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Abstract

The proximal point algorithm finds a zero of a maximal monotone mapping by iterations in
which the mapping is made strongly monotone by the addition of a proximal term. Here it is
articulated with the norm behind the proximal term possibly shifting from one iteration to the
next, but under conditions that eventually make the metric settle down. Despite the varying
geometry, the sequence generated by the algorithm is shown to converge to a particular solution.
Although this is not the first variable-metric extension of proximal point algorithm, it is the first to
retain the flexibility needed for applications to augmented Lagrangian methodology and progressive
decoupling. Moreover, in a generic sense, the convergence it generates is Q-linear at a rate that
depends in a simple way on the modulus of metric subregularity of the mapping at that solution.
This is a tighter rate than previously identified and reveals for the first time the definitive role of
metric subregularity in how the proximal point algorithm performs, even in fixed-metric mode.
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1 Introduction

The proximal point algorithm, PPA, solves problems of optimization by way of optimality conditions
posed as “generalized equations.” In its original formulation in [6] for a Hilbert space H and a set-
valued mapping T : H →→ H, represented by the set gphT = { (z, w) |w ∈ T (z)}, it seeks to

determine z̄ ∈ Z := T−1(0), i.e., such that T (z̄) ∋ 0. (1.1)

It relies for this on T being maximal monotone, where monotonicity is the property that

⟨w1 − w0, z1 − z0⟩ ≥ 0 for all pairs (z0, w0), (z1, w1) in gphT , (1.2)

with ⟨·, ·⟩ being the inner product of H, and maximality refers to the nonexistence of a monotone
mapping T ′ : H →→ H such that gphT ′ properly extends gphT . A prime example of a maximal
monotone mapping is T = ∂f for a closed proper convex function f on H, in which case a solution to
problem (1.1) is a global minimizer of f . Other examples in convex optimization involve dual variables
and lead to augmented Lagrangian techniques; see [6], [7], [13].

Especially motivating for the efforts we undertake here are the applications of the PPA to problem
decomposition by way of the progressive decoupling algorithm in [9, 10]. Under a new sufficient
condition for local optimality developed in [10, 12], even nonconvex problems of optimization can be
decomposed by taking advantage of the observation of Pennanen [5] that the proximal point algorithm
can operate in a neighborhood of a solution without using more than a local portion of the graph of the
mapping T . However, the catch so far is that convergence of the progressive decoupling algorithm has
only been validated for error-free iterations in which the proximal parameter has a value fixed from the
start — because the geometry in H is anchored by it. This goes back to origins in Spingarn’s method
of partial inverses [17], where the proximal parameter actually had to equal 1. Flexibility in adjusting
the parameter, or perhaps a multiplicity or proximal parameters tailored to different subproblems in
a decomposition scheme, is important for understanding when linear convergence might be expected,
and how the rate might influenced. Identification of stopping criteria that are implementable in an
application is, of course, crucial to theory in exploring intrinsic robustness with respect to error.

The needs can be met by a variable-metric extension of the original proximal point algorithm
that can fully accommodate the delicate circumstances in progressive decoupling while clearly being
articulated in a manner that only draws on local monotonicity. Our aim is to provide that here
for finite-dimensional H along with new insights into linear convergence analysis from a general
perspective.

Variable-metric offshoots of the PPA in finite dimensions have already been devised, starting with
Burke and Qian [1] (1999) under some seriously limiting assumptions, but later most interestingly
by Parente, Lotito and Solodov in [4] (2008). Their method has significant advantages for some
applications, both in executability and allowing for approximations of the mapping T . However, its
provisions for inexactness in computations are so different from those in the original PPA that the two
approaches coincide only when there is no inexactness at all! Moreover, those provisions in [4] take
a form that is generally incompatible with producing implementable stopping criteria in progressive
decoupling applications, in contrast to the provisions in [6], which do support that. Also, no attention
was placed in [4] on whether just local maximality of T would be enough, which has now emerged as
a key issue.

We made a start in [11] on a variable-metric PPA version that fulfills the listed requirements, but
now add significant improvements. We definitively tie linear convergence to metric subregularity at
the solution. The rate of linear convergence is revealed in fact to be a simple function of the modulus
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in that property (Theorem 2.2), and it is tighter than rates identified in the past, even for fixed-
metric PPA schemes. Instead, the variable-metric PPA in [4], covering the classical iterations only in
exact execution as already mentioned, relies for getting linear convergence on assuming a solution set
property that is more restrictive, not just local, and unable to yield our tight rate. The convergence rate
in [4, Theorem 4.4] comes out furthermore as an opaque function of several algorithmic parameters
whose influence can only be gleaned from background arguments.2 In addition, the claim in [4,
Theorem 4.4] that linear convergence is obtained with respect to the limit point, rather than the
distance to the solution set as in other works on the subject, seems to be in error.3 Our results thus
simultaneously complement, sharpen and correct the current convergence picture.

Properties of metric regularity, which furnish estimates useful in solving generalized equations for
set-valued mappings, are explored from many angles in the book [2] of Asen Dontchev and the present
writer.4 Their relevance to proximal point theory has largely gone unrecognized as such, but will
be forcefully brought out here. The crucial condition will be seen to be metric subregularity of T at
z̄ with respect to an element w̄ ∈ T (z̄), according to which dist(z, T−1(w̄)) ≤ a dist(w̄, T (z)) holds
locally for z near z̄ and some a, or as known to be equivalent and will be more convenient here,

for some neighborhood N of (z̄, w̄), ∃ a ∈ (0,∞) such that
(z, w) ∈ N , w ∈ T (z) =⇒ dist(z, T−1(w̄)) ≤ a||w − w̄||. (1.3)

The corresponding modulus of subregularity is

subreg(T ; z̄ | w̄) := lim inf of a values in (1.3) as the neighborhood shrinks, (1.4)

with the absence of subregularity being indicated then by subreg(T−1 : w̄ | z̄) = ∞. The property in
(1.3) is called strong metric subregularity if, in addition, z̄ is an isolated point of T−1(w̄), having a
neighborhood that contains no other point of T−1(w̄). But under maximal monotonicity T−1(w̄) is
convex, so that’s the same as T−1(w̄) = {z̄}.

The condition of metric subregularity can be understood from the angle that T−1(w̄) is the solution
set for finding z̄ with T (z̄) ∋ w̄, and w is a perturbation away from w̄, making T−1(w) a correspondingly
perturbed solution set away from T−1(w̄). When w is near enough to w̄, perturbed solutions z ∈
T−1(w) near enough to z̄ are required by (1.3) to have their distance from being a true solution
bounded in a linear way by the distance of w from w̄. In connection with (1.1), the case where
w̄ = 0 is at the fore. However, it will be important for later developments about genericity to keep in
mind that we could be looking at that problem as parameterized by w̄, with w̄ = 0 just a convenient
“normalization” for handling a represententative instance of it.

