforth made that

l is lower semcontinous proper on IRn × IRn, while L is a normal integrand
satisfying L(t, x, v) ≥ β(t)− γ(t)(|x|+ |v|) for finitely integrable β and γ,

(3.3)

which moreover will guarantee that (3.2) holds in the almost everywhere sense. Implicit in (3.1) will
therefore be the underlying differential inclusion

ẋ(t) ∈ D(t, x(t)) a.e., where D(t, x) = domL(t, x, ·), (3.4)

and the state constraint

x(t) ∈ X(t) a.e., where X(t) = {x ∈ IRn |D(t, x) ̸= ∅}. (3.5)
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These implicit restrictions underscore the great breadth of the problem model, which will come
into even brighter light when control ideas return to the discussion. In application to (2.10) for the
construction of the corresponding L in (3.1), one can take advantage for instance of the fact that L
will be a normal integrand if every Li is a Carathéodory integrand, which means that Lj(t, x, v) is
finite, continuous in (x, v) for each t, and measurable in t for each (x, v).

In this repainted picture, what might be the Hamiltonian H(t, x, p) to associate with the La-
grangian L(t, x, v)? The usual Legendre transform, invoking the implicit function theorem in solving
a gradient equation, is unavailable, but convex analysis offers a substitute that is anyway much better:
the Legendre-Fenchel transform that’s behind conjugate convex functions. Using this, define

H(t, x, p) := sup
v
{ p·v − L(t, x, v)}, (3.6)

noting that then H(t, x, p) is lower semicontinuous convex in p with

H(t, x, p) > −∞ for all p when x ∈ X(t),
H(t, x, p) = −∞ for all p when x /∈ X(t),

(3.7)

for the state constraint set X(t) in (3.5), and furthermore

L(t, x, v) convex in v =⇒ sup
p
{ p·v −H(t, x, p)} = L(t, x, v). (3.8)

In presuming to define the Hamiltonian function in the classical theory by way of the Legendre
transform, a strong form of convexity of L(t, x, v) in v is taken for granted, perhaps without realizing
it; see [24]. For (t, x) such that L(t, x, v) isn’t convex in v, but H(t, x, ·) isn’t the constant function
∞, the right side of the implication (3.8) has to be refined to

supp{ p·v −H(t, x, p)} = L(t, x, v), where, for each (t, x),

L(t, x, ·) is the closed convex hull of the function L(t, x, ·). (3.9)

That may seem esoteric, but in fact the classical Weierstrass condition in (2.7), which comes into
play for a strong local minimum, effectively demands that L(t, x(t), ẋ(t)) = L(t, x(t), ẋ(t)) with p(t)
being a subgradient of L(t, x(t), ·) at ẋ(t) in the convex analysis sense. Something really fundamental
is thus at stake for trajectories in the convex hull operation in (3.9).

The convexity of L(t, x, v) in v not only obviates any need for taking a convex hull, but also in fact
is generally prerequisite to hopes of obtaining the existence of a minimizing trajectory x(·). Without
it, the convexification procedure enters as a key form of problem “relaxation.”

The Hamiltonian function itself has a major role in existence theory as well by being subjected to
the basic Hamiltonian growth condition that

H(t, x, p) ≤ φ(t, |x|, p), where φ(t, r, p) is finite and summable in t. (3.10)

Theorem 3.1 (semicontinuity and compactness [33]). Suppose L(t, x, v) is convex in v and H(t, x, p)
satisfies the basic growth condition (3.10). Then for every α ∈ IR and r ∈ (0,∞) the set

{x(·) | JL,l(x(·)) ≤ α, ||x(·)||∞ ≤ r} (3.11)

is weakly compact in A1
n[t0, t1] and strongly compact in Cn[t0, t1].

This assures the attainment of the minimum in problem (3.1) relative to the constraint ||x(·)||∞ ≤ r
for any r ∈ IR+ and therefore in the presence of the state constraint X(t) when the sets X(t) are
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uniformly bounded in IRn. The need for such boundedness can be eliminated by appealing instead to
the strong Hamiltonian growth condition that

H(t, x, p) ≤ µ(t, p) + |x|(σ(t) + ρ(t)|p|), where
µ(t, p), σ(t), ρ(t), are nonnegative, t-summable.

(3.12)

Theorem 3.2 (existence of optimal trajectories [33]). Suppose L(t, x, v) is convex in v and H(t, x, p)
satisfies the strong growth condition (3.12). Then, as long as JL,l ̸≡ ∞ (feasibility), there exists a
trajectory x(·) satisfying the implicit constraints (3.4)–(3.5) that minimizes JL,l over A1

n[t0, t1].

The growth condition in (3.12) can be compared to the classical one of Tonelli on L, which in
translation to a equivalent condition on H requires H(t, x, p) ≤ γ|x| + θ(|p|) for some γ ≥ 0 and a
finite and nondecreasing convex function θ. That’s much tighter and excludes applications to duality
such as will be undertaken in Section 4.

