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ABSTRACT. In a general real Hilbert space H, given a sequence (An)n∈N of maximally monotone
operators An : H ⇒ H, which graphically converges to an operator A whose domain is nonempty, we
analyze if the limit operator A is still maximally monotone. This question is justified by the fact that, as
we show on an example in infinite dimension, the graph limit in the sense of Painlevé-Kuratowski of a
sequence of maximally monotone operators may not be maximally monotone. Indeed, the answer depends
on the type of graph convergence which is considered. In the case of the Painlevé-Kuratowski convergence,
we give a positive answer under a local compactness assumption on the graphs of the operators An. Under
this assumption, the sequence (An)n∈N turns out to be convergent for the bounded Hausdorff topology.
Inspired by this result, we show that, more generally, when the sequence (An)n∈N of maximally monotone
operators converges for the bounded Hausdorff topology to an operator whose domain is nonempty, then
the limit is still maximally monotone. The answer to these questions plays a crucial role in the analysis of
the sensitivity of monotone variational inclusions, and makes it possible to understand these questions in
a unified way thanks to the concept of protodifferentiability. It also leads to revisit several notions which
are based on the convergence of sequences of maximally monotone operators, in particular the notion of
variational sum of maximally monotone operators.

1 Introduction

Throughout the paper H is a real Hilbert space, endowed with the scalar product 〈·, ·〉 and the associ-
ated norm ‖ · ‖. The aim of this paper is to answer the following question, that was raised for the first
time in [2, Remark 6] as an open question. Given a sequence (An)n∈N of maximally monotone operators
An : H ⇒ H which graph converges to an operator A : H ⇒ H whose domain is nonempty 1, can
we conclude that the limit operator A is still maximally monotone? In the case of a negative answer,
would it possible to give a sufficient condition preserving the maximal monotonicity property under the
graph-convergence limit? After identifying an operator with its graph, an equivalent formulation of the
first question would be: is the class of maximally monotone operators a closed subset of the hyperspace of
closed subsets ofH×H, equipped with the Painlevé-Kuratowski (PK) set convergence? It is well-known
that in finite dimensional settings, the maximal monotonicity is preserved under graphical convergence in
the sense of Painlevé-Kuratowski set convergence. This may fail in infinite dimension as shown by the
counterexample presented in Section 5. In relation to this phenomenon, we give a sufficient condition
ensuring the maximality of the limit operator, which reflects a local compactness property of the graphs
of the operators An. The difficulty linked to the use of convergence in the sense of Painlevé-Kuratowski
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is that it is not attached to a metrizable topology in infinite dimension. This therefore calls into question
its usefulness for such an approximation theory, and leads to consider other notions of convergence of
sets implying the Painlevé-Kuratowski convergence. One of them is the “bounded Hausdorff” conver-
gence, which is equivalent to the Painlevé-Kuratowski convergence in finite dimension, and is attached to
a metrizable topology even in infinite dimension. We will show that the bounded Hausdorff convergence
is the right vehicle to deal with the quantitative stability of variational systems involving maximally mono-
tone operators. We will therefore give a positive answer to the initial question simply by replacing the
Painlevé-Kuratowski convergence by the bounded Hausdorff convergence.
The above question naturally arises in several situations involving the graph limit of sequences of maxi-
mally monotone operators. We will pay attention to two of these particular situations:

(i) In the analysis of the sensitivity of monotone variational inclusions, the concept of protodifferentia-
bility makes it possible to understand these questions in a unified way.

(ii) The notion of variational sum of maximally monotone operators.

2 Preliminary results

For a set-valued map A : H ⇒ H, the domain of A is given by Dom(A) := {x ∈ H | A(x) 6= ∅}, and
its graph is defined by Gph (A) := {(x, y) ∈ H × H | y ∈ A(x)}. The product space H × H, where
are located the graphs of the operators, will be equipped with the usual classical norm ‖(x, y)‖H×H =√
‖x‖2 + ‖y‖2.

We denote by A−1 : H⇒ H the inverse of A, which is the set-valued map defined by: for all y ∈ H

A−1(y) := {x ∈ H | y ∈ A(x)}.

The range of A is defined by
Rge(A) =

⋃
x∈H

A(x).

Given a sequence (xn) inH that converges to some x ∈ H, the strong (resp. weak) convergence is denoted
by s- lim

n→+∞
xn = x or xn → x (resp. w- lim

n→+∞
xn = x or xn ⇀ x) .

Let’s now recall some basic facts from the theory of maximally monotone operators, and from the set
convergence theory that will be useful for our developments.

2.1 Basic facts concerning maximally monotone operators

The set-valued mapping A : H⇒ H is called monotone if it has the property

〈x∗ − y∗, x− y〉 ≥ 0 whenever (x, x∗) ∈ Gph (A), (y, y∗) ∈ Gph (A).

The set-valued map A is said to be maximally monotone if and only if it is monotone and its graph is
maximal in the class of monotone operators for the relation of inclusion, i.e. Gph (A) is not properly
contained in the graph of any other monotone operator.
For a given set-valued map A : H⇒ H, the resolvent of A of index λ > 0 is given by

JλA = (Id + λA)−1, (2.1)

where Id stands for the identity operator onH. It is well known that ifA : H⇒ H is maximally monotone,
then, for any λ > 0, its resolvent JλA : H → H is a single-valued and nonexpansive mapping, i.e.

‖JλA(x)− JλA(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H.
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Moreover, JλA : H → H is firmly nonexpansive, i.e.

‖JλA(x)− JλA(y)‖2 + ‖(Id− JλA)(x)− (Id− JλA)(y)‖2 ≤ ‖x− y‖2, ∀x, y ∈ H.

The resolvents are tied by the resolvent equation: for any λ > 0, µ > 0, for any x ∈ H

JλA(x) = JµA

(
µ

λ
x+

λ− µ
λ

JλA(x)

)
.

The Yosida approximation of index λ > 0 associated with the operator A is given by

Aλ =
1

λ
(Id− JλA).

The Yosida approximation plays an important tool in the theory of monotone operators. It can be con-
sidered as a single-valued Lipschitz continuous regularization of a given set-valued maximally monotone
operator. It is well-known that if A : H ⇒ H is maximally monotone, then its Yosida approximation Aλ
is single-valued, everywhere defined and Lipschitz continuous with modulus 1

λ . Moreover, for any x ∈ H
and λ > 0, (

JλA(x), Aλ(x)
)
∈ Gph (A).

The above formula reflects the fact that Gph (A) is a Lipschitzian manifold in the product space H ×H,
see [24] for more details.
Given a maximally monotone operator A : H ⇒ H, for any x ∈ Dom(A), A0(x) is the unique element
of minimal norm of the closed convex set A(x), i.e.

A0(x) = ProjA(x)(0), x ∈ Dom(A),

where ProjA(x) denotes the projection operator onto the closed convex set A(x), x ∈ Dom(A). The
operator A0 is called the minimal section of the operator A.
For any x ∈ Dom(A), we have

lim
λ→0

Aλ(x) = A0(x) ∈ A(x).

We recall the following fundamental theorem, known in the literature as Minty’s Theorem.

Theorem 2.1 (Minty, 1962) Let A : H ⇒ H be a monotone operator. The following statements are
equivalent:

(i) A is a maximally monotone operator;

(ii) The operator (Id +A) is surjective, i.e. Rge(Id +A) = H.

We note that A is maximally monotone if and only if λA is also maximally monotone, for every λ > 0.
Thus, property (ii) is equivalent to Rge(Id + λA) = H, for every λ > 0.

2.2 Basic facts concerning set convergence

Let H be a real Hilbert space, and let (Cn)n∈N be a sequence of subsets of H. The outer and the inner
limits of (Cn)n∈N when n→ +∞ are defined respectively by

Limsup Cn := {x ∈ H | ∃N ∈ N ], ∀n ∈ N, ∃xn ∈ Cn : s- lim
n∈N

xn = x},
Liminf Cn := {x ∈ H | ∃N ∈ N , ∀n ∈ N, ∃xn ∈ Cn : s- lim

n∈N
xn = x},
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where N ] := {N ⊂ N | N is infinite } and N := {N ⊂ N | N \ N is finite }. We can define in the
same manner w-Limsup and w-Liminf by replacing the strong convergences in the definitions above by
weak ones. The following inclusion holds true in general:

Liminf Cn ⊂ Limsup Cn.