The original result on linear convergence of the PPA, in [6], concerned Q-linear convergence of
||zk − z̄|| to 0 at a rate r ∈ [0,∞), which means that5

∀ε > 0, ∃kε such that ||zk+1 − z̄|| ≤ (r + ε)||zk − z̄|| when k > kε. (1.5)

The extra condition in getting it was actually the strong metric subregularity of T at z̄ with respect to
having 0 ∈ T (z̄), although that concept and terminology didn’t exist then. Its demand for z̄ to be the

2This rate is given by the value ν at the top of page 254 of [4], which is indicated as depending on a value µ and a

stepsize relaxation parameter θ ∈ (0, 1). But µ =
√
α2 + 1

√
β2 − 1 + αβ where α already depends on θ and both α and

β depend also on another parameter σ̄.
3The proof says this follows from Fejér monotonicity, but offers no evidence for Fejér monotonicity, which is indeed

doubtful for the situation at hand.
4This paper is dedicated to the memory of Asen Dontchev, who died 16 September 2021. Metric regularity was a

subject very dear to him.
5By avoiding a ratio, this accommodates the possibility that ||zk − z̄|| might sometimes be 0 but not stay at 0.
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unique solution to (1.1) was perceived to be a limitation indicating the need for more work. Luque in
[3] provided a substitute condition that relaxed the uniqueness, at the cost of getting, instead of Q-
linear convergence of ||zk−z̄|| to 0, that of dist(zk, Z) to 0. But his condition had hidden shortcomings,
noted in [11], because it depended on the entire (possibly even unbounded) convex solution set, not
just a part of it near z̄.6 We were able, though, to demonstrate in [11] that a weaker form of Luque’s
condition, recognized here as amounting to plain metric subregularity (not strong), was already enough
to ensure his linear convergence when the problem had more than one solution. The replacement of
Luque’s condition by one that is local to the graph of T is of course a crucial step toward confirming
that PPA iterations can succeed on the basis of local information only.

Going further in [11], we came up with a condition on z̄ that recovered the Q-linear convergence
of ||zk − z̄|| to 0 without the solution set needing to be a singleton, at least under tighter control of
approximations through the stopping criterion that governs them. In contrast to metric subregularity,
this development seems too fragile for translation to the variable-metric PPA format with inexactness,
but that may not matter very much, in light of recent progress in [14].

There, in specializing the theory of metric regularity properties to maximal monotone mappings, it
was shown that not just metric subregularity, but even strong metric subregularity is in fact generic, in
a sense that will be clarified here in due course. The import is that, if we enlarge the picture (1.1) by
replacing T (z̄) ∋ 0 by T (z̄) ∋ w̄ with w̄ as parameter, or equivalently replacing T by Tw̄ : z 7→ T (z)−w̄
with corresponding solution set Zw̄, and add a natural assumption such as Zw̄ being nonempty and
bounded for at least one w̄, then strong metric regularity will typically be on hand and Q-linear
convergence of zk to z̄ will therefore prevail.

The ingredients of the variable-metric PPA under consideration in this paper, besides the maxi-
mally monotone mapping T , are the usual proximal parameters ck > 0, assumed to satisfy

1 ≤ ck → c∞ ≤ ∞, (1.6)

and linear mappings
Bk : H → H self-adjoint and positive-definite (1.7)

with their associated inner products and norms,

⟨w, z⟩Bk
= ⟨w,Bkz⟩ = ⟨Bkw, z⟩, ||z||2Bk

= ⟨z,Bkz⟩. (1.8)

The algorithm generates a sequence of points zk from an initial choice of z0 by iterations that in
principle are of the form

zk+1 ≈ Pk(z
k) := (I + ckB

−1
k T )−1(zk), (1.9)

but equivalently correspond to solving modifications of the generalized equation in (1.1), namely

determine zk+1 such that Sk(z
k+1) ≈∋ 0 for Sk(z) = T (z) + c−1

k Bk[z − zk]. (1.10)

Here “≈” refers to approximation. The monotonicity of T in (1.2) translates to the monotonicity of
B−1

k T in the Bk inner product in (1.8), with maximality preserved, and that makes the mappings Pk

in (1.9) be not only single-valued but nonexpansive in the Bk norm:

||Pk(z
′)− Pk(z)||Bk

≤ ||z′ − z||Bk
for all z, z′. (1.11)

6For the set R that is the closure of the range of T , this being convex because of T being maximal monotone, the
normal cone at 0 must contain the normal cones at all points of R in some neighborhood of 0, as holds for instance when
R is polyhedral.
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When T = ∂f for a closed proper convex function f , the iterations in form (1.10) signify that

zk+1 ≈∈ argminz

{
f(z) +

1

2ck
||z − zk||2Bk

}
(1.12)

and thus have the evident potential of tuning the proximal term to the second-order properties of
f , at least to some degree, perhaps progressively in quasi-Newton fashion. But a bigger motivation
for our variable-metric extension, as explained, is furnishing support for the approaches to problem
decomposition in [9] and [10]; applications to that will be taken up in [15]. The convergence results
obtained here will exceed the ones in [11] in meeting those needs of support.

In (1.9), approximation refers to the distance between zk+1 and Pk(z
k), but it will be taken in the

Bk-norm. In (1.10), approximation is based on the distance of 0 from the set Sk(z
k+1), again in the

Bk norm. The second kind of approximation is usually easier in practice and provides a convenient
estimate for the first kind, through

||zk+1 − Pk(z
k)||Bk

≤ ck distBk
(0, B−1

k Sk(z
k+1)) ≤ ck||B−1

k ||dist (0, Sk(z
k+1)), (1.13)

see [11, (4.10)]. In the case of T = ∂f , for example, in getting the update zk+1 from zk via (1.12),
has Sk(z

k+1) being the set of subgradients at zk+1 of the objective in (1.12). The test for zk+1 being
good enough as an approximate minimizer is then the existence of a subgradient at zk+1 that is close
enough to 0.