Optimal control problems as in (2.11) can be turned into problems of Bolza by following the path
of reformulation via (2.12) to (2.13), and from there into problems in the generalized Bolza pattern
of (3.1). But optimal control can benefit by starting from an even broader problem statement which
was first put forward in [33]:

minimize JK,l(x(·), u(·)) :=
∫ t1

t0
K(t, x(t), u(t), ẋ(t))dt+ l(x(t0), x(t1)), (3.13)

with l as before but K being a normal integrand on [t0, t1] × IRn × IRd × IRn. The minimization in
(3.13) is viewed as taking place jointly with respect to x(·) ∈ A1

n[t0, t1] and

u(·) ∈ Ld[t0, t1] = the space of all measurable functions from [t0, t1] to IRd. (3.14)

The implicit constraints, besides (x(t0), x(t1)) ∈ dom l, are that

ẋ(t) ∈ F (t, x(t), u(t)) a.e., where F (t, x, u) = domK(t, x, u, ·),
u(t) ∈ U(t, x(t)) a.e., where U(t, x) = {u |F (t, x, u) ̸= ∅},
x(t) ∈ X(t) a.e., where X(t) = {x |U(t, x) ̸= ∅}.

(3.15)

Uniform boundedness of the sets U(t, x) would automatically restrict u(·) to the subspace L∞
d [t0, t1]

of Ld[t0, t1]. In particular, U(t, x) might be independent of x and maybe also of t.
This generalized control problem can be reduced to a generalized problem of Bolza (3.1) by fol-

lowing the earlier path of introducing an auxiliary state trajectory y(·) with ẏ(t) = u(t). That can be
good for some purposes, such as fully propagating the “maximum principle” as a necessary condition
for control optimality. But there’s a potential disadvantage in treating it that way. The resulting
Lagrangian L may lack dynamical convexity, despite convexity of the control space U(t), unless the
control equation has f(t, x, u) linear in u. An alternative route to reducing (3.13) to a generalized
problem of Bolza is opened by defining, as Lagrangian, the function

L(t, x, v) = inf
u
K(t, x, u, v), (3.16)

which through (3.16) and (3.6) yields, as Hamiltonian, the function

H(t, x, p) = sup
u,v

{ p·v −K(t, x, u, v)}. (3.17)

For this purpose, K should satisfy

K(t, x, u, v) ≥ β(t)− γ(t)(|x|+ |v|) for finitely integrable β and γ (3.18)
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and the inf-boundedness condition that

for each α ∈ IRr, t ∈ [t0, t1] and bounded subset B ⊂ IRn×IRn,

the set {u | ∃ (x, v) ∈ B : K(t, x, u, v) ≤ α} is bounded in IRd.
(3.19)

Theorem 3.3 (reduction to implicit controls [33]). Under (3.18) and the inf-boundedness condition
(3.19) on K, the function L defined by (3.16) is a normal integrand on [t0, t1] × IRd satisfying (3.3)
and such that

JL,l(x(·)) = inf
{
JK,l(x(·), u(·))

∣∣∣u(·) ∈ Ld[t0, t1]
}
, (3.20)

with the infimum in (·) being attained as long as it is not ∞. Thus, as long as JK,l ̸≡ ∞ (feasibility), a
pair (x(·), u(·)) solves problem (3.13) if and only if the trajectory x(·) ∈ A1

n[t0, t1] solves the generalized
Bolza problem (3.1) and the control function u(·) ∈ Ld[t0, t1] selects

u(t) ∈ S(t, x(t), ẋ(t)) for a.e. t, where S(t, x, v) = argmin
u

K(t, x, u, v), (3.21)

those argmin sets being compact in IRd and such that t 7→ S(t, x(t), ẋ(t)) is measurable.

This has liberating content. It reveals that, for purposes of ascertaining the existence of solutions
to the very broad problem (3.13) and characterizing optimality of x(·) and u(·) there, one can simply
call on the existence theory of existence and optimal conditions for trajectories x(·) in the generalized
Bolza problem (3.1) that’s extracted from (3.13) by (3.16). Afterward, an appeal to (3.21) recovers
optimal controls through an arbitrary measurable selection that’s guaranteed to be possible. That
depiction may seem odd for the control mindset, but it puts the mathematical focus on the features
that are most essential in achieving a fundamental understanding the optimization that’s involved.

As an example to illustrate reduction by (3.16) and bring insights to the issue of convexity of
L(t, x, v) in v, suppose a given control problem is to

minimize g(x(t1)) over the trajectories x(·) starting from x(t0) = a0
that are generated from ẋ(t) = f(t, x(t), u(t)) by controls u(t) ∈ U(t).

(3.22)

This corresponds to (3.13) with l(x0, x1) being the sum of g(x1) and the indicator δa0(x0), while
K(t, x, u, v) is the indicator of the graph of f plus the indicator of the graph of t 7→ U(t). Then,
through (3.16), L(t, x, v) is the indicator of the graph of the mapping D defined by

D(t, x) = { v | ∃u ∈ U(t), f(t, x, u) = v}. (3.23)

The reduced problem, with controls suppressed, is therefore to

minimize g(x(t1)) over the trajectories x(·) starting from x(t0) = a0
that can be generated from the differential inclusion ẋ(t) ∈ D(t, x(t)).

(3.24)

For any such trajectory, controls generating it can be recovered by measurable selection of u(t)
from U(t) ∩ {u | f(t, x(t), u) = ẋ(t)}. Here of course the relations are intended to hold only almost
everywhere, and the conditions on U(t) and f(t, x, u) have to be such that K(t, x, u, v) is a normal
integrand. But that’s easy to identify from the measurability handbook in Chapter 14 of [41].