The Painlevé-Kuratowski convergence is defined by this inclusion being an equality.
The following inclusions hold true

Liminf Cn ⊂ Limsup Cn ⊂ w-Limsup Cn and Liminf Cn ⊂ w-Liminf Cn ⊂ w-Limsup Cn.

The Mosco convergence 2 of the sequence (Cn) to C, denoted by Cn
M−→ C, holds if

w-Limsup Cn ⊂ C ⊂ Liminf Cn.

When considering graphs of operators from H to H, the above definitions should be applied to subsets of
the product spaceH×H.

Definition 2.1 (Graph-convergence) Let An : H ⇒ H, n = 1, 2... be a sequence of operators. The
sequence (An)n∈N is said to be graph-convergent to the operator A : H ⇒ H, if Gph (An) converges to

Gph (A) in the sense of Painlevé-Kuratowski (PK). We then denote An
G−→ A.

For any subset C ⊂ H, the distance from a point x ∈ H to C is defined by

d(x,C) = inf
y∈C
‖x− y‖.

By convention, we set d(x, ∅) =∞.
Let C and D be two subsets ofH. The excess function of C on D is defined by

e(C,D) = sup
x∈C

d(x,D),

with the convention e(∅, D) = 0.
For any nonegative real number ρ ≥ 0, the closed ball centered at the origin and with radius ρ is denoted
by ρB. For any subset C ⊂ H, we denote by Cρ the intersection of C with ρB i.e. Cρ := C ∩ ρB.
Following Attouch-Wets [8, 9, 10], Attouch-Lucchetti-Wets [6], Azé-Penot [12], Beer [14] we have the
following quantitative notion.

Definition 2.2 (ρ-Hausdorff distance) For any ρ > 0, the ρ-Hausdorff distance between two subsets C
and D ofH is defined by

hausρ(C,D) = max
(
e(Cρ, D), e(Dρ, C)

)
.

A sequence (Cn)n∈N of subsets of H is said to converge to a set C ⊂ H with respect to the ρ-Hausdorff
distance, if for any ρ > 0, lim

n→+∞
hausρ(Cn, C) = 0, i.e. for any ε > 0 and any ρ > 0, there exists N > 0

Cn ∩ ρB ⊂ C + εB and C ∩ ρB ⊂ Cn + εB, for all n ≥ N.
2 In general, the Mosco convergence is used for sequences of closed convex sets, since it necessarily implies that the limit set

is weakly closed
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We recall that the ρ-Hausdorff distance is not a metric.
The convergence for the ρ-Hausdorff distance is associated with a topology that is metrizable. Following
[6], [14], it is induced by the metric which is defined with the help of the semi-distances

dρ(C,D) := sup
‖x‖≤ρ

|d(x,C)− d(x,D)|

by the following formula

d(C,D) :=

+∞∑
n=1

2−n
dρn(C,D)

1 + dρn(C,D)
(2.2)

where (ρn) is a sequence of increasing positive numbers that tends to +∞ (this sequence can be taken
arbitrarily, the topology and the uniform structure remain the same). The link between the ρ-Hausdorff
distance and the above metric follows from the following result

Proposition 2.1 For any ρ > 0 and ρ0 > max{d(0, C), d(0, D)}

hausρ(C,D) ≤ dρ(C,D) ≤ haus2ρ+ρ0(C,D).

Proof. The first inequality is immediate. For the second inequality, we refer to [15, Lemma 3.1].

As an important result, we have the following completeness property.

Theorem 2.2 (Theorem 2.1 [6], Theorem 3.1.3 [14]) The hyperspace of closed sets is complete for the
metric defined in (2.2).

We therefore use the two terminologies interchangeably: convergence for the ρ-Hausdorff distance, or
convergence for the ρ-Hausdorff topology. This contrasts sharply with the Painlevé-Kuratowski conver-
gence which is associated with a topology only when the underlying space is locally compact (see e.g. [3,
section 2.8], [14], [22]).

Remark 2.1 (i) If the Hilbert space H is of finite dimension, then the Painlevé-Kuratowski and the
ρ-Hausdorff set-convergence coincide.

(ii) Note also that if the Hilbert space H is of infinite dimension, and when considering sequences of
closed convex sets, then the ρ-Hausdorff convergence implies the Mosco convergence, i.e.(

for all ρ > 0, lim
n→+∞

hausρ(Cn, C) = 0
)

implies Cn
M−→ C as n→ +∞.

The notion of ρ-Hausdorff distance can be specialized to functions via their identification with their
epigraphs, and to operators via their identification with their graphs.
For an extended real-valued function f : H → R ∪ {+∞} its epigraph, denoted by epi (f), is defined by

epi (f) = {(x, α) ∈ H × R : f(x) ≤ α}.

Let f, g : H → R ∪ {+∞} be two extended real valued functions. For any ρ ≥ 0, the ρ-Hausdorff
epi-distance between f and g is defined by

hausρ(f, g) = hausρ(epi (f), epi (g)).

We denote by Γ0(H) the set of all convex, proper and closed extended real valued functions.
Let A, B : H⇒ H be set-valued maps and ρ ≥ 0. The ρ-graph distance between A and B is defined by

hausρ(A,B) := hausρ

(
Gph (A),Gph (B)

)
.
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Definition 2.3 (Epigraphical-convergence) Let (fn)n∈N and f be a sequence of extended real valued
functions onH.

(i) We say that (fn)n∈N epiconverges to f if and only if epi (fn) converges to epi (f) in the sense of

Painlevé-Kuratowski in the product spaceH×R. We write in this case, f = epi - lim fn or fn
epi−→ f

as n→ +∞.

(ii) We say that (fn)n∈N Mosco-epiconverges to f if and only if epi (fn) converges to epi (f) in the
sense of Mosco in the product spaceH×R. We write in this case, f = M -epi - lim fn or fn

M-epi−→ f
as n→ +∞.

(iii) We say that (fn)n∈N epiconverges to f in the sense of the bounded-Hausdorff topology if and only
if lim
n→+∞

hausρ(fn, f) = 0 for all ρ > 0. We write in this case, f = epi -dist- lim fn or fn
epi-dist−→ f

as n→ +∞.

Remark 2.2 Note that a sequence of closed proper and convex functions (fn)n Mosco-epiconverges to
some f if and only if for all x ∈ H,

• for any sequence xn ⇀ x, we have lim inf
n→+∞

fn(xn) ≥ f(x);

• there exists xn → x such that lim sup
n→+∞

fn(xn) ≤ f(x).

2.3 Basic facts concerning the convergence of sequences of maximally monotone operators

The following proposition gives a characterization of the graph-convergence in the sense of Painlevé-
Kuratowski (PK) of a sequence of maximally monotone operators. Note that in the following statement
we assume that the limit operator is maximally monotone (we refer to [3]).

Proposition 2.2 Let (An)n be a sequence of maximally monotone operators An : H ⇒ H, and let
A : H⇒ H be a maximally monotone operator. Then the following statements are equivalent:

(i) An
G−→ A, i.e. (An) graph-converges to A in the sense of Painlevé-Kuratowski;

(ii) Gph (A) ⊂ Liminf Gph (An).

Equivalently, for every (x, y) ∈ Gph (A), there exists a sequence (xn, yn) ∈ Gph (An) such that: xn → x
and yn → y as n→ +∞.

The above proposition results from the fact that, under the assumption A maximally monotone operator,
the inclusion Limsup Gph (An) ⊂ Gph (A) is automatically satisfied. Moreover, we have the following
property, see [3, Proposition 3.59] which is an extension to the parametrized case of the strong-×-weak
closure property of the graph of a maximally monotone operator

Proposition 2.3 Let (An)n be a sequence of maximally monotone operators An : H ⇒ H that graph-
converges to a maximally monotone operator A : H⇒ H. Then the following property is satisfied:
Whenever a sequence (xn, yn) ∈ Gph (An) satisfies xn → x strongly in H and yn → y weakly in H as
n→ +∞, then y ∈ A(x).

Remarkably, when working with sequences of maximally monotone operators, the various notions
of graph convergence can be equivalently formulated with the help of the resolvents. Some of them are
summarized in the following proposition (see e.g. [3]).
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Proposition 2.4 Let (An)n∈N be a sequence of maximally monotone operators, and let A be a maximally
monotone operator. Then the following statements are equivalent:

(i) An
G−→ A as n→ +∞;

(ii) JλAn(x)→ JλA(x) strongly inH, for every x ∈ H, for every λ > 0;

(iii) Jλ0An(x)→ Jλ0A(x) strongly inH, for every x ∈ H, for some λ0 > 0.