Stopping criteria for these approximations furnish the standards for “close enough.” They utilize
error parameters εk, assumed to satisfy

εk ∈ (0, 1) with
∑∞

k=1
εk < ∞, (1.14)

and they can be invoked at two levels of tightness:

||zk+1 − Pk(z
k)||Bk

≤
{
(a) εk
(b) εk min{1, ||zk+1 − zk||Bk

}. (1.15)

The estimate in (1.13) allows these to be replaced by

ck distB−1
k

(0, Sk(z
k+1)) ≤

{
(a) εk
(b) εk min{1, ||zk+1 − zk||Bk

}, (1.16)

where distance in the underlying norm could substitute for the distance in the B−1
k norm through

having
distB−1

k
(z, S) ≤ ||B−1

k ||dist(z, S). (1.17)

These criteria in the fixed-metric case, Bk ≡ I, have been part of PPA theory from the start, with
(a) adequate for simple convergence of zk to some z̄ and (b) entering in support of linear convergence.
That general picture will remain here, but for the variable-metric PPA to behave something like the
original fixed-metric PPA, the successive changes in norm must not be too wild. Here we improve the
conditions about that in [11, Section 4] and the view of how the changes in metric may be generated.

Similar provisions for taming the switches in metric were figured out by Parente, Lotito and
Solodov for their variable metric PPA in [4]; we overlap in that respect. But their approach to inexact
iterations, motivated by applications other than the ones we have in mind, was distinctly different
and only admits (1.15) and (1.16) when εk = 0. Instead of the update (1.9), it takes (in simplest
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implementation7) first ẑk ≈ Pk(z
k) and then zk+1 = zk − uk, where uk is a variable-metric projection

of zk− ẑk in the direction of a vector v̂k ∈ T (ẑk). While that may be an excellent innovation for many
reasons, it’s incompatible with the maneuvers associated with the subspace decomposition behind
algorithms evolved from Spingarn’s partial inverse method. There, in optimization for instance, the
PPA is essentially being applied to finding a local convex-concave saddle point in a subproblem, the
dual component of which can be a known function of the primal component. However, the scheme in
[4] just described can’t take advantage of that and insists instead on a joint primal-dual approximation
which doesn’t fit with an implementable stopping criterion.

Our main results about convergence will be established in Section 2 after some preliminaries
about Bk relationships. They refer to convergence from any starting point z0 in H. Section 3 takes
up the localized alternative, which concerns starting from z0 sufficiently close to the solution set
Z. That’s important because the algorithm is thereby shown capable of acting entirely on local
information, and the mappings T in some attractive applications to nonconvex optimization exhibit
maximal monotonicity only in a local form. For T = ∂f , that local form of maximal monotonicity
corresponds to variational convexity of f with respect to a point-subgradient pair [8]. Moreover, it
relates deeply to the linkage problems in [10] and the scheme there of solving them by “progressive
decoupling.”

2 Global convergence results

From the general theory of monotonicity, available for background in [16, Chapter 12], the maximal
monotonicity of B−1

k T in the Bk norm, which carries over to ckB
−1
k T , implies not just that the

resolvent mapping Pk in (1.9) is Bk-nonexpansive as in (1.11), but that it is firmly nonexpansive in
the Bk norm:

||Pk(z
′)− Pk(z)||2Bk

+ ||Qk(z
′)−Qk(z)||2Bk

≤ ||z′ − z||2Bk
, where Qk = I − Pk. (2.1)

The solution set Z in (1.1) is the set of fixed points of Pk, so in implementing (1.9) exactly by
taking zk+1 = Pk(z

k), we would have distBk
(zk+1, Z) < distBk

(zk, Z), unless zk ∈ Z. This would
seem to suggest that the zk sequence will get ever closer to Z, but beside trouble that might come
from approximations, there could be confusion because the standard for nearness keeps changing. To
counter that, an assumption is needed that forces the distance standards to ultimately stabilize.

For that, we can start by taking advantage of the fact that, because H is finite-dimensional, the
different norms are related to each other by estimates of the form

αk ≥ ||z||Bk

||z||Bk−1

≥ α−1
k , α0 ≥

||z||B0

||z||
≥ α−1

0 . (2.2)

It is insightful, however, to look at this from the perspective of Bk being generated as computations
proceed, rather than having been fixed in advance. Instead of thinking of αk in (2.2) as derived after
Bk has been chosen to replace Bk−1, we can think of it as coming before and exercising some control
over that choice. In other words, αk can be considered as a parameter provided in the implementation
of the algorithm, like ck in (1.6) and εk in (1.14). A condition placed on the αk sequence can serve
that way to keep the repeated changes in norm from getting out of hand. Here,

the parameter values αk ∈ [1,∞) are assumed to converge to 1 fast enough that the
increasing products βk := αkαk−1 · · ·α1α0 stay bounded: βk ↗β∞ := Π∞

k=0αk < ∞.
(2.3)

7With their parameters θ = 0 and εk = 0; our Bk corresponds to their M−1
k . However they actually require θ ∈ (0, 1)!
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To see it another way, the values logαk ∈ [0,∞) are assumed to be summable, in a sort of echo of
(1.14). The choice of the successor Bk to Bk−1 in each iteration, being constrained by (2.2), will
accordingly be forced to settle down.

In [11], we only looked at upper bounds of the form in (2.2) when imposing (2.3). Such upper
bounds were utilized also by Parente, Lotito and Solodov in earlier work in a variable-metric setting
[4] under a slightly stronger assumption than (2.3). We deployed separate conditions in [11] to make
the inverses B−1

k behave well enough. However, the symmetry in (2.2) has significant advantages,
which we now lay out.

Proposition (helpful properties of the variable-metric scheme). The inequalities in (2.2) are sym-
metric with respect to taking inverses; they have the equivalent form

αk ≥
||z||B−1

k

||z||B−1
k−1

≥ α−1
k , α0 ≥

||z||B−1
0

||z||
≥ α−1

0 . (2.4)

The inequalities in (2.2), chained together, also imply

βk ≥ ||z||Bk

||z||
≥ β−1

k , βk ≥
||z||B−1

k

||z||
≥ β−1

k , hence max{||Bk||, ||B−1
k ||} ≤ β2

k ≤ β2
∞. (2.5)

Moreover, the combination of (2.2) and (2.3) ensures that

Bk → B∞ self-adjoint and positive-definite, (2.6)

and then
β∞
βk

≥ ||z||B∞

||z||Bk

≥ βk
β∞

,
β∞
βk

≥
||z||B−1

∞

||z||B−1
k

≥ βk
β∞

. (2.7)

Proof. Because Bk is selfadjoint and positive-definite, there is a unique mapping B
1/2
k that is

likewise symmetric and positive-definite and has (B
1/2
k )2 = Bk (as seen through eigenvalues and

diagonalization). Thinking of (2.2) as requiring the range of the ratio ⟨z,Bkz⟩/⟨z,Bk−1z⟩ to lie in the

interval [α−2
k , α2

k], we can translate that through the change of variables u = B
1/2
k−1 to requring that the

range of the ratio ⟨z,B−1/2
k−1 BkB

−1/2
k−1 z⟩/||z||2 lies in that interval. For any self-adjoint positive-definite

B, the range of ⟨z,Bz⟩/||z||2 is the interval between ||B−1||−1 and ||B||, so the bounds in question are
equivalent to

||B−1/2
k−1 BkB

−1/2
k−1 || ≤ αk and ||(B−1

k−1)
−1/2B−1

k (B−1
k−1)

−1/2|| ≤ αk

and thus are symmetric with respect to the Bk sequence to the B−1
k sequence. This proves (2.4).