Whether or not L(t, x, v) is convex in v in this example comes down to whether or not D(t, x) is a
convex set. That’s a crucial matter in the theory of differential inclusions, as seen for instance in the
book of Aubin and Cellina [1]. When D(t, x) isn’t convex, the relaxed differential inclusion utilizing
the closed convex hull of D(t, x) is an important object of study. The Hamiltonian here is

H(t, x, p) = sup { p·v | v ∈ D(t, x, v)}, (3.25)
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which as a function of p is the support function of the set D(t, x) and its convex hull.
Formulating control problems with control functions u(·) merely taken to be measurable can seem,

for engineering, a step too far for applications. Nobody knows how to “implement” controls of such
generality. Wouldn’t it be more sensible to limit attention to controls that are piecewise linear, say?
The trouble with such wishful niceties is that they interfere with optimality. There’s little hope of
finding conditions on the Lagrangian that ensure the existence of an optimal trajectory with the desired
special properties by insisting on them in advance, instead of them naturally and automatically coming
out of the situation itself. Moreover, without that existence, a necessary condition for optimalty that
simply assumes the desired property is worthless, even when it leads to a single candidate control
function of the wished-for variety (this being a pitfall so often overlooked in the literature on the
maximum principle in control). Instead, the correct path is to first understand the characteristics
that truly must belong to an optimal trajectory, and second to figure out how such a trajectory might
be approximated in minimization a by a nicer one when it isn’t already nice.

4 Neoclassical optimality conditions under full convexity

The property of dynamical convexity of the Lagrangian in the generalized Bolza problem (3.1), referring
to convexity of L(t, x, v) in v, has been observed to have a crucial and almost normalizing role in
support of lower semicontinuity of the functional being minimized and the existence of trajectories
that achieve the minimum. Its hallmark is the uncompromised conjugate duality between L and the
Hamiltonian H in the relations (3.6) and (3.8), which signals that every aspect of L is reflected,
somehow or other, by some characteristic of H. Relaxation through the convex hull operation can
then be left aside.

In contrast, the property of full convexity of the Lagrangian, which refers to L(t, x, v) being convex
in (x, v), has a more special role, yet nonetheless a fundamental one, particularly for the deployment
of convex analysis. Its Hamiltonian counterpart, on top of the convex conjugacy between L(t, x, ·) and
H(t, x, ·) associated with dynamical convexity, is that

full convexity of L corresponds to H(t, x, p) being concave in x. (4.1)

In the generalized Bolza problem (3.1), with its endpoint cost term added to the Lagrangian integral
cost term, full convexity means the combination of the full convexity of L and the convexity of the
endpoint function l. It’s easy to see that

under full convexity in the Bolza problem, JL,l is convex on A1
n[t0, t1], (4.2)

so this marks the territory in trajectory control and optimization that lies in convex optimization
with its powerful extra features. But strangely, that major division has long escaped notice in the
history of the calculus of variations and optimal control. Perhaps that’s because applications to
physics and engineering often don’t enjoy full convexity. In modern times, however, other trajectory
applications more open to convexity have emerged, such as in economics and operations research.
Furthermore, there is much greater appreciation and understanding of convexity and the potential for
solving nonconvex problems numerically by iteratively solving convex subproblems.

In the generalized control problem (3.13), convexity of K(t, x, u, v) with respect to (x, u, v) implies
through the inf-projection formula (3.16) the convexity of L(t, x, v) in (x, v). That way, full convexity
in (3.13), meaning the combination of this with the convexity of l there, implies full convexity in
the Bolza problem to which the control problem reduces in Theorem 3.3. But this is just a sufficient
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condition: it’s possible for the reduced problem to be fully convex without the convexity of K(t, x, u, v)
in (x, u, v), as seen from the example in (3.22). There, the issue comes down to whether the graphs
of the set-valued mappings x → D(t, x) are convex, but u acts only to parametrize those graphs, and
of course a convex set might be parameterized nonconvexly.

The potential for full convexity in a neoclassical format of trajectory optimization was first brought
out in the paper [27], from the same era as the publication of the Convex Analysis book [26] and
reflecting its break with the traditions. Subgradients could serve in place of gradients, and problems
might be dualized, as elsewhere in convex optimization.

Immediately at hand were subgradient reformulations of both the Euler-Lagrange equation (2.3),
as the existence of an adjoint trajectory p(·) such that

(ṗ(t), p(t)) ∈ ∂x.vL(t, x(t), ẋ(t)) a.e. t, (4.3)

and the associated transversality condition (2.9), as

(p(t0),−p(t1)) ∈ ∂l(x(t0), x(t1)). (4.4)

Although in classical theory the emphasis was on the necessity of such conditions, their sufficiency
being a far more difficult matter and requiring something more, here was a complete turnabout:
sufficiency elementary, necessity the challenge.

Theorem 4.1 (sufficiency under fully convexity). In a fully convex problem of Bolza, the existence
of p(·) ∈ A1

n[t0, t1] such that the Euler-Lagrange condition (4.3) and the transversality condition (4.4)
hold is sufficient for the trajectory x(·) to minimize the convex functional JL,l over A1

n[t0, t1].

