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Abstract

The augmented Lagrangian method (ALM) is extended to a broader-than-ever setting of gen-
eralized nonlinear programming in convex and nonconvex optimization that is capable of handling
many common manifestations of nonsmoothness. With the help of a recently developed sufficient
condition for local optimality, it is shown to be derivable from the proximal point algorithm through
a kind of local duality corresponding to an optimal solution and accompanying multiplier vector
that furnish a local saddle point of the augmented Lagrangian. This approach leads to surprising
insights into stepsize choices and new results on linear convergence that draw on recent advances
in convergence properties of the proximal point algorithm. Local linear convergence is shown to be
assured for a class of model functions that covers more territory than before.
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1 Introduction

In the “method of multipliers” proposed in 1969 independently by Hestenes [12] and Powell [17] (and
slightly later also by Haarhoff and Buys [11]) for minimizing a function f0(x) of x ∈ IRn subject to
equality constraints fi(x) = 0 for i = 1, . . . ,m, the ordinary Lagrangian function

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x) (1.1)

was augmented by terms r
2fi(x)

2. In step k the augmented Lagrangian was minimized in x for given

multipliers yki to get xk+1, and then yki was updated to yk+1
i = yki + rfi(x

k+1). An extension of the
procedure to inequality constraints fi(x) ≤ 0 was devised in 1970 by Rockafellar [19] and taken up by
Buys in his 1972 thesis in Leiden [5]. That version, in the case of convex functions fi, was shown in
1973 [20] to correspond to solving an associated dual problem by a method that later was recognized as
an application of the proximal point algorithm [25]; see [21] and [26]. But even in nonconvex nonlinear
programming, a kind of local duality based on sufficient conditions for local optimality emerged as the
key to understanding convergence of the augmented Lagrangian method, as revealed by Bertsekas in
his landmark 1982 book [3].

Connections with duality and the proximal point algorithm will be front and center here as we
explore convergence properties of augmented Lagrangian methods in an extended setting. We focus
on solving generalized nonlinear programming problems of the form

(P )
minimize φ(x, u) = f0(x) + g(F (x) + u) subject to u = 0,
with g closed proper convex and F (x) = (f1(x), . . . , fm(x)),

where the vector u has the role of a canonical perturbation variable. The perturbation structure leads
to associating with (P ) the generalized Lagrangian function

l(x, y) := infu{φ(x, u)− y·u} = L(x, y)− g∗(y), (1.2)

where g∗ is the convex function conjugate to g, as well as the generalized augmented Lagrangian
function

lr(x, y) := infu
{
φ(x, u)− y·u+

r

2
|u|2

}
for r > 0 and |u| = ||u||2, (1.3)

cf. [32, Sections 11I+11K]. In terms of the auxiliary convex functions

gr(u) := minu′

{
g(u′) + r

2 |u
′ − u|2

}
with conjugate gr ∗(y) = g∗(y) + 1

2r |y|
2,

gr(u) := g(u) + r
2 |u|

2 with conjugate g∗r (y) = miny′
{
g∗(y′) + 1

2r |y
′ − y|2

}
,

(1.4)

the augmented Lagrangian has the alternative expressions

lr(x, y) = f0(x) + gr(F (x) + 1
ry)−

1
2r |y|

2, or
lr(x, y) = L(x, y) + r

2 |F (x)|
2 − g∗r (y + rF (x)).

(1.5)

Problem (P ) becomes conic programming when g is the indicator δK of a closed convex cone K.
Then g∗ is the indicator of the polar cone Y = K∗, and in terms of the distance functions dK and
dY associated with those cones, the expressions for lr(x, y) have g

r = r
2d

2
K and g∗r = 1

2rd
2
Y . Classical

nonlinear programming is recovered by taking K to be the standard constraint cone there. Second-
order cone programming has K being the Lorenz cone (the epigraph of the Euclidean norm), while
semidefinite programming has K being the cone of positive definite symmetric matrices. But the
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composite term in (P ) can encompass much more than a constraint F (x) ∈ K. For illustration, it’s
possible to have in terms of a closed convex set C that

g(F (x)) = δC(f1(x), . . . , fa(x)) + max
{
fa+1(x), . . . , fb(x)

}
+ ∥(fb+1(x), . . . , fm(x))∥1,

in which case g∗(y) = σC(y1, . . . , ya) + δΣ(ya+1, . . . , yb) + δIB∞(yb+1, . . . , ym)
(1.6)

for the support function σC of C, the unit simplex Σ, and the unit ball for || · ||∞.
Although earlier problem formats on these lines, as in [27], have typically included also an abstract

constraint x ∈ X for a closed convex set X, that has been omitted from (P ) in alignment with our
work in [30], where such a constraint was judged to be unduly distracting and vision-obscuring for the
second-order variational analysis that was needed. (An alternative for enforcing x ∈ X is replacing
F (x) by F (x) = (F (x), x) and g(u) by g(u, u′) = g(u) + δX(u′).)