This property naturally leads to the introduction of the topology of the convergence of the resolvents on
the class of maximally monotone operators acting on H, i.e. the weakest topology making continuous all
the applications A 7→ JλA(x) ∈ H, λ > 0, x ∈ H. As an important result, when H is separable, this
topology is metrizable. An example of such distance is given by

d(A,B) =
∑
k

1

2k
inf
{

1, ‖Jλ0A(xk)− Jλ0B(xk)‖
}
, (2.3)

where (xk) is in a countable dense subset of H. The following result due to Attouch (see Theorem 3.62
[3]) is in this sense.

Theorem 2.3 (Theorem 3.62 [3]) Suppose thatH is a separable Hilbert space. Then the class of the max-
imally monotone operators acting on H equipped with the topology of the convergence of the resolvents
is a metrizable, separable, complete space. For any sequence (An)n∈N of maximally monotone operators,
and A maximally monotone operator, the following properties are equivalent:

(i) An
G−→ A as n→ +∞;

(ii) d(An, A)→ 0 as n→ +∞;

(iii) Jλ0An(x)→ Jλ0A(x) strongly inH, for every x ∈ H, for some λ0 > 0 as n→ +∞.

We have parallel results for the bounded Hausdorff convergence, which are summarized in the proposition
below.

Proposition 2.5 Suppose that H is a general Hilbert space. Let (An)n∈N be a sequence of maximally
monotone operators, and let A be a maximally monotone operator. Then the following statements are
equivalent:

(i) ∀ρ > 0 hausρ(An, A)→ 0 as n→ +∞;

(ii) ∀λ > 0, ∀r > 0 sup‖x‖≤r ‖JλAn(x)− JλA(x)‖ → 0 as n→ +∞;

(iii) ∃λ0 > 0 ∀r > 0 sup‖x‖≤r ‖Jλ0An(x)− Jλ0A(x)‖ → 0 as n→ +∞.

Proposition 2.5 is a direct consequence of the more general Proposition 2.6 below. In fact, we will need the
following more precise result which shows that on the set of maximally monotone operators, the uniform
structure attached to the bounded Hausdorff distances is equivalent to the uniform structure attached to the
family of pseudo-distances

dλ,r(A,B) := sup
‖x‖≤r

‖JλA(x)− JλB(x)‖.

Precisely, according to Attouch-Moudafi-Riahi [7], we have
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Proposition 2.6 [7, Proposition 1.1 and 1.2.] Let A and B be two maximally monotone operators. Then,
for any λ > 0, ρ and r > 0

hausρ(A,B) ≤ max

(
1,

1

λ

)
dλ,(1+λ)ρ(A,B) (2.4)

dλ,r(A,B) ≤ (2 + λ) hausρ(A,B) (2.5)

where in (2.5) ρ = max
(
r + ‖JλA(0)‖, 1

λ(r + ‖JλA(0)‖)
)

.

Let us notice that, according to the inequalities (2.4) and (2.5), to generate the above uniform structure,
we don’t need to consider all the pseudo-distances (dλ,r). It is sufficient to consider the pseudo-distances
(dλ0,r) for a given λ0 > 0.

Proposition 2.7 [7, Proposition 1.4] Let A be a maximally monotone operator, and let Aλ be its Yosida
approximation of index λ > 0. Then as λ→ 0

∀ρ > 0 hausρ(Aλ, A)→ 0.

For further results concerning the theory of maximally monotone operators we refer to [13], [16], [30].
For the variational convergences of sequences of maximally monotone operators see [3], [7], [9]. For
properties concerning the set convergence theory and its link with the variational analysis see [28] in finite
dimensional spaces and [6], [14] in general normed spaces.

3 Main results

In this section, we state and prove our main results. We start by giving a sufficient compactness assumption
(Ac) ensuring the maximally monotone property of the limit operator under the graph-convergence in the
sense of Painlevé-Kuratowski (see Theorem 3.1). We show in Theorem 3.2 that the answer to our initial
question is positive without any additional assumption when the graph convergence is taken in the sense
of the bounded Hausdorff topology. Finally, we show in Theorem 3.3, that under the same compactness
assumption (Ac) both graph-convergences in the sense of Painlevé-Kuratowski and bounded Hausdorff
topology coincide.

Theorem 3.1 Let (An) be a sequence of maximally monotone operators An : H ⇒ H that converges
graphically in the Painlevé-Kuratowski sense to an operator A : H ⇒ H whose domain is nonempty.
Suppose that the following compactness assumption (Ac) is satisfied: every sequence (xn) ofH such that(

sup
n
‖xn‖ < +∞ and sup

n
‖A0

n(xn)‖ < +∞
)

is contained in a compact subset ofH.
Then, the limit operator A is maximally monotone.

Proof. The first five claims are elementary. Only the last claim 6 requires a detailed proof.

Claim 1: The limit operator A is monotone.

Claim 2: JA := (Id +A)−1 is single valued.

Claim 3: Id +An
G−→ Id +A in the graph sense.

Claim 4: JAn

G−→ JA in the graph sense.
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Claim 5: JAn(x)→ JA(x) for all x ∈ Rge(Id +A) (pointwise convergence).

Claim 6: Rge(Id +A) = H.
Given y ∈ H, we have to solve

x+Ax 3 y.

According to Minty’s Theorem (see Theorem 2.1) and the fact that An is maximally monotone, for every
n ∈ N, there exists xn ∈ H such that

xn +An(xn) 3 y,

that is xn = JAn(y). Let’s first verify that the sequence (xn) remains bounded. Indeed, taking x0 ∈
Rge(Id + A) (recall that A has been assumed to have a nonempty domain), and using that the resolvents
are nonexpansive operators, we have

‖xn − JAn(x0)‖ = ‖JAn(y)− JAn(x0)‖ ≤ ‖y − x0‖.

Therefore, by the triangle inequality

‖xn‖ ≤ ‖y − x0‖+ ‖JAn(x0)‖. (3.1)

According to claim 5, the sequence (JAn(x0))n is convergent in H, and hence bounded. Using (3.1), we
obtain that the sequence (xn) is bounded.

From xn+An(xn) 3 y, we deduce that ‖A0
n(xn)‖ ≤ ‖y‖+‖xn‖, and hence supn ‖A0

n(xn)‖ < +∞.
By the compactness assumption (Ac), we deduce that (xn) remains in a compact subset of H. Therefore
we can extract a subsequence (xnk

) such that

xnk
→ x̄ strongly in H.

We have
y − xnk

∈ Ank
(xnk

),

with y − xnk
→ y − x̄ and xnk

→ x̄ strongly in H. According to the graph convergence of the sequence
(An) to A, we deduce that

y − x̄ ∈ A(x̄),

which expresses that y ∈ Rge(Id+A). We have obtained thatA is monotone and satisfies Rge(Id+A) =
H. Therefore, according to Minty’s theorem, A is maximally monotone.

Remark 3.1 During the reviewing process, we received the following simple proof of Theorem 3.1, from
one of the two anonymous referees. Since the domain of A is nonempty, we select some y ∈ A(x). By the
graphical convergence of (An) to A, there exists a sequence (xn, yn)→ (x, y) with yn ∈ An(xn). Hence,
xn = JAn(xn + yn). Let z ∈ H be arbitrary and set vn = JAn(z). By the nonexpansiveness of JAn , we
have

‖xn − vn‖ ≤ ‖xn + yn − z‖.

From this last inequality, we deduce that the sequence (‖vn‖)n is bounded. Since z−vn ∈ An(vn), we get
the boundedness of A0

n(vn) as well. By the compactness assumption (Ac), we deduce that (vn) remains
in a compact subset of H. Therefore we can extract a subsequence, still denoted (vn) such that vn → v.
Passing to the limit in z − vn ∈ An(vn) gives z − v ∈ A(v). The conclusion follows from Minty’s
Theorem.

Remark 3.2 The compactness assumption (Ac) is verified in the following situations:
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(a) H is a finite dimensional Hilbert space. This is a clear consequence of the fact that, in this case,
bounded sets are relatively compact.