It’s instructive that this follows right from the inequalities in the definition of subgradients in
convex analysis. In comparing a trajectory y(·) ∈ A1

n[t0, t1] to x(·), one has from (4.3) and (4.4) that

L(t, y(t), ẏ(t)) ≥ L(t, x(t), ẋ(t)) + ṗ(t)·[y(t)− x(t)] + p(t)·[ẏ(t)− ẋ(t)] a.e. t,
l(y(t0), y(t1)) ≥ l(x(t0), x(t1)) + p(t0)·[y(t0)− x(t0)]− p(t1)·[y(t1)− x(t1)],

and consequently that JL,l(y(·)) ≥ JL,l(x(·))+∫ t1
t0
[ṗ(t)·[y(t)− x(t)] + p(t)·[ẏ(t)− ẋ(t)]dt+ p(t0)·[y(t0)− x(t0)]− p(t1)·[y(t1)− x(t1)]

=
∫ t1
t0

θ̇(t)dt− θ(t1) + θ(t0) = 0 for θ(t) = p(t)·[y(t)− x(t)].
(4.5)

Another immediate option in the fully convex case, taking advantage of the concavity-convexity
in (4.1), is a subgradient formulation of the classical Hamiltonian equations (2.5) in the form of a
convex-valued differential inclusion

ẋ(t) ∈ ∂pH(t, x(t), p(t)), −ṗ(t) ∈ ∂x[−H](t, x(t), p(t)) for a.e. t. (4.6)

In fact, from a basic rule for partial conjugation in convex analysis, (q, p) is a subgradient of the
convex function L(t, ·, ·) at (x, v) if and only if v ∈ ∂pH(t, x, p) and −q ∈ ∂x[−H](t, x, p), so that

under full convexity, the generalized Hamiltonian condition (4.6) is an
equivalent statement of the generalized Euler-Lagrange condition (4.3).

(4.7)

Moreover in the autonomous case of H(x, p) instead of H(t, x, p), the function t 7→ H(x(t), p(t))
generated by (4.5) has to be constant, as shown in [28]. This is intriguing because such constancy
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reflects laws of conservation of energy in applications of classical theory to physics. Such laws carry
over then to completely different applications, such as perhaps in economics?

The question of when the sufficient conditions in Theorem 4.1 are also necessary can be answered
by an appeal to duality and, as is familiar in other areas of convex optimization, an accompanying
sort of constraint qualification. Conjugate convex functions have already entered in the relationship
between the Lagrangian and the Hamiltonian, but in the framework of full convexity in the Bolza
problem, conjugates of the convex functions l and L(t, ·, ·) can be investigated, too. It turns out that
a minor twist in the formulas will be desirable. Instead of passing directly to the conjugate functions
l∗ and [L(t, ·, ·)]∗, which will be denoted by L∗(t, ·, ·), it’s helpful to introduce

m(p0, p1) := l∗(p0,−p1), M(t, p, q) = L∗(t, q, p), (4.8)

because then, by the rule for subgradients of conjugate functions,

(ṗ(t), p(t)) ∈ ∂x,vL(t, x(t), ẋ(t)) ⇐⇒ (ẋ(t), x(t)) ∈ ∂p,qM(t, p(t), ṗ(t)),
(p(t0),−p(t1)) ∈ ∂l(x(t0), x(t1)) ⇐⇒ (x(t0),−x(t1)) ∈ ∂m(p(t0), p(t1)).

(4.9)

That way, the optimality conditions (4.3)-(4.4) for the given problem of Bolza with full convexity
translate to the same conditions for the dual problem of Bolza

minimize JM,m(p(·)) :=
∫ t1

t0
M(t, p(t), ṗ(t))dt+m(p(t0), p(t1)) (4.10)

for trajectories p(·) ∈ A1
n[t0, t1], namely the existence of x(·) ∈ A1

n[t0, t1] such that

(ẋ(t), x(t)) ∈ ∂p,qM(t, p(t), ṗ(t)) for a.e. t, (x(t0),−x(t1)) ∈ ∂m(p(t0), p(t1)). (4.11)

The dual problem fits the requirements of this context because one of the virtues motivating the
concept of a normal integrand is that this property of L(t, x, v) is preserved in conjugacy.

Theorem 4.2 (dual trajectories in optimality [27]). For fully convex problems of Bolza, the following
assertions about a pair of trajectories x(·) and p(·) in A1

n[t0, t1] are equivalent:
(a) the primal Euler-Lagrange and transversality conditions in (4.3)–(4.4) are satisfied,
(b) the dual Euler-Lagrange and transversality conditions in (4.11) are satisfied,
(c) x(·) minimizes JL,l in the primal problem, p(·) minimizes JM,m in the dual problem, and

JL,l(x(·)) = −JM,m(p(·)). (4.12)

The equation in (4.12) comes directly out of the Fenchel equations that hold for subgradients of
conjugate convex functions, here with respect to having, in the case of (a) or (b) of the theorem,

L(t, x(t), ẋ(t)) +M(t, p(t), ṗ(t)) = x(t)·ṗ(t) + ẋ(t)·p(t),
l(x(t0), x(t1)) +m(p(t0), p(t1)) = x(t0)·p(t0)− x(t1)·p(t1).

It corresponds to integrating the first equation over [t0, t1], adding that to the second equation, and
then pursuing a reduction like the one in (4.5).