The convex case of (P ), in which φ(x, u) is a convex function of (x, u), corresponds to the La-
grangian l(x, y) being convex in x ∈ IRn for each y ∈ IRm. That case will be important to us, both
directly and as a template for developing augmented Lagrangian methodology. Of course l(x, y) and
lr(x, y) are always concave in y for every x, because of the convexity of g, which also holds for gr

and g∗r . Outside of the convex case of (P ), we exploit situations where, as it turns out from [30] in
ways not well appreciated in the past, the augmented Lagrangian lr(x, y) will have a useful amount
of local convexity in x, but not for every y. In that picture, properties of derivatives of lr(x, y) in x
and y that come from the functions gr and g∗r will be crucial. Those functions are themseves C1+, i.e.,
differentiable with gradient mappings that are locally Lipschitz continuous. In fact, those mappings
∇gr and ∇g∗r are globally Lipschitz continuous with Lipschitz constants r and r−1, respectively, in
consequence of the inf-convolution expressions for gr and g∗r in (1.4). Therefore, lr(x, y) is C1 with
respect to (x, y) when the functions f0, f1, . . . , fm are C1, which is our baseline assumption, and C1+

when they are actually C2. We’ll refer to that as the C2 case of problem (P ).

Algorithm. The extended form of the augmented Lagrangian method (ALM) that we employ for
solving problem (P ) follows the pattern that sequences of primal vectors x1, x2, . . . and dual vectors
y0, y1, y2, . . . are generated by

xk+1 ≈ x̄k+1 = argmin
x∈X

lrk(x, y
k), yk+1 = yk + r′k∇ylrk(x

k+1, yk) (1.7)

with respect to nondecreasing sequences of parameter values rk > 0 and r′k > 0. Here “≈” refers to
allowing the minimization to be inexact — as quantified by some stopping criterion to be specified
later along with the set X that localizes the minimization and supports its attainment at a unique
point. The updating rule for yk in (1.7) reduces to the traditional one when (P ) specializes to classical
nonlinear programming and r′k = rk. However, our analysis will uncover reasons why taking r′k < rk
may lead to improved rates of convergence, not only in the original ALM setting, but also for ALM
forays into cases of (P ) beyond traditional nonlinear programming.

One of our main goals in this paper is demonstrating how, through the local convexity detected
in [30], the augmented Lagrangian method can be derived by applying the proximal point algorithm
to a dual problem of concave maximization, even for nonconvex (P ). This contrasts with the entire
nonconvex ALM research literature after Bertsekas [3], which instead has looked for direct estimates of
the iterations, as in the innovative contribution of Fernandes and Solodov [8] that allowed weakening
of some of the customary assumptions in the classical NLP setting. Our different approach brings
the r′k stepsize question to light and leads, we hope, to more transparency about the fundamental
underpinnings of the method. It relies on a refined view of second-order sufficiency, which imposes
a small restriction in some situations compared to other research results, but makes it possible to
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establish convergence for all problems in our (P ) format without imposing a constraint qualification-
type condition or requiring a unique multiplier element in optimality.

Another of our goals, even for the convex case, is gaining insights into the deep underlying cir-
cumstances that support linear rates of convergence and identifying forms of (P ) in which those
circumstances can be counted on to be present. We are able in this, through our different approach,
to draw on new results about the behavior of the proximal point algorithm itself [31], including how
it can be articulated in a merely local manner and, when the solution set is more than a singleton,
must converge directionally. Second-order variational analysis [32] helps us to translate such proper-
ties in the small to properties of the local dual objective function around the dual solution set. The
challenge faced then is how to pass to verifiable properties of (P ) itself. Our main accomplishment in
that direction is tying this to the model function g. We show in particular that linear convergence is
guaranteed when g is “fully amenable” [32, 10F]. That category of modeling covers most of the forms
of (P ) that researchers have worked on until now, and much more. However, it leaves out semidefinite
programming extensions of the augmented Lagrangian method as in [33].

Much has already been written about nonconvex ALM in certain extensions beyond nonlinear
programming that fit into our format as particular cases. A full review would turn into a lengthy
digression, but two recent contributions on the forefront may, with their many references, serve to
indicate where research currently stands. In [9] by Hang, Mordukhovich and Sarabi, the topic is
second-order cone programming in the line of [2, 4, 13], the case here of g − δK for the Lorenz cone,
while in [10] by Hang and Sarabi, g is instead be any piecewise linear-quadratic convex function
in the sense of [32, Sec. 10E]). A milder second-order sufficient condition than ours is imposed in
[10],2 but both papers restrict in other ways. Uniqueness of the multiplier vector is called for in
[9],3 whereas the minimization is required to be exact (xk = x̄k) in [10]. Both arrive at Q-linear
convergence of the primal-dual sequence of pairs (xk, yk) in a pattern pioneered in [8]. That implies
R-linear convergence of the xk and yk sequences individually. Our proximal point approach proceeds
from Q-linear convergence of yk to R-linear convergence of x̄k as a tag-along, and with a tighter
stopping criterion (still short of the exact minimization in [10]) gets R-linear convergence of xk.
That automatically yields also R-linear, although not Q-linear, convergence of the pairs (xk, yk). This
distinction prevails also in relating our results here to previous work in classical nonlinear programming
itself, such as in [8]. From the angle of such linear convergnce details, our results are complementary,
therefore, to those in the existing literature, but they cover more optimization territory and bring
unnoticed fundamentals of the algorithm to view.

There is no need to go into which numerical procedure might be invoked for the approximate min-
imization, but properties of the augmented Lagrangian as a function of x would certainly be relevant
to that. With lr(x, y) generally not being C2 even in the C2 case of (P ), “second-order” methods
would require adaptation. The C1+ property of lr(x, y) in the C2 case does, at least, imply twice
differentiabiity almost everywhere in an extended sense [32, Sec. 13A]. Some of the potentially useful
implications of that for computations have been brought out in [30] together with the development of
a sufficient condition for local optimality in (P ) at the second-order level.