The first part of (2.5) is evident from the definition of βk in (2.3). The rest is seen from expressing
the bounds as ⟨z,Bkz⟩/||z||2 ≤ β2

k and ||z||2/⟨z,Bkz⟩ ≤ β2
k, then through the change of variables

w = B
1/2
k z identifying the second ratio with ⟨w,B−1

k w⟩/||w||2.
To demonstrate (2.6), we show that the combination of (2.2) and (2.3) forces {Bk}∞k=0 be a Cauchy

sequence, having norms ||Bk−Bj || smaller than any ε when j is high enough and k > j. From ||Bk−Bj ||
being the maximum of ⟨z, [Bk −Bj ]z⟩ subject to ||z|| = 1 and the representation

⟨z, [Bk −Bj ]z⟩ =
[

⟨z,Bkz⟩
⟨z,Bk−1z⟩

⟨z,Bk−1z⟩
⟨z,Bk−2z⟩

· · · ⟨z,Bj+1z⟩
⟨z,Bjz⟩

− 1

]
⟨z,Bjz⟩,
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we get the estimate that ||Bk − Bj || ≤ (α2
kα

2
k−1 · · ·α2

j+1 − 1)β2
∞ through (2.2) and (2.5). This upper

bound can be made arbitrarily small by taking j and k high enough, due to the convergence assumed
in (2.3).

With the existence of B∞ in hand, the inequalities in (2.2) and (2.4) can be propagated to higher
indices to get (2.7) through the observation that Π∞

j=k+1αj = β∞/βk.

Example 2.1 (variable metrics based on rescaling). Suppose H is IRn with z = (z1, . . . , zn), and
let the quadratic functions ⟨z,Bkz⟩ have the form λ1,kz

2
1 + · · · + λn,kz

2
n. Updating from Bk−1 to Bk

corresponds then to updating λj,k−1 to λj,k, and the constraint on this imposed by the algorithmic
parameters αk in (2.2) is just that

α2
k ≥ λj,k

λj,k−1
≥ α−2

k for j = 1, . . . , n.

This corresponds to requiring | log λj,k − log λj,k−1| ≤ µk for parameters µk ≥ 0 with
∑∞

k=1 µk < ∞.

Detail. This is seen by taking squares in (2.2) and calculating that the maximum over z is the
highest ratio λj,k/λj,k−1 while the minimum is the lowest.

The basic convergence result we now formulate is essentially a specialization of [11, Theorem
4.1]. That theorem, though, was aimed at establishing local convergence when T is only assumed to
be maximal monotone locally, and that added extra complications to its statement and proof. We
therefore provide for the global setting at hand a straightforward and leaner proof which mimics the
local one, but also adapts to our improved assumptions on the mappings Bk. (This also gets around
notational shifts and a small glitch after [11, (4.7)] that misidentified the bound obtained on ||Bk|| as
βk instead of β2

k as in (2.5).)

Theorem 2.1 (global convergence to a solution). For T maximal monotone globally with the solution
set Z = T−1(0) nonempty,8 let the proximal point algorithm (1.9) or equivalently (1.10), be initiated
under (1.6), (1.7), (2.2), and (2.3), from any z0 ∈ H under the stopping criterion (1.15a), or (1.16a).
Then the sequence of iterates zk is sure to converge to some particular z̄ ∈ Z.

Proof. Let z̄0 be the projection of z0 on the closed convex set Z, noting that Pk(z̄
0) = z̄0 for the

mapping Pk in (1.9), which is nonexpansive in the Bk norm by (1.11). Because ||zk+1 − z̄0||Bk
≤

||zk+1 − Pk(z
k)||Bk

+ ||Pk(z
k)− z̄0||Bk

with ||zk+1 − Pk(z
k)||Bk

≤ εk by the stopping criterion (1.15a)
(as implied also by (1.16a)), and ||Pk(z

k) − z̄0||Bk
= ||Pk(z

k) − Pk(z̄
0)||Bk

≤ ||zk − z̄0||Bk
by the

nonexpansivity, we have
||zk+1 − z̄0||Bk

≤ ||zk − z̄0||Bk
+ εk.

On the other hand ||zk+1− z̄0||Bk
≥ α−1

k+1||zk+1− z̄0||Bk+1
by (2.2), so that β−1

k a−1
k+1||zk+1− z̄0||Bk+1

≤
β−1
k [zk − z̄0||Bk

+ εk. Since βk+1 = αk+1βk and βk+1 ≥ 1, this yields

β−1
k+1||z

k+1 − z̄0||Bk+1
≤ β−1

k ||zk − z̄0||Bk
+ εk, (2.8)

which can be applied iteratively to get

β−1
k ||zk − z̄0||Bk

≤ β−1
0 ||z0 − z̄0||B0 + ε0 + ε1 + · · · εk−1. (2.9)

8Plenty of criteria are available for this; see for instance [16, 12.51]. Classically it’s known that emptiness is signaled
by PPA iterates “converging to the horizon,” but this isn’t taken up here for the current algorithm.
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Here β0 = α0 by definition in (2.3) and α−1
0 ||z0−z̄0||B0 ≤ ||z0−z̄0|| by (2.2), with ||z0−z̄0|| = dist(z0, Z)

inasmuch as z̄0 is the nearest point of Z to z0. Hence (2.9) implies

||zk − z̄0||Bk
≤ βk[dist(z

0, Z) + σk] for σk =
∑k−1

j=0
εj . (2.10)