(b) An = ∂Φn where, for each n ∈ N, Φn ∈ Γ0(H), the set of extended real-valued functions which
are convex lsc. and proper, and the sequence (Φn) satisfies the inf-compactness property(

sup
n
‖xn‖ < +∞ and sup

n
Φn(xn) < +∞

)
=⇒ (xn) is contained in a compact subset ofH,

(3.2)
together with: there exists a sequence (ωn) such that supn ‖ωn‖ < +∞ and supn Φn(ωn) < +∞.
This results immediately from the subdifferential inequality

Φn(ωn) ≥ Φn(xn) +
〈

(∂Φn)0 (xn), ωn − xn
〉
,

which gives
Φn(xn) ≤ C + ‖ (∂Φn)0 (xn)‖ ‖ωn − xn‖.

From the boundedness of the sequences (xn), (ωn) and ((∂Φn)0 (xn)), we infer supn Φn(xn) <
+∞, which gives the relative compactness of the sequence (xn).

(c) Let us give a concrete example where An = ∂Φn and (3.2) is satisfied by the sequence (Φn).
Let Ω be a bounded open set of RN , and let H be equal to the Lebesgue space L2(Ω) endowed
with its classical Hilbert structure. Various situations in calculus of variations involve dealing with
a sequence of convex integral functionals (Φn) of the following form, see [3] for examples (the
elements ofH are functions which are denoted generically by ω 7→ u(ω))

Φn(u) =


∫

Ω
an(ω)‖∇u(ω)‖2dω if u ∈ H1

0 (Ω)

+∞ if u ∈ L2(Ω)�H1
0 (Ω).

Suppose that the coefficients (an) (diffusion or elasticity coefficients for example) belong to L∞(Ω)
and verify an(ω) ≥ c > 0 with c independent of n and ω. According to the Poincaré inequality, we
have that the functions Φn satisfy the coercivity property:

Φn(u) ≥ r‖u‖2H1
0 (Ω) (3.3)

for some r > 0, independent of n. It follows that, for each n ∈ N, the function Φn is lower
semicontinuous on H = L2(Ω). Indeed whenever uk → u in L2(Ω) and (Φn(uk))k is bounded, it
follows from (3.3) that the sequence (uk)k is bounded in H1

0 (Ω), and therefore converges weakly
to u in H1

0 (Ω). Since Φn is convex continuous on H1
0 (Ω), it is lower semicontinuous for the weak

topology ofH1
0 (Ω). Then, returning to prove (3.2), using a similar argument, we have that whenever

a sequence a sequence (un)n satisfies supn Φn(un) < +∞, then it is bounded in H1
0 (Ω). The

conclusion follows from the Rellich-Kondrakov compact embedding of the Sobolev space H1
0 (Ω)

into L2(Ω), which tells us that the sequence (un)n is contained in a compact subset of L2(Ω). For
related general results see [6, Theorem 3.2].

Let’s give a positive answer to the initial question, without additional conditions, when the graph
convergence is taken for the bounded Hausdorff topology.

Theorem 3.2 Suppose that H is a general real Hilbert space. Let (An) be a sequence of maximally
monotone operatorsAn : H⇒ H that graph-converges in the sense of the bounded Hausdorff topology to
an operator A : H⇒ H, whose domain is nonempty. Then, the limit operator A is maximally monotone.
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Proof. By definition of the convergence for the bounded Hausdorff topology, we have

lim
n

hausρ(An, A) = 0

for all ρ > 0. By the “generalized triangle inequality”, see [9, Proposition 1.2], we have for all n,m ∈ N

hausρ(An, Am) ≤ haus3ρ(An, A) + haus3ρ(A,Am).

Hence for all ρ > 0
lim

n,m→+∞
hausρ(An, Am) = 0.

The above property expresses that (An) is a Cauchy sequence with respect to the metric of the bounded
Hausdorff distances. We now rely on Proposition 2.6 which shows the uniform equivalence (i.e. same
Cauchy sequences) between the metric of the bounded Hausdorff distances and the metric of the uniform
convergence of the resolvents on the bounded sets. Precisely to apply Proposition 2.6 we need a uniform
bound supn ‖JλAn(0)‖ < +∞. Indeed this last property follows from the graph convergence of (An) to
A, and from the fact that the domain of A is nonempty, as explained in Remark 3.1.

Let us fix some λ > 0. As a consequence, for each x ∈ H, (JλAn(x))n is a Cauchy sequence in H,
which is a complete metric space. Therefore, it converges strongly. This gives the existence of an operator
T : H → H such that, for each x ∈ H, as n→ +∞

JλAn(x)→ T (x), and (3.4)

(An)λ :=
1

λ
(x− JλAn(x))→ U(x) =

1

λ
(x− T (x)) . (3.5)

Let us define the operator B : H⇒ H by

Gph (B) := {(T (x), U(x)) | x ∈ H}, (3.6)

i.e. U(x) ∈ B(T (x)) for every x ∈ H. Note that Dom(B) = Rge(T ). Let us show that B is a monotone
operator. According to the relation

1

λ
(x− JλAn(x)) ∈ An(JλAn(x)),

and the monotonicity of An, we have for any x, y ∈ H〈
1

λ
(x− JλAn(x))− 1

λ
(y − JλAn(y)) , JλAn(x))− JλAn(y)

〉
≥ 0.

According to (3.4) and (3.5), and by passing to the limit in the above equation we obtain, for any x, y ∈ H

〈U(x)− U(y), T (x)− T (y)〉 ≥ 0. (3.7)

Using the definition of B in (3.6) and (3.7), it follows that B is a monotone operator. Moreover, according
to the trivial relation

JλAn(x) + λ
1

λ
(x− JλAn(x)) = x, (3.8)

we obtain, by passing to the limit in (3.8), as n→ +∞

T (x) + λU(x) = x. (3.9)

Since U(x) ∈ B(T (x)), we deduce that for all x ∈ H

T (x) + λB(T (x)) 3 x.
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So, B is a monotone operator, which satisfies Rge(Id + λB) = H. According to Minty’s theorem, this
implies that B is maximally monotone. Using (3.9), we have that T is equal to resolvent of B of index λ,
i.e. T = JλB .
Finally, we have obtained that for any x ∈ H,

JλAn(x)→ T (x) = JλB(x),

which expresses that the sequence (An) graph converges to the maximally monotone operator B. Since
the bounded Hausdorff convergence implies the graph convergence, and by uniqueness of the limit, we get
A = B, which gives that A is maximally monotone.

Remark 3.3 When H is separable, we can give a different proof. Let us return to the fact that we have
obtained a Cauchy sequence for the metric d of the pointwise convergence of the resolvents defined in
(2.3). We note that by applying, the dominated convergence theorem, we have

lim
n,m→+∞

d(An, Am) = lim
n,m→+∞

∑
k

1

2k
inf(1, ‖JAn(xk)− JAm(xk)‖) = 0.

Since the metric d is complete (see Theorem 2.3), we have the existence of a maximally monotone operator
Ã such that

An → Ã in the sense of the pointwise convergence of the resolvents.

According to the equivalence between the pointwise convergence of the resolvents and the graph conver-
gence, see Theorem 2.3), we obtain

An
G−→ Ã in the sense of the Kuratowski-Painlevé graph convergence.

Since the bounded Hausdorff convergence implies the Kuratowski-Painlevé convergence we have A = Ã,
and hence A is a maximally monotone operator.

We show in the following theorem that, under the compactness assumption (Ac), the graph-convergence
in the sense of Painlevé-Kuratowski and the convergence for the bounded Hausdorff topology coincide.

Theorem 3.3 Let (An) be a sequence of maximally monotone operators An : H ⇒ H that satisfies the
compactness assumption (Ac). Then we have the following equivalence: (i)⇐⇒ (ii)

(i) (An) graph-converges to A, with a nonempty domain, in the Painlevé-Kuratowski sense.

(ii) (An) converges to A, with a nonempty domain, for the bounded Hausdorff topology.

In this case, the limit A is maximally monotone.