That sufficient condition will be our bridge for crossing from from global ALM behavior in the
convex case of (P ) to closely parallel, but only local, behavior in the nonconvex case. Innovations
in dualization are a crucial part of this and need some explanation before we can go further with
comparing our contribution to past work.

2The definite difference between the two conditions is confirmed by the example that answers [30, Question 2].
3Although the statement of their convergence result [9, Theorem 5.3] explicitly assumes this, the authors say that

their proof mostly goes through without it. For more, see the discussion in Section 5 after our Example 5.3.
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The central role of duality. Equivalent first-order optimality conditions for (P ) with respect
to a primal-dual pair (x̄, ȳ) can be expressed in several ways, as elaborated in [30], namely

(0, ȳ) ∈ ∂φ(x̄, 0), or (0, ȳ) ∈ ∂φr(x̄, 0) where φr(x, u) = φ(x, u) +
r

2
|u|2, (1.8a)

or in Lagrangian terms by
0 = ∇xl(x̄, ȳ) and 0 ∈ ∂y[−l](x̄, ȳ), (1.8b)

which comes down to
∇xL(x̄, ȳ) = 0 with ȳ ∈ ∂g(F (x̄)), (1.8c)

or through the augmented Lagrangian (1.3) as

∇xlr(x̄, ȳ) = 0 and ∇ylr(x̄, ȳ) = 0, (1.8d)

Under a constraint qualification, these equivalent conditions are necessary for having a local minimum
in (P ) at x̄ [32, 11.43], but here we’ll only be concerned with their role in sufficiency.

In the convex case of (P ), the first-order conditions guarantee that x̄ gives not just a local minimum
but a global minimum. As seen from the version in (1.8b) and the convexity of l(x, y) in x, along
with the ever-present concavity in y, they correspoond to (x̄, ȳ) being a global saddle point of l on
IRn × IRm. The multiplier vectors ȳ that enter are then the solutions to a dual problem,

(D) maximize h(y) over y ∈ IRm, where h(y) = inf
x∈IRm

l(x, y).

It was shown in [21, 26], that the augmented Lagrangian iterations (1.7) with r′k = rk correspond in
classical convex programming to iterations of the proximal point algorithm in maximizing the concave
function h in problem (D). A linear rate of convergence of yk to ȳ was derived under the assumption
that ȳ is the unique solution to (D) and h has a quadratic growth property there. Uniqueness of x̄ as
a solution to (P ) then entails xk converging to x̄.

In this paper, those long-standing results will be extended to the general convex case of (P)
with significant improvements. Criteria for linear convergence of xk to x̄ will be obtained, even in
circumstances of nonuniqueness of ȳ as a solution to (D).

Variational sufficiency. In passing beyond the convex case of (P ), our efforts will likewise
revolve around identifying the augmented Lagrangian iterations (1.7) with proximal point iterations,
but in a localized framework of saddle points and duality. This framework is based on the sufficient
condition for local optimality in nonconvex optimization that we introduced in [29] and studied in
depth in [30] for problem (P ). That condition utilizes the notion of the variational convexity of a
function with respect to a pair of elements in the graph of its subgradient mapping. It builds on the
first-order subgradient condition (1.8a) by stipulating for the augmented objective function φr that

∃ r̄ such that φr̄ is variationally convex at (x̄, 0) for (0, ȳ). (1.9)

This is the variational sufficient condition (at level r̄) for local optimaity in (P ). Its enhancement
with φr̄ variationally strongly convex is the strong variational sufficient condition. When one of these
holds for r̄, it also holds for every r > r̄, so the properties are of “threshold” type.

Variational convexity was introduced in [28] in an echo of an unnamed but mostly stronger property
that was crucial earlier in results on tilt stability in [16]. It captures the situation in which the
values and subgradients of a function are locally indistinguishable from those of a convex function, the
localization being in a “primal-dual” sense. In describing what that means exactly for us here, there
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are simplications because the functions φ and φr are amenable, prox-regular and subdifferentially
continuous, as ascertained in [30], and all their subgradients are regular in the sense of variational
analysis [32]. The variational convexity in (1.9) comes down then to having open convex neighborhoods
W of (x̄, 0) and Z of (0, ȳ) such that

∃ r̄ and a proper lsc convex function ψ ≤ φr̄ on W such that
[W ×Z] ∩ gph ∂ψ = [W ×Z] ∩ gph ∂φr̄

and, for (x, u; v, y) belonging to this common set, ψ(x, u) = φr̄(x, u).
(1.10)

Variational strong convexity has ψ strongly convex on W. With s > 0 as the modulus of that strong
convexity, variational strong convexity of φr̄ at (x̄, 0) for (0, ȳ) can be identified with the “parametric
quadratic growth condition” that

φr̄(x
′, u′) ≥ φr̄(x, u) + (v, y)·[(x′, u′)− (x, u)] + s

2 |(x
′, u′)− (x, u)|2

for (x′, u′) ∈ W when (v, y) ∈ Z ∩ ∂φr(x, u).
(1.11)

This can be contrasted with the more commonly studied “quadratic growth condition” on local opti-
mality that it includes as the case where x = x̄ and u = u′ = 0.