Also ||zk − z̄0||Bk
≥ β−1

k ||zk − z̄0|| from (2.5), so we have

||zk − z̄0|| ≤ β2
k[dist(z

0, Z) + σk] ≤ β2
∞[dist(z0, Z) + σ∞] for all k, (2.11)

where σ∞ =
∑∞

k=0 εk is finite by (1.14).
This demonstrates that the zk sequence is bounded and thus that its set of cluster points, which we

denote now by Z∞, is nonempty. To complete the proof of the theorem, we have to show that Z∞ ⊂ Z
and that no more than a single z̄ can belong to Z∞. It will help in this that Z∞ is also the set of all
cluster points of the sequence Pk(z

k) because ||zk+1 − Pk(z
k)|| ≤ βk||zk+1 − Pk(z

k)||Bk
≤ βkεk → 0

under our stopping criterion, since βk ≤ β∞ < ∞.
The derivation of (2.8) only utilized about z̄0 that, as an element of Z, it was a fixed point of Pk,

so actually
β−1
k+1||z

k+1 − z||Bk+1
≤ β−1

k ||zk − z||Bk
+ εk for any z ∈ Z. (2.12)

This implies that the values γk(z) = β−1
k ||zk − z||Bk

approach a finite limit as k → ∞, in view of our
assumption (1.14) on εk and having γk+m(z) ≤ γk(z) +

∑m−1
j=k εj for any m > k. Because at the same

time βk → β∞, there follows the existence of a limit

µ(z) = lim
k→∞

||zk − z||Bk
, which is also lim

k→∞
||Pk(z

k)− z||Bk
, for any z ∈ Z. (2.13)

From (2.1) in the case of z′ = zk, with z ∈ Z implying through Pk(z) = z that Qk(z) = 0, we get

||Qk(z
k)||2Bk

= ||zk − z||2 − ||Pk(z
k)− z||2Bk

→ µ(z)− µ(z) = 0.

In view of the bounds on the Bk norm in (2.5), this impliesQk(z
k) → 0 and also that c−1

k BkQk(z
k) → 0,

since c−1
k ≤ 1. The next thing to note is

(Pk(z
k), c−1

k BkQk(z
k)) ∈ gphT (2.14)

as a consequence of the definitions of Pk in (1.9) and Qk in (2.1). By the monotonicity of T , we
therefore have, for any z and w ∈ T (z), that ⟨z − Pk(z

k), w − c−1
k BkQk(z

k)⟩ ≥ 0, and in the limit as
k → ∞ that

⟨z − z̄, w⟩ ≥ 0 for any cluster point z̄ of Pk(z
k), i.e., any z̄ ∈ Z∞.

This being true for an arbitrary pair (z, w) ∈ gphT , we must have (z̄, 0) ∈ gphT because the mono-
tonicity of T is maximal. Thus, Z∞ ⊂ Z, hence from (2.13)

lim
k→∞

||zk − z̄||Bk
= µ(z̄) for any z̄ ∈ Z∞. (2.15)

Having z̄ ∈ Z∞ means that some subsequence of ||zk− z̄|| converges to 0, but ||zk− z̄||Bk
≤ β2

∞||zk− z̄||
by (2.5). This implies that µ(z̄) = 0 in (2.15), and therefore, again through (2.4), that not just the
particular subsequence of ||zk − z̄|| in (2.15) converges to 0, but the entire sequence; we have zk → z̄
and Z∞ = {z̄}.
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Moving on from simple convergence to linear convergence, we need to appeal to a condition on T at
the solution point z̄ ∈ Z reached in Theorem 2.1. The condition we employ is the metric subregularity
of T at z̄ with respect to 0 ∈ T (z̄), which is the case of (1.3) with w̄ = 0. It is equivalent to a
property of T−1 called its calmness at 0 for z̄ ∈ T−1, which we won’t need to get into; see [2]. Metric
subregularity of T in the given norm || · || carries over, through norm equivalence, to the same property
of B−1

k T in the Bk-norm, but changing the norm can change the modulus of subregularity. Especially
of interest here will be the expression of the metric subregularity in terms of the limit mapping B∞
in (2.6). It comes out as the property that

for some neighborhood N of (z̄, 0), ∃ a ∈ (0,∞) such that
(z, w) ∈ N , w ∈ T (z) =⇒ distB∞

(z, Z) ≤ a||w||B−1
∞
,

(2.16)

with the associated B∞-modulus of subregularity given by

subreg
B∞

(T ; z̄ | w̄) := lim inf of a values in (2.16) as the neighborhood shrinks. (2.17)

The next result specializes [11, Theorem 4.2] to T being globally monotone while at the same time
improving on the underlying assumptions and revealing the decisive influence of the subregularity
modulus in (2.17). The proof of the earlier result depended on explicitly assuming the convergence
property in (2.6) that we know here to be true on the basis of (2.2)–(2.3). Also, the earlier statement
and proof involved an approach to subregularity that led to a Q-linear rate of convergence as in (2.18)
below, but for a value a∞ derived differently from the subregularity modulus (2.17) now incorporated
in (2.18) below. The new proof succeeds furthermore in establishing that this subregularity modulus
is actually the lowest of all the possible values derivable that earlier way.

Theorem 2.2 (linear convergence to the solution set). If the stopping criterion for the proximal point
iterations in Theorem 2.1 is tightened to (1.15b), or (1.16b), in getting zk → z̄ ∈ Z, and if the metric
subregularity condition (1.3), expressed equivalently as (2.16) with modulus (2.17), holds at z̄, then

distB∞
(zk, Z) converges Q-linearly to 0 at the rate r = a∞/

√
a2∞ + c2∞,

where a∞ = subreg
B∞

(T ; z̄ |0) < ∞.
(2.18)

Proof. The argument for Theorem 2.1 showed not only that zk → z̄ ∈ Z, but also that the pairs
(2.14) in gphT converge to (z̄, 0). Ultimately, then, for any δ > 0, we will have both ||Pk(z

k)− z̄|| < δ
and ||c−1

k BkQk(z
k)|| < δ, say when k ≥ k̄(δ). Let

ak(δ) = inf{ a ≥ 0 | distBk
(z, Z) ≤ a||w||B−1

k
if (z, w) ∈ gphT, ||z − z̄|| ≤ δ, ||w|| ≤ δ}, (2.19)

so that, when k ≥ k̄(δ),

distBk
(Pk(z

k), Z) ≤ ak(δ)||c−1
k BkQk(z

k)||B−1
k

= ak(δ)c
−1
k ||Qk(z

k)||Bk
, (2.20)

inasmuch as ||Bkz||B−1
k

= ||z||Bk
in (1.8). The bounds in (2.7) say

β∞
βk

distB∞(z, Z) ≥ distBk
(z, Z) ≥ βk

β∞
distB∞(z, Z),

β∞
βk

||w||B−1
∞

≥ ||w||B−1
k

≥ βk
β∞

||w||B−1
∞
,

(2.21)

and tell us that, for w ̸= 0,

(β∞/βk) distB∞(z, Z)