All this concerns sufficiency in optimality. What can be said instead about the necessity of the
Euler-Lagrange and transversality conditions in Theorems 4.1, which is tied through Theorem 4.2 to
the existence of a solution to the dual problem as well as to the primal Bolza problem? It was observed
in Section 3 that existence for the primal problem involved having an upper bound of sorts on the
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Hamiltonian H(t, x, p). Presumably, then, existence of a solution to the dual problem would involve
such an upper bound on the Hamiltonian for that problem, that being the function

H̃(t, p, x) := sup
q
{x·q −M(t, p, q)}, which calculates to H̃(t, p, x) = −H(t, x, p). (4.13)

Primally and dually, then, there must presumably be both upper and lower bounds on H(t, x, p) and
thus its finiteness. There’s no surprise then, that one of the assumptions on the way to necessity in
this setting is having

H(t, x, p) summable with respect to t over [t0, t1]. (4.14)

Primal and dual “constraint qualifications” will also enter now as assumptions. They involve
the convex sets dom l and domm to which the pairs (x(t0), x(t1)) and (p(t0), p(t1)) are implicitly
constrained along with the dynamically attainable sets

CL =
{
(x0, x1)

∣∣∣ ∃x(·) ∈ A1
n[t0, t1] :

∫ t1
t0

L(t, x(t), ẋ(t))dt < ∞, (x(t0), x(t1)) = (x0, x1)
}
,

CM =
{
(p0, p1)

∣∣∣ ∃ p(·) ∈ A1
n[t0, t1] :

∫ t1
t0

M(t, p(t), ṗ(t))dt < ∞, (p(t0), p(t1)) = (p0, p1)
}
,

(4.15)

which are likewise convex in IRn × IRn. Obviously, having JL,l ̸≡ ∞ entails CL ∩ dom l ̸= ∅, while
having JM,m ̸≡ ∞ entails CM ∩domm ̸= ∅. The constraint qualifications strengthen that by requiring
the relative interiors of these convex sets to have nonempty intersection.

Theorem 4.3 (existence and necessity under full convexity [30]). Along with the Hamiltonian finite-
ness condition in (4.14), assume that

riCL ∩ ri[dom l] ̸= ∅, riCM ∩ ri[domm] ̸= ∅. (4.16)

Then optimal trajectories exist in both the primal and dual Bolza problems, and the equivalent
conditions in Theorem 4.2 hold for them.

The dual constraint qualification can be translated instead into a growth condition on the primal
functions L and l. See [30] for that and some wider perspectives on the problem assumptions and
relationships.

The need for the Hamiltonian to be finite in (4.14), in securing both primal and dual existence,
reveals something important about state constraints. It has already been noted that, because primal
existence could be expected to require H(t, x, p) < ∞, dual existence could be expected, in view of the
formula for the dual Hamiltonian in (4.13), to require H(t, x, p) > −∞. But the latter is equivalent,
by the formula for getting H from the Lagrangian L in (3.6) and the formula for the implicit state
constraint set X(t) in (3.5) via (3.4), to having X(t) = IRn. In other words, having H(t, x, p) > −∞
corresponds to having no implicit state constraints in the primal problem — and likewise, having
H(t, x, p) < ∞ corresponds to having no implicit state constraints in the dual problem!

Here’s the fundamental reason that has been discovered to be behind this. A primal state con-
straint x(t) ∈ X(t), when active in the sense of x(t) being a boundary point of X(t) can’t, in general,
be handled by the Euler-Lagrange condition (4.3) with the dual trajectory serving as a kind of La-
grange multiplier element for it, when p(·) is restricted to the space A1

n[t0, t1] of absolutely continuous
trajectories. Trajectories p(·) that aren’t absolutely continuous but merely of bounded variation have
to be brought in, as came to the surface in [31] with its utilization of [29]. The statement of (4.3)
must be adapted to that accordingly.
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In duality then, with respect to the roles of x(·) and p(·) being reversed in passing to the dual
Bolza problem, without the condition H(t, x, p) < ∞ the primal problem might have to expanded
to admit trajectories x(·) of bounded variation. Generalized problems of Bolza under full convexity
with both primal and dual trajectories admitted to be just of bounded variation, and therefore maybe
discontinuous with jumps at some times t, have been investigated in [34] and [36]. But much remains
to be understood. Special complications arise in handling rigorously the possibility of jumps in states
at the initial and final times t0 and t1, which seems to undermine the essence of having endpoint
constraints.

It was seen in Section 3 that problems of optimal control can be reduced to generalized problems
of Bolza in which the control variables are suppressed in the optimization, but can be recovered in the
end through measurable selection. Under full convexity, this process can be mirrored in duality. An
example will demonstrate it. The dynamical system will be autonomus, for simplicity. Start with the
control problem being to

minimize
∫ t1
t0

k(Cx(t), u(t))dt+ l(x(t0), x(t1))

subject to ẋ(t) = Ax(t) +Bu(t), for a.e. t,
(4.17)

where k is a lower semicontinuous proper convex function of (y, u) ∈ IRm × IRd and A, B and C
are matrices of appropriate sizes. The role of C is to identify the aspects of the state x that can be
“observed.” Reduction to a generalized Bolza problem is achieved by taking the Lagrangian to be

L(x, v) = inf
u
{ k(Cx, u) |Ax+Bu = v} (4.18)

(with the inf being ∞ when no such u exists). The associated Hamiltonian function is

H(x, p) = supv { p·v − L(x, v)} = supu { p·[Ax+Bu]− k(Cx, u)}
= p·Ax+ h(Cx,B∗p),

(4.19)

where B∗ is the transpose of B and

h(y, z) := sup
u

{ z·u− k(y, u)}. (4.20)

Suppose that h, which by the convexity of k is itself concave in y and convex in z, is a finite function
on IRm × IRd. The Hamiltonian H in (4.19) is then finite on IRn × IRn, which is a special case of the
condition (4.14) invoked in Theorem 4.3 and guarantees the conclusions there. The finiteness of h
also, separately, guarantees that the infimum (4.18) is attained when not ∞ and similarly attainment
of the supremum in (4.19).