Although the strong varational sufficient condition for local optimality might seem more theoretical
than practical, it is in fact equivalent to standard strong sufficiency in classical nonlinear program-
ming,4 the SOSC in second-order cone programming,5 and still other instances of (P ) identified in [30].
In general, through the tilt stability property in (1.11), it stands as an enrichment of other known
second-order sufficient conditions in the sense of offering an extra degree of support for algorithm
development.

The key point for our purposes here is that variational sufficiency precisely captures the possibility
of locally reducing a nonconvex problem (P ) to a problem fully in the realm of convex analysis.
This is seen in the following results from [30], which will guide us to our portrayal of the augmented
Lagrangian method (1.7) as a dual application of the proximal point algorithm even in the nonconvex
case of (P ).

Theorem 1.1 [30, Theorem 1] (Lagrangian characterization of variational sufficiency). With respect
to x̄ and ȳ satisfying the first-order optimality condition in (P ), the variational sufficient condition for
local optimality holds at level r̄ if and only if there is a closed convex neighborhood X × Y of (x̄, ȳ)
such that lr̄(x, y) is convex in x ∈ X if y ∈ Y and concave in y ∈ Y if x ∈ X . Then lr(x, y) for every
r ≥ r̄ enjoys those properties and has (x̄, ȳ) as a saddle point relative to X × Y.

Theorem 1.2 [30, Theorem 2] (Lagrangian characterization of strong variational sufficiency). The
strong version of the variational sufficient condition for local optimality corresponds to strengthen-
ing the characterization of variational sufficiency in Theorem 1.1 to include augmented tilt stability,
namely, the existence of a neighborhood V of 0 such that the mapping

(v, y) 7→ argmin
x∈X

{ lr̄(x, y)− v·x} for (v, y) ∈ V × Y (1.12)

is single-valued and Lipschitz continuous. It corresponds equally to having the functions lr̄(·, y) on X
for y ∈ Y be strongly convex, all with the same modulus of strong convexity. The modulus s > 0 for

4As shown in Example 1 of [30]
5When F (x̄) isn’t at the apex of the constraint cone, i.e., F (x̄) ̸= 0, as shown in Example 3 of [30]. For more on this

condition see [9, Proposition 2.1] and the discussion after it.

6



that strong convexity6 then yields, as s−1, a modulus for the Lipschitz continuity in the augmented
tilt stability.

Theorems 1.1 and 1.2 only depend on the functions fi in (P ) being C1, but when those functions
are C2, strong variational sufficiency can be identified with conditions involving generalized second
derivatives, cf. [30, Sections 3 and 4].

The properties of lr̄ on X ×Y in Theorem 1.2 carry over to lr on X ×Y with the same modulus for
all r > r̄, because7 λr(x, y) = maxy′ { lr̄(x, y′)− 1

2(r−r̄) |y
′ − y|2}; the pointwise supremum of a family

of functions that are strongly convex on X with modulus s inherits that same strong convexity. The
augmented tilt stability and guaranteed strong convexity have obvious significance in that way for the
approximate minimization step in the ALM iteration (1.7). If the localization set X in (1.7) agrees with
the one in (1.12) (or a smaller neighborhood of x̄ within it), and rk ≥ r̄, two candidates x and x′ for
approximate minimizers, as judged by the size of the gradients v = ∇xlrk(x, y

k) and v′ = ∇xlrk(x
′, yk),

will have |x′−x| ≤ s−1|v′−v|. This is valuable for controlling errors in the approximation. The strong
convexity in the mimization may furthermore help in supporting the minimization procedure that may
be applied in the subproblems..

Other generalizations of the classical strong second-order sufficient condition (SOSSC), in situations
where they truly turn out to be milder than strong variational sufficiency, are unable to provide those
benefits. Even if convergence of a form of ALM is supported, the minimization steps will, through the
associated lack of local strong convexity and augmented tilt stability, be more delicate and less under
control, whether or not that is apparent from how convergence results are written up.

Local duality. The convex-concave-type saddle point property in Theorem 1.1 corresponds in
the duality format of convex analysis [18], [23], [32, Chap. 11], to saying that

x̄ minimizes over x ∈ X the convex function supy∈Y lr̄(x, y),

ȳ maximizes over y ∈ Y the concave function infx∈X lr̄(x, y),
and the optimal values in these paired problems are equal.

(1.13)

Solving (P ) by determining a pair (x̄, ȳ) that satisfies the variational sufficient condition for local
optimality at a level r̄ thus relates to solving primal and dual problems as in (1.13). When the
proximal point algorithm is invoked for the dual problem, the iterations turn out reduce to those of
the augmented Lagrangian method (1.7), and that will enable us to derive ALM convergence properties
from those of the proximal point algorithm. Through recent advances in [31], we will obtain linear
convergence of xk to x̄ without having to assume there is only one ȳ partnered with x̄. Moreover,
despite the indirectness of the setting in (1.13), we will be able in this manner to tie such convergence
to local properties in problem (P ) itself.

Stepsize implications. In the literature on versions of the augmented Lagrangian method that
have been implemented in nonconvex optimization, the convergence analysis starts with xk and yk

“almost” satisfying some local optimality condition, and with the minimization step having rk ≥ r̄
for a threshold value r̄ > 0 drawn from that condition. The practical question of how to know in
the course of computations whether these circumstances are being met, is left open, and that will be
the case here as well. However, an interesting difference will emerge. Up to now, the stepsize r′k for

6It is the same as the modulus of strong convexity invoked in the assumption of strong variational convexity, as seen
in [30] in the theorem’s proof, although not brought out in the theorem’s statement.