(βk/β∞)||w||B−1
∞

≥ distBk
(z, Z)

||w||B−1
k

≥ (βk/β∞) distB∞(z, Z)

(β∞/βk)||w||B−1
∞

.
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In applying this to (2.19), we get (β∞/βk)
2a∞(δ) ≥ ak(δ) ≥ (βk/β∞)2a∞(δ) so that

lim
k→∞

ak(δ) = a∞(δ), whereas lim
δ↘ 0

a∞(δ) = subregB∞(T : z̄ |0), (2.22)

the latter by the definition of the modulus in (2.17).
Let z̄k = projBk

(zk, Z), the nearest point of Z to zk, so ||zk − z̄k||Bk
= dist(zk, Z). The case of

the firm nonexpansivity relation (2.1) with z′ = zk and z = z̄k, therefore Pk(z̄
k) = z̄k and Qk(z

′) = 0,
yields

||Pk(z
k)− z̄k||2Bk

+ ||Qk(z
k)||2Bk

≤ ||zk − z̄k||2,

where ||Pk(z
k)− z̄k||2Bk

≥ dist2Bk
(Pk(z

k), Z), hence

||Qk(z
k)||2Bk

≤ dist2Bk
(zk, Z)− dist2Bk

(Pk(z
k), Z). (2.23)

Juxtaposing this inequality with (2.20) leads to

dist2Bk
(Pk(z

k), Z) ≤ ak(δ)
2c−2

k

(
dist2Bk

(zk, Z)− dist2Bk
(Pk(z

k), Z)
)
,

which comes out as

distBk
(Pk(z

k), Z) ≤ rk(δ) distBk
(zk, Z) for rk(δ) = ak(δ)/

√
ak(δ)2 + c2k < 1. (2.24)

With the goal of (2.18) in mind, we need to build on this by relating distBk
(Pk(z

k), Z) to distBk
(zk+1, Z)

through the stopping criterion (1.15b) (satisfied in particular under (1.16b)). Let pk = projBk
(Pk(z

k), Z)
get ||zk+1 − pk||Bk

as an upper bound on distBk
(zk+1, Z) to work from. We have

||zk+1 − pk||Bk
≤ ||zk+1 − Pk(z

k)||Bk
+ ||Pk(z

k)− pk||Bk

= ||zk+1 − Pk(z
k)||Bk

+ distBk
(Pk(z

k), Z)
≤ ||zk+1 − Pk(z

k)||Bk
+ rk(δ) distBk

(zk, Z)
(2.25)

by (2.24), where the stopping criterion gives us

||zk+1 − Pk(z
k)||Bk

≤ εk||zk+1 − zk|| ≤ εk
(
||zk+1 − pk||Bk

+ ||pk − z̄k||Bk
+ ||z̄k − zk||Bk

)
≤ εk||zk+1 − pk||Bk

+ εk||pk − z̄k||Bk
+ εk distBk

(zk, Z).

Together, this estimate and (2.24) give us

(1− εk)||zk+1 − pk||Bk
≤ εk||pk − z̄k||Bk

+ [εk + rk(δ)] distBk
(zk, Z). (2.26)

The Bk-nonexpansivity of the Bk-projection mapping onto Z, along with (2.23), provide

||z̄k − pk||Bk
= ||projBk

(zk, Z)− projBk
(Pk(z

k), Z)||Bk

≤ ||zk − Pk(z
k)||Bk

= ||Qk(z
k)||Bk

≤ distBk
(zk, Z).

Putting this into (2.26) and recalling that distBk
(zk+1, Z)Bk

≤ ||zk+1 − pk||Bk
, since pk ∈ Z, we get

distBk
(zk+1, Z) ≤

[
rk(δ) + 2εk

1− εk

]
distBk

(zk, Z).

Invoking the distance bounds in (2.21), we arrive at the convergence estimate

distB∞(zk+1, Z) ≤ r̄k(δ) distB∞(zk, Z) for r̄k(δ) =
b2∞
b2k

[
rk(δ) + 2εk

1− εk

]
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As k → ∞, not only εk → 0 and βk → β∞, but also rk(δ) → r∞(δ) in (2.24) because ak(δ) → a∞(δ)
in (2.22). Therefore, r̄k(δ) → r∞(δ) as well, so our convergence estimate indicates that distB∞(zk, Z)
converges Q-linearly to 0 at the rate r∞(δ). Here δ can be arbitrarily small, and as δ → 0, r∞(δ)
decreases to the rate r in (2.18) by (2.22). This completes the proof.

Whether or not the metric subregularity condition in Theorem 2.2 holds at z̄, as presumed in the
hypothesis, is ordinarily hard to know in advance of actually having determined z̄. It will be seen
below that it does at least hold “usually,” from an interesting standpoint. However, here is an example
of when it is sure to hold.

Example 2.2 (guaranteed linear convergence under piecewise polyhedrality). If the mapping T is
piecewise polyhedral, which means that its graph is the union of a finite collection of polyhedral convex
sets, then the metric subregularity condition at z̄ in Theorem 2.2 is guaranteed to be satisfied, and
with it the linear convergence behavior that is described there.

Detail. Piecewise polyhedral mappings are know to be calm everwhere [16, 9.57]. When T is
piecewise polyhedral, its inverse T−1 is piecewise polyhedral as well and therefore calm everywhere.
But calmness is the inverse property paired with metric subregularity [2, 3H.3], so this implies that T
is metrically subregular everywhere.

In the case where T = ∂f , the maximal monotone mapping T is piecewise polyhedral if and
only if the convex function f is piecewise linear-quadratic [16, 10E, 12.30]. More generally in convex
optimization, T is piecewise polyhedral when it comes from a Lagrangian in piecewise linear-quadratic
programming [16, pp. 506, 513], with traditional quadratic programming as a particular example.

The message of Theorem 2.2, as a follow-up to Theorem 2.1, is that linear convergence of the
variable-metric PPA can be achieved by taking extra care in approximations through a tighter stopping
criterion. But this linear convergence is that of the distance of zk from the solution set Z, instead of
the distance of zk from its limit z̄. As explained in Section 1, there is an extra condition on top of
metric subregularity which, with the stopping criteria at level (b) upgraded to a level “(c)” in which
the distance between zk+1 and zk is replaced by its square, Q-linear convergence of zk to z̄ is assured
for the fixed-metric PPA — as shown in [11]. It appears to be very difficult, if not impossible though,
to carry that result forward into a variable-metric implementation, because of the additional stress on
controlling the approximations.