Proof. As a general result, convergence for the bounded Hausdorff topology implies convergence in
the Painlevé-Kuratowski sense. So the implication (ii)⇒ (i) is automatically satisfied, and we just need to
show (i)⇒ (ii). So suppose (i). We have previously shown in Theorem 3.1 thatA is maximally monotone,
and that for all x ∈ H, for any λ > 0

JλAn(x)→ JλA(x), (3.10)

where the convergence holds for the strong topology of H. According to Proposition 2.5 we must prove
that the resolvents converge uniformly on the bounded subsets of H. Let us argue by contradiction, and
suppose that this is not true. Then according to Proposition 2.5 (ii), there exists λ0 > 0 and R > 0 such
that the following property is not satisfied

sup
x∈B(0,R)

‖Jλ0An(x)− Jλ0A(x)‖ → 0 as n→ +∞.



Preserving the maximally monotone property by graph-convergence 13

This gives the existence of ε > 0, and of a subsequence (nk) such that, for all k ∈ N

sup
x∈B(0,R)

‖Jλ0Ank
(x)− Jλ0A(x)‖ ≥ ε.

In turn, this implies the existence of a sequence (xk) such that xk ∈ B(0, R) for all k ∈ N, and

‖Jλ0Ank
(xk)− Jλ0A(xk)‖ ≥

ε

2
. (3.11)

According to (3.10), for k given we have that as n→ +∞

Jλ0An(xk)→ Jλ0A(xk). (3.12)

Therefore there exists a sequence of positive integers mk which tends to infinity such that for all k ∈ N

‖Jλ0Amk
(xk)− Jλ0A(xk)‖ ≤

ε

4
. (3.13)

According to (3.11) and (3.13), and by using the triangle inequality, we deduce that for all k ∈ N

‖Jλ0Ank
(xk)− Jλ0Amk

(xk)‖ ≥
ε

4
. (3.14)

Since the sequence (xk) is contained in a bounded set ofH, we can extract a sequence (still denoted (xk))
such that xk ⇀ x̄ in H as k → +∞. By the same argument as in Theorem 3.1, we have that the sequences
(Jλ0Ank

(xk))k and (Jλ0Amk
(xk))k are bounded. Moreover,

λ0Ank
(Jλ0Ank

(xk)) 3 xk − Jλ0Ank
(xk)

and hence
sup
k
‖A0

nk
(Jλ0Ank

(xk))‖ < +∞.

According to the compactness assumption (Ac), we deduce that the sequence (Jλ0Ank
(xk))k is relatively

compact in H. Similarly, we obtain that the sequence (Jλ0Amk
(xk))k is relatively compact in H. Let us

extract subsequences (we still keep the same notation for subsequences) such that

Jλ0Ank
(xk)→ z1 strongly in H and Jλ0Amk

(xk)→ z2 strongly in H.

On the one hand, by passing to the limit in (3.14), thanks to the above strong convergence property

‖z1 − z2‖ ≥
ε

4
. (3.15)

On the other hand using

xk ⇀ x̄ weakly and Jλ0Amk
(xk)→ z2 strongly,

and the convergence of the sequence of maximally monotone operators Jλ0Amk
to Jλ0A, we obtain by

applying Proposition 2.3 that
z2 = Jλ0A(x̄).

Similarly from
xk ⇀ x̄ weakly and Jλ0Ank

(xk)→ z1 strongly,

and the convergence of the sequence of maximally monotone operators Jλ0Ank
to Jλ0A we get

z1 = Jλ0A(x̄).

Therefore z2 = z1 = Jλ0A(x̄), a clear contradiction with (3.15). The proof of Theorem 3.3 is thereby
completed.
The following result completes Theorem 3.3 by showing that the limit operator A has resolvents which
are compact operators. Note that this is not an immediate result since the compactness assumption (Ac)
implies the operators (An) and not their potential limit.
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Proposition 3.1 Let (An) be a sequence of maximally monotone operators An : H ⇒ H that graph-
converges and that satisfies the compactness assumption (Ac). Then (An) converges for the bounded
Hausdorff topology to a maximally monotone operator A which has compact resolvents. This means that
for any r > 0 and λ > 0

JλA(B(0, r)) is compact inH.

Proof. According to Theorem 3.3 the sequence (An) converges for the bounded Hausdorff topology
to a maximally monotone operator A. Let us give a bounded sequence (xn) such that xn ∈ B(0, r) for all
n ∈ N and λ0 > 0. By the triangle inequality and the definition of the Yosida approximate, we have

‖An,λ0(xn)‖ ≤ ‖Aλ0(xn)‖+
1

λ0
‖Jλ0An(xn)− Jλ0A(xn)‖

≤ ‖Aλ0(xn)‖+
1

λ0
sup
‖x‖≤r

‖Jλ0An(x)− Jλ0A(x)‖

≤ ‖Aλ0(xn)‖+
1

λ0
dλ0,r(An, A). (3.16)

According to Proposition 2.5 and the fact that the sequence (An) converges for the bounded Hausdorff
topology to the maximally monotone operator A, we have

dλ0,r(An, A)→ 0 as n→ +∞. (3.17)

Moreover, according to the Lipschitz continuity property of Aλ0 and (xn) bounded we have

sup
n
‖Aλ0(xn)‖ < +∞. (3.18)

Combining (3.16) with (3.17) with (3.18) we deduce that

sup
n
‖An,λ0(xn)‖ < +∞.

The same argument as in Theorem 3.3 gives that the sequence (Jλ0An(xn))n is relatively compact in H.
Let us extract subsequences such that

xnk
⇀ ξ weakly inH

and
Jλ0Ank

(xnk
) −→ η strongly inH.

From (3.17) we deduce that
Jλ0A(xnk

)→ η strongly inH.

By the demi-closedness property of the resolvent operator Jλ0A, we get η = Jλ0A(ξ). Therefore

Jλ0A(xnk
) −→ Jλ0A(ξ) strongly inH,

with ξ ∈ B(0, r). This proves the claim.
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4 Closedness of the family of maximally monotone operators with respect
to the pointwise convergence of the resolvents

The following result plays a central role in the proof of Theorem 3.2. It’s interesting to figure it out. It will
also help us to give a counterexample showing that the answer to our initial question may be negative.

Theorem 4.1 Suppose thatH is a general Hilbert space. Let (An) be a sequence of maximally monotone
operators An : H⇒ H that converges in the following sense: for some λ > 0 and for all x ∈ H

s- lim JλAn(x) exists.

Then, the sequence (An) graph converges to a maximally monotone operator A : H ⇒ H, and we have,
for all x ∈ H

JλA(x) = s- lim JλAn(x).

Proof. Since rescaling by a positive parameter λ > 0 does not affect the maximal monotonicity of an
operator, without loss of generality, we assume that λ = 1. The proof is based on an argument similar to
the one used in the second part of the proof of Theorem 3.2. It is based on the introduction of the operator
T : H → H such that, for each x ∈ H, as n→ +∞

JAn(x)→ T (x) inH (4.1)

(x− JAn(x))→ U(x) = (x− T (x)) inH. (4.2)

Then define the operator A : H⇒ H by

Gph (A) := {(T (x), U(x)) | x ∈ H} , (4.3)

i.e. U(x) ∈ A(T (x)) for every x ∈ H. Note that Dom(A) = Rge(T ). Then, following the proof of
Theorem 3.2, we can show that A is a monotone operator, which satisfies Rge(Id + A) = H. According
to Minty’s theorem, this implies that A is maximally monotone. Morever, according to (4.2) we have
T (x) + U(x) = x, which gives

T (x) +A(T (x)) 3 x.

Therefore, T is equal to resolvent of A of index 1, i.e. T = JA. We have proved that, for all x ∈ H

JAn(x)→ JA(x)

which, according to Theorem 2.3, gives the graph convergence of the sequence (An) to A.

5 A counterexample

We are going to exhibit a sequence (An) of maximally monotone operators An : H ⇒ H such that An
graph converges to A, and A is monotone but not maximally monotone.

Theorem 5.1 In an infinite dimensional Hilbert space, the graph limit in the sense of Painlevé-Kuratowski
of a sequence (An) of maximally monotone operators An : H ⇒ H might be no more maximally mono-
tone.

Proof. Take H = L2(0, 1) the space of square integrable functions with respect to the Lebesgue
measure on [0, 1]. Classically, this is a Hilbert space, when equipped with the scalar product 〈u, v〉 =∫ 1

0 u(t)v(t)dt and the associated norm.
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Consider the sequence of functions (an) which oscillates more and more rapidly between two positive
values, take 1 and 3. For example

an(t) =


1 if t ∈ [0, 1

n ] ∪ [ 2
n ,

3
n ] ∪ ...