7This is dual to the formula φr(x, ·) = φr̄(x, ·) + r−r̄
2

| · |2 through the conjugacy of φr(x, ·) and φr̄(x, ·) with the
functions −lr(x, ·) and −lr̄(x, ·) in the definition (1.3), along with the fact that addition of convex functions dualizes to
infimal convolution [32, 11.23(a)].

7



updating from yk to yk+1 in (1.7) has been taken to be rk, but our approach via the proximal point
algorithm with its stepsizes ck, making rk come out at r̄ + ck, will suggest taking r′k = ck = rk − r̄
instead. Might that really help convergence?

It’s difficult to be sure in general, because the arguments that researchers use to tease out conver-
gence rates have often been exceedingly complicated, producing results perhaps more qualitative than
quantitative. Nonetheless, support can be found in the analysis of original method of multipliers by
Bertsekas [3], when examined from the perspective of the 1992 innovation of Eckstein and Bertsekas
[7] that allows the stepsize ck in the proximal point algorithm to be relaxed to any c′k ∈ (0, 2ck). For
us, that would translate in (1.7) to updating with any r′k = c′k instead of r′k = ck and covers the choice
r′k = rk = r̄ + ck as long as

rk ∈ (0, 2ck) = (0, 2[rk − r̄]), i.e., rk > 2r̄. (1.14)

In fact, Bertsekas in [3, Proposition 2.7] does require rk > 2r̄ with respect to the threshold value
we would deem as r̄ in that classical setting. Relaxed proximal point stepsizes do, therefore, appear
to be operating behind ALM iterations in that case. But Pennanen [15] determined in 2002 that
the best rate in the proximal point algorithm would be obtained only with the relaxation ultimately
infinitesimal, i.e., with c′k/ck → 1. Whether the same phenomenon is operating in ALM extensions
like those in [9] and [10] would take more effort to pin down. The convergence analysis there goes
through chains of delicate estimates of Lipschitz constants, quadratic growth constants, and the like.
It’s hard to trace the quantitative effects, but there are hints of what Bertsekas saw.

The implication for ALM seems anyway to be that updating in (1.7) with r′k = rk − r̄ instead of
the traditional r′k = rk could offer an improvement. That will be confirmed through our analysis.

This issue of stepsize is consequential also for the standards adopted for the approximate mini-
mization in (1.7). In terms of error parameters εk, three levels of increasing tightness will basically
come into play here for the acceptability of xk+1:

(
2r′k

[
lrk(x

k+1, yk)− infX lrk(·, y
k)
] )1/2

≤


(a) εk
(b) εk min{1, |r′k∇ylrk(x

k+1, yk)|}
(c) εk min{1, |r′k∇ylrk(x

k+1, yk)|2}.
(1.15)

In the past, levels (a) and (b) have been utilized (in their reduction to special cases) in taking
r′k = rk, but now, for the reasons explained, we permit r′k ̸= rk. The (c) level is new for ALM,
being brought in from [31]. It will support linear convergence in partnership with strong variational
sufficiency, where strong convexity of the augmented Lagrangian expressians lrk(x, y

k) in x will be
available in consequence of Theorem 1.2. That strong convexity with modulus s provides the esti-
mate8 lrk(x

k+1, yk)− infX lrk(·, yk) ≤ 1
2s |∇xlrk(x

k+1, yk)|2, which allows (1.15) to be replaced by

√
r′k

∣∣∣∇xlrk(x
k+1, yk)

∣∣∣ ≤

(a) ε′k
(b) ε′k min{1, |r′k∇ylrk(x

k+1, yk)|}
(c) ε′k min{1, |r′k∇ylrk(x

k+1, yk)|2}
(1.16)

by taking ε′k = εk
√
s. Without any conditions having been imposed so far on εk, it may seem that

utilizing (1.16) instead of (1.15) in the case of strong variational sufficiency involves no more than
passing to a different sequence of error parameters ε′k, with explicit knowledge of s not being required.
There is truth to that, but the error parameters εk in (1.15) enter subtly in the description that will

8The strong convexity inequality lrk (x, y
k) ≥ lrk (x

k+1, yk) +∇xlrk (x
k+1, yk)·(x− xk+1) + s

2
|x− xk+1|2 leads to this

by minimizing on both sides with respect to x ∈ X .
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be given about just how close to (x̄, ȳ) the algorithm needs to be initiated in order to succeed. That
will need closer attention in due course.

Outline. Section 2 will establish the deep connection with the proximal point algorithm under the
variational sufficient condition for local optimality. Section 3 will proceed, through strong variational
sufficiency, with translating linear convergence properties of the proximal point algorithm to the
augmented Lagrangian method under assumptions about the local dual problem that’s implicitly
present in the background. Those assumptions undergo further translation then into conditions that
can be checked in terms of the problem structure explicitly available. That is the subject of Section 4.

Readers wishing to avoid all that heavy technology at first pass can skip ahead to Section 5 to
see in summary, on a more immediately understandable level, what ultimately is achieved about the
augmented Lagrangian method.