Nevertheless, something important can be said about Q-linear convergence of zk to z̄ by looking
at the issue from a wider perspective. That’s the parametric view, in which problem (1.1) is seen as
imbedded in the family of problems

given w̄, find z̄ ∈ Zw̄ = T−1
w̄ (0), where Tw̄(z) = T (z)− w̄. (2.27)

This replaces the generalized equation T (z) ∋ 0 by T (z) ∋ w̄ with a potentially varying right side w̄,
but in the mode of a parameterized family of maximal monotone mappings Tw̄ in which the problem
we have been looking at is a single instance. That’s a context in which we can ask about “typical”
performance on the algorithm with respect to choices of w̄.

Properties associated with maximal monotonicity that haven’t yet been put to use will clarify how
to pose this question in a most helpful manner. Certainly we only want to focus on the choices of w̄
for which the solution set in (2.27) isn’t just empty, and they comprise the effective domain of T−1,
denoted by domT−1. Much is known about it. For instance, it is a nearly convex set [16, 12.41],
which means that it differs from a closed convex set only by perhaps lacking some of the boundary
points of that set relative to its affine hull. From that, domT−1 is full dimensional if and only if its
convex relative interior is a true interior. Having w̄ belong to int(domT−1) corresponds however to
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having T−1(w̄) not just be nonempty, but also bounded [16, 12.38]. In contrast, if domT−1 does have
empty interior, the nonempty solution sets in (2.27) are all “degenerate” convex sets in the sense of
having a nonzero subspace in their recession cones [16, 12.37]. They must that way take the form of
bundles of parallel lines, planes or even hyperplanes.

It would be appropriate of course, for most applications, to suppose in solving problem (1.1) numer-
ically, that the solution set Z is nonempty and not “degenerate” in the manner just described. From
the background explained about domains, that means supposing 0 ∈ domT−1 with int(domT−1) ̸= ∅.
Making sure the solution set Z = T−1(0) in (1.1) is also bounded, which likewise is a generally good
idea for computations, corresponds to the slightly stronger assumption that 0 ∈ int(domT−1). But
the alternative problems in (2.27) for w̄ ̸= 0 are subject to the same considerations. The ones for
w̄ ∈ int(domT−1) are thus of main interest and furnish the natural platform for asking whether some
behavior is “typical.” Here is an answer to that well posed question.

Theorem 2.3 (global linear convergence to a solution point achieved generically). For almost every
w̄ in the open convex set consisting of w̄ for which the solution set Zw̄ in (2.27) is nonempty and
bounded, Zw̄ is a singleton {z̄} and Tw̄ exhibits metric subregularity at z̄ for 0 ∈ Tw̄(z̄). Therefore,
in applying the variable metric PPA to solve the w̄-problem in (2.27) in the manner of Theorem 2.2,
the sequence zk will converge Q-linearly to z̄ at the indicated rate in (2.18), with the modulus for T
in (2.17) being replaced by the corresponding one for Tw̄, namely

subregB∞(Tw̄; z̄ |0) = subregB∞(T ; z̄ | w̄), (2.28)

Proof. Here “almost everywhere” refers to the set of exceptions being negligible with respect to
Lebesgue measure. When there is a unique solution z̄, linear convergence to the solution set is obviously
linear convergence to that z̄. From the background about domT−1 ahead of this theorem’s statement,
it’s clear then that confirming the validity of the claim comes down to confirming that strong metric
subregularity of T holds for almost every w̄ ∈ int(domT−1). Exactly this has recently been established
in [14, Theorem 1], and that lays the matter to rest.

The generic property in Theorem 2.3 can be given a probabilistic interpretation. The “right
side” parameter w̄ in (2.27) may be comprised of variables subject to measurement error or other
uncertainties that can be modeled by a positive probability density function. Then “almost every”
translates to “with probability one” — there is zero probability of being presented with an instance
of the generalized equation for which strong metric subregularity is lacking. But this interpretation
also puts light on a shortcoming of the genericity. Some aspects of w̄ may be fixed by the problem’s
technical formulation and not subject to any uncertainties.

Another thing to note is that the generic guarantee of linear convergence in Theorem 2.3, however
interpreted, offers no insights into a “typical” rate of linear convergence being achieved. That rate
depends by Theorem 2.2 on the modulus in (2.28), which might vary unpredictably even under small
changes in w̄. The only good exception seems to be for T being piecewise polyhedral as in Example
2.2. In that case there is a uniform upper bound in modulus values for the “calmness” of T−1 that’s
behind it [16, 9.57], and those values coincide with the values in (2.28) by [16, 3H.3].

3 Localized executability of the algorithm

Up to now, the mapping T has been maximal monotone in the usual sense — global. But monotonicity
can also be considered relative to a subset Z ×W ⊂ H×H:

⟨w1 − w0, z1 − z0⟩ ≥ 0 for all pairs (z0, w0), (z1, w1) in [Z ×W] ∩ gphT , (3.1)
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again with maximality signifying that no mapping T ′ with a properly larger graph within Z ×W also
has this property. For T maximal monotone this way relative to Z×W, there always exists T̄ : H →→ H
maximal monotone globally such that [Z×W]∩gph T̄ = [Z×W]∩gphT ; see [16, 12.6]. Local maximal
monotonicity around a pair (z̄, w̄) ∈ gphT , in the sense of Z × W being a neighborhood of (z̄, w̄)
is important in nonconvex optimization. In the case of T = ∂f for a lower semicontinuous, proper
function on H, not necessarily convex, corresponds to f being variationally convex at z̄ for w̄ [8], with
its subgradients and associated function values in the primal-dual localization being indistinguishable
from those of a convex function. This is a key in the door to applying the proximal point algorithm
to problems of nonconvex optimization by way of PPA-based approaches to problem decomposition,
such as the progressive decoupling algorithm in [10].

Here in the maximal monotonicity of T relative to Z ×W we take

Z and W open convex with Z ∩ Z ̸= ∅ and 0 ∈ W (3.2)

and address the question of whether the algorithm, as already articulated for T being maximal mono-
tone globally, will keep within Z × W, when initiated at a point z0 that is near enough to Z in Z,
moreover without drawing on anything in gphT outside of Z × W. A positive answer will be put
together which includes a prescription for how near is enough. That will establish that the variable
metric PPA can operate as a local procedure when T is known only to be maximal monotone relative
to Z ×W, because T could replaced by a maximal monotone extension T̄ as indicated above, and the
algorithm wouldn’t see the difference.