3 if t ∈ [ 1
n ,

2
n ] ∪ [ 3

n ,
4
n ]....

This is a model situation for a sequence that converges weakly and not strongly in H = L2(0, 1). Indeed,
the sequence (an) converges weakly to its mean value, which is the constant function equal to 2. But it
does not converge strongly since ‖an − 2‖H = 1.
For each n ≥ 1 define the operator An by

An(u) = anu

that is, (An(u))(t) = an(t)u(t). Clearly, An : L2(0, 1) → L2(0, 1) is a linear continuous and monotone
operator. Indeed

〈An(u), u〉 =

∫ 1

0
an(t)u2(t)dt ≥

∫ 1

0
u2(t)dt,

and
‖An(u)‖H ≤ 3‖u‖H.

So, for each n ≥ 1, the operator An is maximally monotone. We note that the operator An is a subd-
ifferential of a convex and continuous quadratic function. Let us compute its resolvent. Given f ∈ H,
un = JAnf is the solution of

un + anun = f,

which gives

JAnf =
1

1 + an
f.

Let us show that the sequence (JAnf)n converges strongly in H = L2(0, 1) if and only if f = 0. Note
that the sequence ( 1

1+an
) converges weakly σ(L∞, L1) to its mean value which is the constant function

equal to 3
8 . Therefore, the sequence (JAnf)n converges weakly inH to 3

8f . Let us compute

‖ 1

1 + an
f − 3

8
f‖H =

1

8
‖f‖H.

Therefore, the resolvents (JAnf)n converge strongly only for f = 0. As a consequence, the sequence
(An) does not converge to a maximally monotone operator.

Let us show that the sequence (An) graph converges to the operator A : H → H whose domain is
reduced to the singleton {0}, and such that A(0) = 0. Clearly, since An(0) = 0, we have

GphA ⊂ Liminf GphAn.

We must show that
Limsup GphAn ⊂ GphA.

So, let us give a sequence (un) such that

un → u strongly inH and anun → f strongly inH.

By the triangle inequality we have

‖anu− f‖ ≤ ‖anu− anun‖+ ‖anun − f‖ ≤ 3‖u− un‖+ ‖anun − f‖,
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which gives that the sequence (anu) converges strongly to f . Since the sequence (an) converges weakly
to its mean value which is the constant function equal to 2, we have that (anu) converges weakly to 2u.
Hence f = 2u, and (anu) converges strongly to 2u. Then note that

‖anu− 2u‖ = ‖u‖.

This forces u to be equal to 0, which in turn gives f = 0. This gives the claim.

Remark 5.1 Based on the above counterexample, we are led to modify our initial question as follows:
Given a sequence (An) of maximally monotone operators An : H ⇒ H that graph converges to an
operator A : H⇒ H in the following sense(

s× w - Limsup GphAn

)
∪
(
w × s - Limsup GphAn

)
⊂ GphA ⊂ s× s - Liminf GphAn

is the limit operator A maximally monotone?
This is a subject for further investigation.

Remark 5.2 When finalizing this paper, we received a note by G. Wachsmuth [29] where an other counter-
example is given. This counter-example is based on the construction of a sequence of maximally monotone
nonlinear operators An : `2 → `2 such that its graphical limit (in the sense of Painlevé-Kuratowski) is the
operator A : `2 → `2 such that its graph Gph (A) = {(0, 0)}, which is clearly not maximally monotone
(see [29, Theorem 2] for more details).

6 The proto-differentiability of a maximally monotone operator

Let A : H ⇒ H be a set-valued map. For all t > 0, x ∈ H and x∗ ∈ A(x), we define the following
difference quotient

∆tA(x|x∗)(ω) :=
1

t
(A(x+ tω)− x∗) . (6.1)

The concept of proto-differentiability was introduced by Rockafellar [25] and is associated with the
graph convergence properties of the net of operators (∆tA(x|x∗))t>0.

We will successively consider the case of the Painlevé-Kuratowski (PK), then of the bounded-Hausdorff
(BH) convergences. In infinite dimensional spaces, they give rise to different concepts. In what follows,
we will use the notation Dp (respectively D̃p) for the proto-differentiability associated with the PK (re-
spectively the BH) convergence.

6.1 Proto-differentiability with respect to the Painlevé-Kuratowski graph convergence

Definition 6.1 (PK-Proto-differentiability) Let A : H ⇒ H be a set-valued map. We say that A is PK-
proto-differentiable at x ∈ H relative to x∗ ∈ A(x) if (∆tA(x|x∗))t>0 PK-graph converges. In that case,
we denote the graph limit by

DpA(x|x∗) := PK- Graph-lim ∆tA(x|x∗).

The set-valued map DpA(x|x∗) : H⇒ H is called the PK-proto-derivative of A at x relative to x∗.

It is easy to check that if A : H ⇒ H is maximally monotone, then, for each t ∈ [0, T [, the mapping
ω 7→ ∆tA(x|x∗)(ω) := 1

t (A(x+ tω)− x∗) is also maximally monotone (see [2, Lemma 1 ]). This is a
direct consequence of the preservation of the maximality with respect to translation and homothety.
Question: Suppose that A : H⇒ H is maximally monotone and proto-differentiable at x ∈ H relative to
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x∗ ∈ A(x). Under which condition the monotone operatorDpA(x|x∗) : H⇒ H is maximally monotone?
Let us translate the compactness condition (Ac) for the sequence of maximally monotone operators:
∆tnA(x|x∗)(·) with tn → 0+. Let’s call this new compactness condition (Ãc): every sequence (ωn) ⊂ H
satisfying the following two conditions (i)-(ii) is contained in a compact subset ofH:{

(i) sup
n
‖ωn‖ < +∞

(ii) ∃M > 0 such that ∀tn ↘ 0+, ‖ProjA(x+tnωn)(x
∗)− x∗‖ ≤Mtn.

Proposition 6.1 LetA : H⇒ H be a maximally monotone operator. Assume thatA is proto-differentiable
at x ∈ H relative to x∗ ∈ A(x). If the condition (Ãc) is satisfied, then DpA(x|x∗) is a maximally
monotone operator.

Proof. Let us first notice that if C is a nonempty closed convex subset ofH, then for every x, x∗ ∈ H
and for every t > 0, we have

Proj 1
t
(C−x∗)(0) =

1

t
(ProjC(x∗)− x∗) =

1

t
ProjC−x∗(0). (6.2)

In fact,

y = Proj 1
t
(C−x∗)(0)⇐⇒ 〈0− y, 1

t
(a− x∗)− y〉, ∀a ∈ C

⇐⇒ 〈0− y, 1

t
(a− x∗)− y〉, ∀a ∈ C

⇐⇒ 〈x∗ − (x∗ + ty), a− (x∗ + ty)〉, ∀a ∈ C
⇐⇒ x∗ + ty = ProjC(x∗).

We set C = A(x+ tnωn). Using (6.2), we have

[∆tnA(x|x∗)]0(ωn) = Proj 1
tn

(A(x+tnωn)−x∗)(0) =
1

tn
(ProjA(x+tnωn)(x

∗)− x∗).

It is easy to see that condition (Ac) is satisfied for ∆tnA(x|x∗)(ωn).
Since we automatically have 0 ∈ DpA(x|x∗)(0), we do not have to assume that the domain of the operator
DpA(x|x∗) is nonempty. The conclusion of Proposition 6.1 follows from Theorem 3.1.

Remark 6.1 The counterexample in [29] shows that the protoderivative of a maximally monotone opera-
tor may not be maximally monotone. This means that, the assertion of Proposition 6.1 may fail if we drop
the compactness assumption.

6.2 Proto-differentiability with respect to the bounded Hausdorff topology

In the Definition 6.1 of proto-differentiability, let us replace the Graph-convergence in the sense of Painlevé-
Kuratowski by the Graph-convergence in the sense of the bounded Hausdorff topology. The properties of
the new proto-differentiability notion can be studied in the same way. By specializing our results to the
case of A = ∂Φ with Φ ∈ Γ0(H) we can define the twice epidifferentiability of Φ with respect to the
bounded Hausdorff topology.
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Definition 6.2 (BH-Proto-differentiability) Let A : H ⇒ H be a set-valued map. We say that A is BH-
proto-differentiable at x ∈ H relative to x∗ ∈ A(x) if (∆tA(x|x∗))t>0 graph converges in the sense of the
bounded Hausdorff topology. In that case, we denote the graph limit by

D̃pA(x|x∗) := BH- Graph-lim ∆tA(x|x∗).