2 Proximal point derivation of the augmented Lagrangian method

The augmented Lagrangian method aims at determining a point x̄ that is locally (perhaps globally)
optimal in problem (P ), but instead of trying to generate a sequence {xk} that converges to such x̄
with objective values φ(xk, 0) decending to φ(x̄, 0), it generates a sequence {(xk, yk)} targeted to

S = set of all (x̄, ȳ) satisfying the equivalent conditions (1.8). (2.1)

Although the values φ(xk, 0) might then be ∞, signaling that xk isn’t even a feasible solution to (P ),
it is desired at least to have asymptotic feasibility in the sense that

∃uk → 0 with φ(xk, uk) <∞. (2.2)

The goal also, of course, is that a pair (x̄, ȳ) ∈ S obtained as the limit, or maybe a cluster point, of
the sequence {(xk, yk)} will have x̄ locally optimal, and that’s where a second-order condition beyond
(2.1) must come in. For us, that condition will be variational sufficiency now, but later, especially in
Sections 3 and 4 when working on linear convergence, it will be strong variational sufficiency.

To take advantage of the local duality coming from the variational sufficient condition through
Theorem 1.1, we adopt for this section the framework of a pair of closed convex sets X ⊂ IRn and
Y ⊂ IRm having nonempty interior combined with a value r̄ > 0 such that the augmented Lagrangian
lr̄(x, y) is convex in x ∈ X for y ∈ Y (as well as concave in y ∈ Y for x ∈ X ). We suppose that

S ∩ [intX × intY] ̸= ∅, (2.3)

but we don’t for the moment fix on a particular pair (x̄, ȳ) in the intersection. The nonemptiness of
S itself can be assured by feasibility and growth or compactness conditions in (P ) plus a constraint
qualification, but that’s not the issue here. We are taking that nonemptiness for granted and posing
in (2.3) a localization of it to work from.

In the mode of convex analysis in [23] and [32, Sec. 11H], we associate with this localization to
X × Y of the augmented Lagrangian lr̄ the primal and dual problems of optimization in (1.13), but
with perturbation variables. We define

φ̂(x, u) = sup
y∈Y

{ lr̄(x, y) + y·u} for x ∈ X , φ̂(x, u) = ∞ for x ̸∈ X ,

ψ̂(v, y) = inf
x∈X

{ lr̄(x, y)− v·x} for y ∈ Y, ψ̂(v, y) = −∞ for y ̸∈ Y,
(2.4)

9



noting that then φ̂ and −ψ̂ are lsc proper convex functions conjugate to each other on IRn × IRm:

−ψ̂(v, y) = φ̂∗(v, y) = sup
x,u

{ v·x+ y·u− φ̂(x, u)}. (2.5)

The associated local primal problem is

(P̂ ) minimize f̂(x) over x ∈ X , where f̂(x) = φ̂(x, 0) = sup
y∈Y

lr̄(x, y) for x ∈ X ,

while the local dual problem is

(D̂) maximize ĥ(y) over y ∈ Y, where ĥ(y) = ψ̂(0, y) = inf
x∈X

lr̄(x, y) for y ∈ Y.

We are headed toward applying the proximal point algorithm to (D̂) and showing how that can
result in to solving (P ). Understanding the connection between (P̂ ), (D̂), and (P ) will be vital.

Theorem 2.1 (foundation for primal-dual developments). Under (2.3), the problems (P̂ ) and (D̂)
have optimal solutions with min(P̂ ) = max(D̂), and

x̄ solves (P̂ ) ⇐⇒ x̄ minimizes in (P ) relative to X . (2.6)

Moreover the following conditions on a pair

(x̄, ȳ) ∈ intX × intY (2.7)

are equivalent and guarantee that x̄ is locally optimal relative to X in (P ) with the objective value
φ(x̄, 0) agreeing with the common optimal values in (P̂ ) and (D̂) as well as with l̂(x̄, ȳ) and lr̄(x̄, ȳ):

(a) (x̄, ȳ) ∈ S,
(b) x̄ minimizes in (P̂ ) and ȳ maximizes in (D̂),
(c) (x̄, ȳ) is a saddle point of l̂ on IRn × IRm,
(d) (x̄, ȳ) is a saddle point of lr̄ on X × Y,
(e) (x̄, ȳ) is a saddle point of lr on X × Y for every r ≥ r̄.

Proof. Except for (2.6), this just summarizes, from the perspective of the set X ×Y rather than one
particular pair (x̄, ȳ) ∈ S, the facts about variational sufficiency in Theorem 1.1 and their implications
in (1.13). In particular, the optimal solutions to (P̂ ) belonging to intX are the points yielding a
minimum in (P ) over intX , which then by convexity is a minimum over all of X . Thus, in denoting
by C and D the closed convex sets of x̄ vectors on the left and right sides of (2.6), we have C∩ intX =
D ∩ intX . The common intersection is nonempty in consequence of assumption (2.3). Since C and D
are subsets of X , the nonemptiness implies C = cl[C ∩ intX ] and D = cl[D ∩ intX ], so C = D and
(2.6) is correct.

A valuable but somewhat curious consequence of Theorem 2.1 is that the intersection of S with
the interior of X × Y is the product of a convex set of vectors x̄ and a convex set of vectors ȳ. In
nonconvex optimization, there would be no reason in general to expect product structure in S.