To discern the form of the dual Bolza problem, the symmetry in (4.19) can be put to use together
with observation through (4.13) that the dual Hamiltonian has to be

H̃(p, x) = −x·A∗p− h(Cx,B∗p). (4.21)

Since the function conjugate to k is given by

k∗(w, z) = sup
y,u

{w·y + z·u− k(y, u)} = sup
y

{w·y + h(y, z)},

the formula for h in (4.20) is supplemented dually by

−h(y, z) = sup
w

{w·y − k∗(w, z)}

15



with the supremum always attained. It can be seen from this and (4.21) that, in analogy to (4.19),

H̃(p, x) = sup
w

{x·[−A∗p+ C∗w]− k∗(w,B∗p)}.

The conclusion is that the dual problem is the Bolza reduction of the dual control problem

minimize
∫ t1
t0

k∗(w(t), B∗p(t))dt+m(p(t0), p(t)1))

subject to ṗ(t) = −A∗p(t) + C∗w(t), for a.e. t,
(4.22)

where of course k∗(w(t), B∗p(t)) could be written instead as k̃(B∗p(t), w(t)) to emphasize parallels
with the starting problem in (4.17).

The duality between (4.17) and (4.22) as problems of optimal control is remarkable especially in
the way the control matrix B and observation matrix C in the primal problem appear in transposed
reversal as the control matrix C∗ and observation matrix B∗ in the dual problem. That adds more
shine to a phenomenon long known in the control of linear dynamical systems in which “controllability”
and “observability” exhibit duality. This kind of example of duality in neoclassical formulations of
optimal control dates back to 1972 in [32] with subsequent elaborations in [38].

5 Neoclassical optimality conditions more generally

Without the functions L(t, ·, ·) and l being convex, the subgradients in the Euler-Lagrange condition
(4.3) and transversality condition (4.4) can’t be the ones of convex analysis. For hopes of obtaining
necessary conditions in such neoclassical form to apply to generalized problems of Bolza without full
convexity, other concepts of subgradient have to be brought in. By now there is a highly developed
theory of subdifferentiation in first-order variational analysis that supplies everything that is needed.
As explained in [41, Chapter 8], it can be seen as starting with “regular” subgradients, which are
defined by an inequality like that for the convex analysis subgradients, which invokes one-sidedly the
same first-order error term as in the definition of differentiabilty. It produces the subgradients that
can serve in general by taking limits of those regular subgradients. Before that confuguration was
settled, however, other concepts were tried out.

The pioneer for subgradient conditions for optimal trajectories outside of fully convex problems
of Bolza was Clarke [3], [4], [5]. He began by focusing on nonsmooth functions that are finite and
Lipschitz continuous, but went on in steps to cover other functions as well. Ultimately his approach
amounted to starting from “proximal” subgradients (effectively defined just like regular subgradients
but with a second-order error term) and producing limiting subgradients from them that turn out to
be the same as the ones above. Then he added a convex hull operation designed to promote duality
between subgradients and directional derivatives. By the mid 1980s, however, it was apparent that the
convexification process ruined hopes for ever developing a robust second-order variational analysis [37].
Furthermore, it was demonstrated around then by Mordukhovich [20] that better rules for calculating
subgradients could be put in place without the convexification.

That would seem to settle the shape of the Euler-Lagrange condition (4.3) and transversality
condition (4.4) for potentially nonconvex functions L(t, ·, ·) and l, but not quite. The unsettled aspect
has to do with the relationship between the Lagrangian and the Hamiltonian. Should the Hamiltonian
condition in the nonconvex setting still be taken in the form of (4.6) with separate and differently
oriented subdifferentiation in x and p? Maybe, at least in cases where H(t, ·, ·) is lower semicontinuous
and proper (as under growth conditions that have been noted) it should be taken instead in the form

(−ṗ(t), ẋ(t)) ∈ ∂x,pH(t, x(t), p(t)) for a.e. t, (4.23)
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despite that form not being equivalent to the Euler-Lagrange condition in the presence of full convexity,
as was (4.6), yet suggested by some examples in nonlinear control.