The set-valued map D̃pA(x|x∗) : H⇒ H is called the BH-proto-derivative of A at x relative to x∗.

The notion of proto-differentiability is defined in terms of graphs of first-order difference quotient set-
valued maps (∆tA(x|x∗))t>0. It is easy to prove that this concept is preserved by the inverse operation.
The following proposition is in this sense.

Proposition 6.2 A set-valued map A : H⇒ H is BH-proto-differentiable at x ∈ H relative to x∗ ∈ A(x)
if and only if its inverse A−1 is BH-proto-differentiable at x∗ relative to x ∈ A−1(x∗) and we have[

D̃pA(x|x∗)
]−1

= D̃pA
−1(x∗|x).

Proof. We notice first that for every x∗ ∈ A(x), we have

Gph (∆tA(x|x∗)) =
1

t
(Gph (A)− (x, x∗)) and Gph (∆tA

−1(x∗|x)) =
1

t
(Gph (A−1)− (x∗, x)).

Let L : H ×H → H×H be the automorphism defined by (x, x∗) 7→ L(x, x∗) = (x∗, x). Let us define
the set-valued map LA : H⇒ H by:

Gph (LA) := LGph (A) = Gph (A−1).

We have,

L[Gph (∆tA(x|x∗))] = Gph (∆t(LA)(x∗|x)

=
1

t
(Gph (LA)− (x∗|x))

=
1

t
(LGph (A)− (x∗|x))

=
1

t
(Gph (A−1)− (x∗|x))

= Gph (∆tA
−1(x∗|x)).

On the other hand, we have

L[Gph (∆tA(x|x∗))] = Gph ([∆tA(x|x∗)]−1).

Hence,
Gph (∆tA

−1(x∗|x)) = Gph ([∆tA(x|x∗)]−1).

The conclusion follows from the fact that for every sequence of set-valued operators An, A : H⇒ H and
every ρ > 0, we have

lim
n→+∞

hausρ

(
Gph (An),Gph (A)

)
= 0⇐⇒ lim

n→+∞
hausρ

(
Gph (A−1

n ),Gph (A−1)
)

= 0,

which completes the proof of Proposition 6.2.
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Remark 6.2 (i) Let A : H ⇒ H be a set-valued map and x ∈ H with x∗ ∈ x + A(x) . It is easy to
prove that (Id + A) is BH-proto-differentiable at x relative to x∗ if and only if A is BH-proto-
differentiable at x relative to x∗ − x. In that case we have

D̃p(Id +A)(x|x∗) = Id + D̃pA(x|x∗ − x). (6.3)

(ii) Let A : H ⇒ H be a maximally monotone operator. By Proposition 6.2 and (i), we have A is BH-
proto-differentiable at x relative to x∗ if and only if JA := (Id +A)−1 is BH-proto-differentiable
at x+ x∗ relative to x. In this case, it holds

D̃pJA(x+ x∗|x) = J
D̃pA(x|x∗−x)

. (6.4)

In fact, by Proposition 6.2 and (6.3) we have

D̃pJA(x+ x∗|x) = D̃p(Id +A)−1(x+ x∗|x)

= [D̃p(Id +A)(x|x+ x∗)]−1

= [Id + D̃p(A)(x|x∗ − x)]−1

= J
D̃pA(x|x∗−x)

.

(iii) Proposition 6.2 and the items (i)-(ii) above are known if we consider the Painlevé-Kuratowski con-
vergence (see for example [17, 18, 27]).

The following proposition shows that without additional assumptions, the BH-proto-derivative of a
maximally monotone operator is still maximally monotone.

Proposition 6.3 Suppose that H is a general Hilbert space. Let A : H ⇒ H be a maximally monotone
operator. Assume that A is BH-proto-differentiable at x ∈ H relative to x∗ ∈ A(x). Then its BH-proto-
derivative D̃pA(x|x∗) is a maximally monotone operator.

Proof. The sequence (∆tA(x|x∗))t>0 graph converges in the sense of the bounded Hausdorff topology
to D̃pA(x|x∗) means that for every tn ↘ 0+ and for every ρ > 0, we have

lim
n→+∞

hausρ

(
∆tnA(x|x∗), D̃pA(x|x∗)

)
= 0.

Since for every tn > 0, ∆tnA(x|x∗) is a maximally monotone operator, by Theorem 3.2, the limit
D̃pA(x|x∗) is also maximally monotone.

Remark 6.3 Under the compactness condition (Ãc), by Theorem 3.3 the following two conditions are
equivalent

(i) (∆tA(x|x∗))t>0 graph-converges to DpA(x|x∗) in the Painlevé-Kuratowski sense.

(ii) (∆tA(x|x∗))t>0 graph-converges to D̃pA(x|x∗) in the bounded Hausdorff topology.

In this case, the unique limit DpA(x|x∗) = D̃pA(x|x∗) is maximally monotone.

Remark 6.4 In order to take into account the perturbation of all the data in a given variational problem
it is possible to extend the notion of proto-differentiability to a parametrized sequence of set-valued maps
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as e.g. in [1, 2]. Let A : [0, T [×H ⇒ H be a parameterized set-valued map. For all t > 0, x ∈ H and
x∗ ∈ A(0, x), we define the following difference quotient

∆tA(x|x∗)(ω) :=
1

t
(A(t, x+ tω)− x∗) . (6.5)

The concept of proto-differentiability is associated to the graph convergence properties of the net of
operators (∆tA(x|x∗))t>0.

We say that A is proto-differentiable at x ∈ H relative to x∗ ∈ A(0, x) if (∆tA(x|x∗))t>0 graph
converges.
For the PK and the BH convergences, the proto-derivatives of A at x relative to x∗ will be denoted respec-
tively by DpA(x|x∗) and D̃pA(x|x∗).

It is easy to check that if A : [0, T [×H ⇒ H is such that A(t, ·) is maximally monotone for all
t ∈ [0, T [, then, for each t ∈ [0, T [, the mapping ω 7→ ∆tA(x|x∗)(ω) := 1

t (A(t, x+ tω)− x∗) is also
maximally monotone. We adapt the compactness condition (Ãc) to a parameterized set-valued map: every
sequence (ωn) ⊂ H satisfying the following two conditions (i)-(ii) is contained in a compact subset ofH:{

(i) sup
n
‖ωn‖ < +∞

(ii) ∃M > 0 such that ∀tn ↘ 0+, ‖ProjA(tn,x+tnωn)(x
∗)− x∗‖ ≤Mtn.

We note that Proposition 6.1 and Proposition 6.3 are still valid for the case of a parametrized maximally
monotone operator A : [0, T [×H⇒ H.

Remark 6.5 To define a second-order epi-derivative [17, 26, 27] associated with a closed convex and
proper function in a Hilbert space Φ ∈ Γ0(H), the Mosco epi-convergence plays a central role. The
link between the PK-proto-differentiability of the subdifferential ∂Φ of the function Φ and its twice epi-
differentiability is tied to Attouch’s theorem (see [3] Theorem 3.66). It is possible to explore the notion
of twice epi-differentiability of a function Φ ∈ Γ0(H) in the sense of the bounded Hausdorff convergence
and its link with the BH-proto-differentiability of its subdifferential ∂Φ. In this case, instead of Attouch’s
Theorem, one can use [11, Theorem 2.3].

7 Application to the sensitivity analysis of monotone inclusions

Let us consider the following perturbed variational inclusion with respect to the parameter t ∈ [0, T [, with
T > 0

find x(t) ∈ H such that ξ(t) ∈ x(t) +A(t, x(t)), (7.1)

where

(i) A : [0, T [×H ⇒ H is a maximally monotone set-valued operator, i.e. for all t ∈ [0, T [, A(t, ·) is a
maximally monotone operator.

(ii) ξ : [0, T [→ H, t 7→ ξ(t) ∈ H is a given right hand-term.