Theorem 2.1 reveals a potential dual approach to solving (P ). If ȳ is a solution to (D̂) that lies
in the interior of Y, then for any r ≥ r̄, the solutions to (P ) relative to X that lie in the interior
of X are among the minimizers x̄ of lr(x, ȳ) over x ∈ X . Specifically, they are the minimizers x̄ for
which lr(x̄, ȳ) = φ(x̄, 0), since that pair of conditions means that (x̄, ȳ) is a saddle point on X × Y.
In practice, we can only know ȳ approximately as the limit of a sequence {yk} generated by some
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method for solving (D̂). But we can combine each yk with an xk+1 that approximately minimizes
lrk(x, y

k) over x ∈ X to generate in tandem a sequence {xk} that might have an optimal solution x̄
to (P ) relative to X as a limit or cluster point. The proximal point algorithm as a means of solving
(D̂) will bring this scheme to fruition.

The proximal point algorithm is designed to find a zero of a maximal monotone mapping T . It
iterates with resolvent mappings Pk = (I + ckT )

−1 which are single-valued and nonexpansive. In
applying it to solve (D̂), we take T = ∂[−ĥ], which is maximal monotone because ĥ is an upper
semicontinuous concave function [32, 12.17]. Then the zeros of T , as the points ȳ where 0 ∈ T (ȳ), are
the optimal solutions to (D̂). The zero set is

Z = argmaxy ĥ(y), (2.8)

and the iterations select

yk+1 ≈ Pk(y
k) with Pk(y

k) = argmaxy

{
ĥk(y) := ĥ(y)− 1

2ck
|y − yk|2

}
. (2.9)

The proximal parameters ck will be taken here to satisfy

1 ≤ ck → c∞ ≤ ∞, (2.10)

while the approximation will be controlled at three possible levels by stopping criteria of the form

|yk+1 − Pk(y
k)| ≤


(a) εk
(b) εk min{1, |yk+1 − yk|}
(c) εk min{1, |yk+1 − yk|2}

(2.11)

in which the error parameters εk satisfy

εk ∈ (0, 1) with
∑∞

k=0
εk = σ <∞. (2.12)

In this section, we’ll only be concerned with the basic level (a). Levels (b) and (c) will be important
later in supporting a linear rate of convergence.

It’s known from the proximal point theory in [25] that the size of |yk+1−Pk(y
k)| can be estimated

from above by ck dist(0, ∂[−ĥk](yk+1)) for the strongly concave function ĥk in (2.9). That expression
could therefore be substituted on the left of (2.11). But on our way to the augmented Lagrangian
method and its stopping criteria in (1.15), a different upper estimate for |yk+1−Pk(y

k)| will eventually
be needed instead.

It will be essential for our purposes to have Pk(y
k) and yk+1 keep to the interior of Y, even though

the procedure, as described, is known from [25] to exhibit global convergence from any starting point
y0 in IRm. The refined localization that will serve our needs is available from [31], as we record next.

Theorem 2.2 [25, 31] (basic proximal point convergence). Let the initial point y0 and the value σ
in (2.12) satisfy the following closeness condition relative to the closed convex set Z = argmax ĥ:

∃ ρ > dist(y0, Z) + σ such that Y ⊃
{
y
∣∣∣ |y − y0| < 3ρ

}
. (2.13)

Then the sequence {yk} generated by the proximal point iterations (2.9) under (2.10), (2.11a) and

(2.12) will belong to intY and converge to a particular point ȳ ∈ Z in the ball
{
y
∣∣∣ |y−ȳ0| < ρ

}
⊂ intY,
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where ȳ0 is the point of Z closest to y0. In the course of this, neither yk nor Pk(y
k) will ever leave

that ball, and the dual objective values ĥ(yk) will converge to the optimal value ĥ(ȳ) in (D̂).

Proof. This is a simplification of [31, Theorem 2.1] based on the mapping ∂[−ĥ] being maximal
monotone globally. (The result in its full form addresses the possibility of a subgradient mapping that
is maximal monotone only locally.) The fact that yk and Pk(y

k) never leave the ball in question didn’t
appear in the original statement in [31] but is shown in displays in the theorem’s proof.

The formula for Pk(y
k) in (2.9) isn’t the only way to think of how the proximal point algorithm

proceeds. Another interpretation, which will soon have a role in our developments, revolves around
the functions generated by the maximization in (2.9), namely

ĥck(y
k) = maxy

{
ĥk(y) := ĥ(y)− 1

2ck
|y − yk|2

}
. (2.14)

Through their definition and the fact that Pk(y
k) furnishes the maximum, these functions are concave

and differentiable on IRm with

∇ĥck(y
k) = c−1

k [Pk(y
k)− yk], so that Pk(y

k) = yk + ck∇ĥck(y
k). (2.15)

Another consequence of the sup-convolution formula defining ĥck is that

ĥck(y) ≥ ĥck(y
k) +∇ĥck(y

k)·[y − yk]− 1

2ck
|y − yk|2 for all y ∈ IRm, (2.16)

from which Pk(y
k) receives a further description out of (2.15),

Pk(y
k) = argmaxy

{
ĥck(y

k) +∇ĥck(y
k)·[y − yk]− 1

2ck
|y − yk|2

}
. (2.17)

The guarantee in Theorem 2.2 that the sequence {yk} stays in intY will be crucial in what comes
next. It enables us to concentrate on the behavior of the dual objective ĥ just on intY. There is the
question then of whether, in the formula ĥ(y) = infx∈X lr̄(x, y), the minimum is attained, and not just
at a boundary point of X . From the convexity of lr̄(·, y) we know that

argmin
x∈X

lr̄(x, y) = {x | − ∇xlr̄(x, y) ∈ NX (x)}, (2.18)

where NX (x) is the normal cone to the closed convex set X at x. We will benefit from having the sets
(2.18) be nonempty and bounded, at least when y ∈ intY. This certainly is the case if X is bounded,
for instance, which could be imposed more or less harmlessly for our purposes. But it could also stem
from growth properies of lr̄(x, y) in x that might be tied to the original Lagrangian l(x, y) n (1.2).