Equivalence aside, it was demonstrated in [14] that anyway, for a big class of problems, optimality
entailed the simultaneous necessity of the Euler-Lagrange condition (4.3), the Hamiltonian condition
(4.23), and transversality condition (4.4) for an associated adjoint trajectory p(·). On the other hand,
according to [39], (4.23) is equivalent for finite locally Lipschitz continuous H(t, ·, ·) to posing the
Euler-Lagrange condition instead (at least sometimes) as

(ṗ(t), p(t)) ∈ con
{
(−q, v)

∣∣∣ (q, p(t)) ∈ ∂x,vL(t, x(t), ẋ(t)), p(t) ∈ ∂vL(t, x(t), ẋ(t)
}
. (4.24)

Here the convex hull operation is readmitted, but much more delicately as in Mordukhovich [19], [21].
Later, in explorations of Loewen and the author in [15], the idea came up that a still more subtle

adaptation of the Euler-Lagrange condition might be to articulate it as the pair

ṗ(t) ∈ con{ q | (q, p(t)) ∈ ∂x,vL(t, x(t), ẋ(t))},
p(t) ∈ ∂vL(t, x(t), ẋ(t)},

(4.25)

holding almost everywhere. Then in [40] situations were identified for dynamically convex L in which
(4.25) is equivalent to a corresponding version of the Hamiltonian condition, namely

ṗ(t) ∈ con{ q | (q, ẋ(t)) ∈ ∂x,pH(t, x(t), p(t))},
ẋ(t) ∈ ∂pH(t, x(t), p(t)}. (4.26)

This was utilized in [16]. Results where the starting and ending times t0 and t1 can take part in the
optimization were obtained in [17]. How the Weierstrass conditon for a strong local minimum might
be brought in was studied in [13].

That’s more or less as far as this line of research went before other pursuits took over. It would
be very interesting to see whether, with so much more now understood in variational analysis, more
definitive conclusions could be reached, and the gap between statements of the Euler-Lagrange and
Hamiltonian conditions under full convexity and statements without it might be tightened. There’s
also the question of the extent to which trajectories in an infinite-dimensional Banach space instead of
IRn might be covered in this manner, starting from the strong support in variational analysis provided
by Mordukhovich [22, Chapter 6].

Of course, there’s no shortage of optimality conditions that have been nicely worked out with the
specifics of optimal control in mind. But, as already explained, the neoclassical format offers the
possibility of insights that are deeper for trajectory optimization and somehow universal, beyond just
the particulars of control.

6 Corresponding innovations in Hamilton-Jacobi-Bellman theory

The Hamilton-Jacobi equation is a partial differential equation in the calculus of variations that aims
to describe the evolution of a certain “value function.” The Bellman equation, from the 1960s in [2],
describes the ‘cost-to-go” in an optimization problem formulated as “dynamic programming.” The
two equations came together in proposed Hamilton-Jacobi-Bellman forms with attractive applications
in optimal control — at least in principle. There was serious trouble, however, in the fact that
the smoothness postulated in such equations could rarely be expected to prevail in the targeted
applications. That was one of the key motivations in optimal control for passing to some form of
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nonsmooth analysis, as recounted in the textbook of Vinter [45], which is an excellent source of
background in this area as well as optimal control in general.

Here only a short foray into the topic is possible, with the emphasis being on how to think about
it “neoclassically.” For that we stick to autonomous dynamics and a problem in the form:

minimize g(x(0)) +

∫ τ

0
L(x(t), ẋ(t))dt subject to x(τ) = ξ, (6.1)

where τ ∈ (0,∞) and ξ ∈ IRn are both parameters. The minimum over x(·) ∈ A1
n[0, τ ] is denoted by

V (τ, ξ). The issue is characterizing V , the value function associated with (6.1).
In concept, we can look at this in terms of having a function Vτ = V (τ, ·) on IRn that evolves in

time; the dynamics of a “moving function” need to be described. In the setting where differentiability
is assumed for g and L and taken for granted for V , and the Hamiltonian H is validly obtained from
L somehow by the Legendre transform, the partial differential equation for this purpose would be the
classical Hamilton-Jacobi equation

∇τV (τ, ξ) +H(ξ,∇ξV (t, ξ)) = 0. (6.2)

However, the differentiability of V ought not to be taken for granted, and optimal control can shove it
far out of plausibility. There, g might serve as the indicator of a set or single point, and at the level of
generality in Section 3, L(x, v) might be derived from a function K(x, u, v) as in (3.16). Then H(x, p)
would given by the maximization formula in (3.17), which would threaten its own differentiability and
lead its replacement in (6.2) by an expression defined by maximization over controls u. That, roughly,
is where a Hamilton-Jacobi-Bellman equation would enter on the scene, substituting for (6.2). But
any such development quickly faces conflict with the differentiability of V being far-fetched, and that
makes a mystery out of (6.2) and what might be a proper replacement.

The literature of optimal control has anyway not encompassed neoclassical formulations like (6.1),
where functions can take on ∞. It has emphasized control dynamics directly, or at least cases cor-
responding to L being just the indicator of the graph of a differential inclusion. Another difference
is that, instead of the “forward” perspective in (6.1) there has usually been a backward (cost-to-go)
perspective, where the interval is [τ, T ] and g is applied to x(T ), the parameterization being the initial
time τ and state ξ. Mathematically, these different approaches are equivalent in the end, but the
forward version chosen here avoids an unpleasant proliferation of minus signs.

The challenge of finding a broader substitute for (6.2) has led to the concept of viscosity solutions
[6], in which something like upper and lower subgradients of H are utilized on a track parallel to,
but independent of, other developments in variational analysis. Numerous results have been based on
that, although in more limited situations than potentially might be captured neoclassically by (6.1).