It is easy to see that (7.1) is equivalent to

x(t) = (Id +A(t, ·))−1(ξ(t))=:JA(t,·)(ξ(t)). (7.2)

Our aim is to derive sufficient conditions on the data A, and ξ ensuring the right-differentiability at t = 0
of the solution x : [0, T [→ H of (7.1), and to provide an explicit formula for its right-derivative x′(0). We
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show that the right-derivative of x at 0 is solution of a variational inclusion involving the proto-derivative
of the operators A. Precisely, we prove that x′(0) is the solution of the following variational inclusion

ξ′(0) ∈ x′(0) +DpA
(
x(0)|x∗(0)

)(
x′(0)

)
, (7.3)

with x∗(0) := ξ(0) − x(0) ∈ A(0, x(0)), and DpA
(
x(0)|x∗(0)

)
is the proto-derivative of A at x(0)

relative to x∗(0).

Theorem 7.1 Let A : [0, T [×H ⇒ H be a maximally monotone operator, and let ξ : [0, T [→ H be a
function. We consider a solution x : [0, T [→ H to problem (7.1). If the following assertions are satisfied:

(i) ξ is right-differentiable at t = 0;

(ii) A is PK-proto-differentiable at x(0) relative to x∗(0) := ξ(0) − x(0) ∈ A(0, x(0)) with the proto-
derivative operator having a nonempty domain;

(iii) The compactness assumption (Ãc) is satisfied.

Then x : [0, T [→ H is right-differentiable at t = 0 with

x′(0) = JDpA(x(0)|x∗(0))(ξ
′(0)),

which means that x′(0) is the unique solution of the following variational inclusion

ξ′(0) ∈ x′(0) +DpA(x(0)|x∗(0))(x′(0)).

Proof. By Proposition 6.1, the compactness condition (Ãc) ensures the maximality of the proto-
derivative DpA(x(0)|x∗(0))(x′(0)). The rest of the proof is similar to the one given in [2].

We now give now an equivalent result of Theorem 7.1 by replacing the PK-convergence by the BH-
convergence.

Theorem 7.2 Assume thatH is general Hilbert space. Let A : [0, T [×H⇒ H be a maximally monotone
operator, and let ξ : [0, T [→ H be a given function. We consider a solution x : [0, T [→ H to problem
(7.1). If the following assertions are satisfied:

(i) ξ is right-differentiable at t = 0;

(ii) A is BH-proto-differentiable at x(0) relative to x∗(0) := ξ(0)− x(0) ∈ A(0, x(0)) with the proto-
derivative operator having a nonempty domain;

then x : [0, T [→ H is right-differentiable at t = 0 with

x′(0) = J
D̃pA(x(0)|x∗(0))

(ξ′(0)),

which means that x′(0) is the unique solution of the following variational inclusion

ξ′(0) ∈ x′(0) + D̃pA(x(0)|x∗(0))(x′(0)).

Proof. By Remark 6.2 (ii) and (6.4), we deduce from (ii) that the operator JA := JA(t,·)(·) is BH-
proto-differentiable at ξ(0) relative to x(0) and its BH-proto-derivative is given by

D̃pJA(ξ(0)|x(0)) = J
D̃pA(x(0)|x∗(0))

.
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In particular, we have
D̃pJA(ξ(0)|x(0))(ξ′(0)) = J

D̃pA(x(0)|x∗(0))
(ξ′(0)).

The function x : [0, T [→ H is a solution to problem (7.1) if and only if

x(t) = JA(t,·)(ξ(t)) = JA(t, ξ(t)).

Since the convergence for the bounded Hausdorff topology implies the convergence in the Painlevé-
Kuratowski sense, we get by (ii) that A is PK-proto-differentiable at x(0) relative to x∗(0) := ξ(0) −
x(0) ∈ A(0, x(0)). Using the same argument as in the proof of [2, Theorem 1], we deduce the right-
differentiability of x(·) at t = 0 and that

x′(0) = JDpA(x(0)|x∗(0))(ξ
′(0)) = J

D̃pA(x(0)|x∗(0))
(ξ′(0)),

which completes the proof.

Remark 7.1 It is possible to extend the analysis to the more general variational inclusion

find x(t) ∈ H such that ξ(t) ∈ f(t, x(t)) +A(t, x(t)),

where f : [0, T [×H → H is a single-valued map assumed to be uniformly Lipschitz continuous and
uniformly strongly monotone. Using the notion of semi-differentiability for f , we can obtain the same
result as in as in [2, Theorem 1] by replacing the PK-proto-differentiability of A by the BH-proto-
differentiability.

8 Application to the variational sum of maximally monotone operator

Let A,B : H ⇒ H be two maximally monotone operators such that Dom(A) ∩ Dom(B) 6= ∅. In
general, their pointwise sum A + B, with Dom(A + B) = Dom(A) ∩ Dom(B), is not a maximally
monotone operator. An intensive literature has been devoted to establishing sufficient conditions on the
two operators to ensure that their pointwise sum is also a maximally monotone operator. In a general way,
these conditions express that the intersection of the domains of the two operators is sufficiently large, and
they are called qualification condition. They give rise to the resolution of the monotone inclusion: given
y ∈ H, find x ∈ H solution of

A(x) +B(x) 3 y, (8.1)

where the sum is taken in the pointwise sense. Yet, it has been discovered that taking the pointwise sum
is often a too rigid approach, and that different notions of sum can be defined, with interesting variational
properties. They give rise to generalized solutions of (8.1), with often rich physical interpretation such
as viscosity solutions or entropy solutions. Historically, the sum defined via the Trotter-Lie-Kato formula
naturally emerged to solve Schrödinger’s equation with a singular potential. More recently, and related to
solving optimization problems and monotone inclusions, the concept of variational sum naturally emerged.
The starting point is the following remark:

On the one hand, for any µ > 0, the operator A+Bµ is maximally monotone, where Bµ is the Yosida
approximation of index µ > 0 of B. On the other hand, Bµ graph converges to B as µ → 0. So it is
natural to consider the graph convergence properties of the filtered sequence (A+Bµ), as µ→ 0.

To obtain a commutative sum, one must be able to commute the role of A and B, and consider instead
Aλ +B, which leads to the following definition.

We denote by I =
{

(λ, µ) ∈ R2 | λ ≥ 0, µ ≥ 0, λ+ µ 6= 0
}

, and by F the filter of all the pointed
neighborhoods of the origin in I. We adopt the convention thatA0 = A,B0 = B, so that when (λ, µ) ∈ I,
at least one of the two operators Aλ or Bµ is continuous, which makes the sum Aλ + Bµ maximally
monotone.
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Definition 8.1 (Attouch-Baillon-Théra [4]) Let A,B : H ⇒ H be two maximally monotone operators
such that Dom(A) ∩Dom(B) 6= ∅. The variational sum A+

v
B is the monotone operator defined by

Gph (A+
v
B) = LiminfF Gph (Aλ +Bµ).

Of course, the central question is to identify the operator A+
v
B, and to know if it is maximally monotone.

When the operator A+
v
B is maximally monotone, then the filtered sequence (Aλ +Bµ) graph converges

to A+
v
B, see Proposition 2.2. Such positive answer has been obtained in [4] in the following situations:

a) The pointwise sum A+B is maximally monotone. In this case A+
v
B = A+B;

b) The closure A+B is maximally monotone. In this case A+
v
B = A+B;

c) The operators A and B are subdifferentials of closed convex proper functions, let A = ∂f , B = ∂g
with domf ∩ domg 6= ∅. Then A+

v
B = ∂(f + g).

Many questions remain to be solved. In view of our developments, it would be interesting to answer
the following question:

Suppose that the filtered sequence (Aλ + Bµ) graph converges. So is the limit operator maximally
monotone? According to Theorem 3.2, if the convergence holds for the bounded Hausdorff topology, then
A+

v
B is a maximally monotone operator.

Transposing Theorem 3.1 to our situation gives the following result

Theorem 8.1 Suppose that the filtered sequence (Aλ+Bµ) graph converges, let A+
v
B be its limit whose

domain is assumed to be nonempty. Suppose that the following compactness assumption (Ac) is satisfied:
every filtered sequence (xλ,µ) ofH such that(

sup
λ,µ
‖xλ,µ‖ < +∞ and sup

λ,µ
‖Aλxλ,µ +Bµxλ,µ‖ < +∞

)

is contained in a compact subset ofH.
Then, A+

v
B is also a maximally monotone operator.

Due to the specific structure of the approximating sequence of operators (Aλ + Bµ), finding a coun-
terexample as in section 5 would require taking a more sophisticated situation.
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