For getting a prescription for how near to Z a potential choice of z0 with (z0, 0) ∈ Z ×W ought
to be, we introduce σ such that

∞ > σ ≥
∑∞

k=0
εk (3.3)

and take

ρ > β2
∞[dist(z0, Z) + σ] such that (z, w) ∈ Z ×W if ||z − z0|| < 2ρ, ||w|| < 2ρ. (3.4)

Note that this puts a requirement on the size of σ as well as on the size of dist(z0, Z). It indicates that
the approximations allowed by the stopping criteria in (1.15) and (1.16) may need to be controlled
with less error, depending on the narrowness of the scope of localization.

Since our intention is to make the algorithm applicable even when T is just maximal monotone
locally, we need to guard against the fact that, in this setting, the presciption for updating to zk+1

from zk might be ambiguous due the presence of extraneous elements from possibly nonmonotone
parts of gphT outside of Z ×W if monotonicity is only know locally. This will handled by asking also
that the iterations leave out of consideration potential choices of zk+1 that fail to satisfy

||zk+1 − zk||Bk
< ρ. (3.5)

Theorem 3.1 (guarantee of local executability). Under (3.2), let the algorithm be initiated at a
point z0 satisfying (3.4), with updates from zk to zk+1 subjected to (3.5). That update condition will
not interfere with the feasibility of iterations, and the zk sequence will then remain in Z, as will the
Pk(z

k) sequence. Moreover, the procedure will exhibit the convergence behavior in Theorems 2.1 and
2.2 without involving in its execution anything about gphT outside of Z ×W.

Proof. The graph of T enters the execution and the justification of convergence in Theorem 2.1 in
two ways. First, the definition of Pk and the firm nonexpansiveness in (2.1) arise from having

(Pk(z
k), Qk(z

k)) ∈ gph[ckB
−1
k T ], i.e., (Pk(z

k), c−1
k BkQk(z

k)) ∈ gphT. (3.6)
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Second, the stopping criteria (1.16) bring in vectors w ∈ Sk(z
k+1) with ||ckw||B−1

k
≤ εk, and in terms

of the definition of Sk this comes down to

(zk+1, w − c−1
k Bk[z

k+1 − zk]) ∈ gphT with ||w||B−1
k

≤ εkc
−1
k . (3.7)

As far at Theorem 2.1 is concerned, therefore, and in view of the balls of radius 2ρ specified to lie in
Z and W in (3.4), our task is verifying that

||zk − z0|| < 2ρ, ||Pk(z
k)− z0|| < 2ρ, ||c−1

k BkQk(z
k))|| < 2ρ,

and if ||w||B−1
k

≤ εkc
−1
k , also ||w − c−1

k Bk[z
k+1 − zk]|| < 2ρ.

(3.8)

From the firm nonexpansiveness in (2.1) as applied to z′ = zk and z = z̄0 ∈ Z, for which Pk(z̄
0) = z̄0

and Qk(z̄
0) = 0, we see that ||zk− z̄0||Bk

is an upper bound to both ||Pk(z
k)− z̄0||Bk

and ||Qk(z
k)||Bk

.
Therefore, by (2.10),

||zk − z̄0||Bk

||Pk(z
k)− z̄0||Bk

||Qk(z
k)||Bk

 ≤ βk[dist(z
0, Z) + σk] (3.9)

and consequently, through the stopping criterion because zk+1 − zk = zk+1 − Pk(z
k)−Qk(z

k),

||zk+1 − zk||Bk
≤ ||zk+1 − Pk(z

k)||Bk
+ ||Qk(z

k)||Bk

≤ εk + βk[dist(z
0, Z) + σk] ≤ βk[dist(z

0, Z) + σk+1]
< β∞[dist(z0, Z) + σ] ≤ β2

∞[dist(z0, Z) + σ] < ρ,
(3.10)

inasmuch as βk ≥ 1 and β∞ ≥ 1. Thus, the extra condition imposed in (3.5) won’t exclude any of the
potential update choices associated with the algorithm in its global articulation, while allowing only
aspects of T in its localization to Z ×W to come into play.

Through (3.9), the bound in (2.5), and the fact that ||z − z0|| ≤ ||z − z̄0|| + ||z̄0 − z0||, where in
particular we can take z = zk or z = Pk(z

k), we get

||zk − z0||
||Pk(z

k)− z0||

}
≤ βk(βk[dist(z

0, Z) + σk]) + dist(z0, Z)

≤ β2
∞[dist(z0, Z) + σ] + dist(z0, Z) < 2ρ.

(3.11)

Thus, through (3.4), zk and Pk(z
k) do obey (3.8). Noting now from (1.8) that

||Bkz||B−1
k

= ||z||Bk
, because ||Bkz||2B−1

k

= ⟨Bkz,B
−1
k Bkz⟩, (3.12)

and recalling the bound on the B−1
k -norm in (2.5), we observe next from (3.9) that

||c−1
k BkQk(z

k)|| ≤ βk||c−1
k BkQk(z

k)||B−1
k

= βkc
−1
k ||Qk(z

k)||Bk

≤ βk(βk[dist(z
0, Z) + σk]) < β2

∞[dist(z0, Z) + σ] < ρ.
(3.13)

This confirms the third bound in (3.8) via (3.4). For the last part of (3.8) we estimate

||w − c−1
k Bk(z

k+1 − zk)||B−1
k

≤ ||c−1
k Bk(z

k+1 − zk)||B−1
k

+ ||w||B−1
k

where by (3.12) and (3.9)

||c−1
k Bk(z

k+1 − zk)||B−1
k

= c−1
k ||zk+1 − zk||Bk

≤ c−1
k (βk[dist(z

0, Z) + σk])
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and, by assumption, ||w||B−1
k

≤ εkc
−1
k . Utilizing again the bound on the B−1

k -norm in (2.5), and

recalling from (1.6) that c−1
k ≤ 1, we then get

||w − c−1
k Bk(z

k+1 − zk)|| ≤ βk(βk[dist(z
0, Z) + σk+1] + εk)

≤ β2
∞[dist(z0, Z) + σ] + β∞σ ≤ 2β2

∞[dist(z0, Z) + σ] < 2ρ.

That finishes the validation of (3.10) and the claims concerning Theorem 2.1.
The only thing more that needs attention in connection with Theorem 2.2 is the employment in

its proof of the z̄k and pk as the nearest points of zk and Pk(z
k) to Z in the Bk norm. They need to

lie in Z as well — but only for sufficiently high k, since only such k are of importance for the linear
convergence argument. We already know that zk and Pk(z

k) both converge to z̄ ∈ Z. Nearest points
to them in Z therefore converge to z̄ as well, so that eventually, through the convexity of Z in Z, the
behavior is entirely captured withing Z, as required.

Data availability: No data was generated or analyzed.
Competing interests: The author, a co-editor, reliquished any role in this paper’s review.
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