In contrast, for the fully convex version of (6.1) a completely different approach has been taken in
[42], [43]. In this, besides having g and L be convex, proper and lower semicontinuous, two growth
conditions are imposed. The first concerns the differential inclusion (3.4) that’s implicitly behind L,
namely ẋ(t) ∈ D(x(t)). There should exist κ such that dist(0, D(x)) ≤ κ(1 + |x|). That’s altogether
normal from the world of ordinary differential equations in making sure that solutions will exist over
time intervals of arbitrary length. It also obviously excludes the interference of state constraints (since
the distance to the empty set is always ∞). The other growth condition is more in the vein of the
kind used in existence theory:

L(x, v) ≥ θ(max{0, |v| − α|x|} )− β|x| (6.3)
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for constants α, β, and a proper nondecreasing function θ on [0,∞) such that θ(s)/s → ∞ as s → ∞.
These two growth conditions are shown in [42] to translate to the analogous pair of conditions on the
dual Lagrangian M and in that way to come out in Hamiltonian terms as the symmetric bounds

H(x, p) ≤ φ(p) + (α|p|+ β)|x|, −H(x, p) ≤ φ̃(x) + (α̃|x|+ β̃)|p|, (6.4)

with both φ and φ̃ being finite convex functions on IRn.
Under these assumptions, it was established in [42] that the value function V (τ, ξ) is well defined

over [0,∞) × IRn with the function Vτ = V (τ, ·) always being convex, starting from V0 = g and
depending epi-continuously on τ ∈ [0,∞), with

(σ, η) ∈ ∂V (τ, ξ) ⇐⇒ η ∈ ∂ξV (τ, ξ), σ = −H(ξ, η) (6.5)

when τ > 0. The generalized Hamilton-Jacobi replacement for the classical equation in (6.2) is in
this case therefore

σ +H(ξ, η) = 0 for all (σ, η) ∈ ∂V (τ, ξ). (6.6)

Moreover the conjugate function V ∗
τ is Ṽτ (·) for the value function Ṽ (τ, η) that evolves with respect

to the dual Lagrangian M in (4.8) from Ṽ0 = g∗. It has

(−σ, ξ) ∈ ∂Ṽ (τ, η) ⇐⇒ (σ, η) ∈ ∂V (τ, ξ) (6.7)

and the generalized Hamilton-Jacobi equation for the dual Hamiltonian in (4.13), with that being

σ −H(ξ, η) = 0 for all (σ, ξ) ∈ ∂Ṽ (τ, η). (6.8)

For the example of linear control dynamics at the end of Section 4, with H given by (4.19), the
relationships in (6.5) and (6.6) with the maximization in (4.20) signal a Hamilton-Jacobi-Bellman
equation, and duality is the centerpiece there as well.

These features of [42] are complemented by the upper and lower envelope representations of the
primal and dual value functions furnished in [43] in terms of a kernel function and by the parametric
extensions in the paper [44]. They deliver, in this setting of full convexity, a Hamilton-Jacobi theory
that fulfills every wish and might be a template for neoclassical generalizations without full convexity.
How much is known about that?

Long before [42] and [43] with their special utilization of convexity, there were the results on
the existence and uniqueness of “viscosity” solutions to Hamilton-Jacobi equations in [6]. Those
results weren’t tuned to value functions coming from an associated Lagrangian, however, and their
requirements of boundedness and uniform continuity on the Hamiltonian and the solution weren’t
suited for that. Interestingly, the restrictions imposed in viscosity theory make it inapplicable to
Hamiltonians satisfying (6.4), which besides are concave in x and convex in p in this framework of full
convexity and its theme of duality.5

But value functions were the center of attention in the 1993 paper of Frankowska [8]. She brought
out the importance of Aubin’s theory of viability for this subject and made many contributions in
that direction; see also [7], for instance, and her book [9]. Galbraith [10] picked up on that in a more
“neoclassical” setting again. He made strong advances in which H could even take on ∞, and that
could have led to very much more. But unfortunately he then switched to a career in finance, so there
was no follow-up. His paper [10] would be a good starting point for continued research.

5This didn’t prevent a reviewer of [42], where the results seriously depended on (6.4), from resisting publication unless
it would be rewritten using already-known PDE methodology, so as to make the proofs more “understandable”!
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[38] Rockafellar, R. T., “Hamiltonian trajectories and duality in the optimal control of linear
systems with convex costs,” SIAM J. Control Opt. 27 (1989), 1007–1025.

[39] Rockafellar, R. T., “Dualization of subgradient conditions for optimality,” Nonlinear Anal-
ysis: Theory, Meth., Appl. 20 (1993), 627–646.

[40] Rockafellar, R. T., “Equivalent subgradient versions of Hamiltonian and euler-Lagrange
equations in variational analysis,” SIAM J. Control Opt. 34 (1996), 1300–1315.

[41] Rockafellar, R. T., and Wets, R.J-B, Variational Analysis, Springer-Verlag, 1997.

[42] Rockafellar, R. T., and Wolenski, P.R, “Convexity in Hamilton-Jacobi theory 1: dy-
namics and duality,” SIAM J. Control Opt. 40 (2001), 1323–1350.

[43] Rockafellar, R. T., and Wolenski, P.R, “Convexity in Hamilton-Jacobi theory 2: enve-
lope representations,” SIAM J. Control Opt. 40 (2001), 1351–1372.

[44] Rockafellar, R. T., “Hamilton-Jacobi theory and parametric analysis in fully convex prob-
lems of optimal control,” J. Global Optimization 28 (2004), 419–431.

[45] Vinter, R., Optimal Control, Birkhäuser, 2000.
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