Theorem 2.3 (fundamental ALM characterization). Suppose the argmin sets (2.18) are nonempty
and bounded when y ∈ intY. Let the augmented Lagrangian method (1.7) with stopping criterion
(1.15a), error parameters εk as in (2.12), rk ∈ (r̄,∞) with rk → r∞ ∈ (r̄,∞] and stepsizes r′k = rk − r̄,
be initiated with y0 satisfying the prescription in Theorem 2.2 (so executability of the steps is assured).
Then, by the estimate

|yk+1 − Pk(y
k)|2 ≤ 2ck

[
lrk(x

k+1, yk)− infX lrk(·, y
k)
]
for ck = rk − r̄, (2.19)

the resulting sequence {yk} can be interpreted as being generated by the proximal point algorithm
(2.9) with ck = r′k under the stopping criterion (2.11a) for the same error parameters εk. It will thus,
as in Theorem 2.2, converge within intY to a particular solution ȳ to (D̂) that lies in intY.

12



On the other hand, the sequence {xk} in X will be bounded and asymptotically feasible in (P ).
Each of its cluster points will be a solution x̄ to (P̂ ) furnishing also a minimum in (P ) relative to X
and thus be locally optimal in (P̂ ) if it belongs to intX .

Executing the augmented Lagrangian method with stopping criterion (1.15b) or (1.15c) instead of
(1.15a) correponds in this to executing the proximal point algorithm with (2.11b) or (2.11c).

Proof. The functions ĥck and their properties in (2.15)–(2.17) in connection with the proximal point
algorithm will lead the way in this. In parallel with our scheme of problems (P̂ ) and (D̂) associated
with l̂, we can associate with the convex-concave function

l̂k(x, y) := lr̄(x, y)−
1

2ck
|y − yk|2 for x ∈ X and y ∈ Y (2.20)

the primal problem

(P̂ k) minimize over x ∈ X the function sup
y∈Y

l̂k(x, y) =: fk(x)

and the dual problem

(D̂k) maximize over y ∈ Y the function inf
x∈X

l̂k(x, y) = ĥ(y)− 1

2ck
|y − yk|2,

which corresponds to the proximal point maximization in (2.9). Our assumption that the sets (2.18)
are nonempty and bounded when y ∈ intY makes the convex functions lr̄(·, y) be level-bounded [32,
3.23], and that passes over to the functions l̂k(·, y), causing the convex objective function fk in (P̂ k)
to be level bounded as well.9 The concave objective function in (D̂k) is likewise level-bounded (from
below instead of from above), due to its quadratic term. Because of this, optimal solutions to both
(P̂ k) and (D̂k) exist, characterized by forming saddlepoints in (2.20), and the optimal values in these
problems agree [32, 11.40]. We already know, of course, that (D̂k) has Pk(y

k) as its unique optimal
solution, and the optimal value in (D̂k) has been defined in (2.14) to be ĥck(y

k). The new information
now is that

∃ x̂k ∈ X such that ĥck(y
k) = fk(x̂k) = lk(x̂k, Pk(y

k))

= max
y∈Y

l̂k(x̂k, y) = max
y∈Y

{
lr̄(x̂

k, y)− 1

2ck
|y − yk|2

}
,

(2.21)

where by concavity

max
y∈Y

{
lr̄(x̂

k, y)− 1

2ck
|y − yk|2

}
= max

y∈IRm

{
lr̄(x̂

k, y)− 1

2ck
|y − yk|2

}
if Pk(y

k) ∈ intY. (2.22)

A simple relationship between the augmented Lagrangians lr̄ and lrk for rk = r̄ + ck can next be
brought in. It comes from the convex functions −lr̄(x, ·) and −lrk(x, ·) being conjugate to φr̄(x, ·) and
φrk(x, ·). Because φr̄+ck(x, u) = φr̄(x, u) +

ck
2 |u|

2 and the addition of convex functions dualizes to
inf-convolution, −lr̄+ck(x, ·) is obtained from −lr̄(x, ·) by inf-convolution with the function conjugate
to ck

2 |u|
2, which is 1

2ck
|y|2. Therefore

max
y∈IRm

{
lr̄(x, y)−

1

2ck
|y − yk|2

}
= lrk(x, y

k). (2.23)

9In fact, to reach this conclusion it would suffice to assume the nonemptiness and boundedness of just one of the sets
in (2.18) for y ∈ intY.
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The combination of (2.21), (2.22) and (2.23) yields

∃ x̂k ∈ X such that ĥck(y
k) = lrk(x̂

k, yk) if Pk(y
k) ∈ intY. (2.24)

In comparison, the definition (2.14) of ĥck , in which ĥ(y) ≤ lr̄(x, y) for all x ∈ X and y ∈ Y, implies
through (2.23) that

ĥck(y) ≤ lrk(x, y) for all x ∈ X and y ∈ IRm. (2.25)

In particular, we learn from this and (2.24) that

ĥck(y
k) = min

x∈X
lrk(x, y

k) if Pk(y
k) ∈ intY. (2.26)

We can turn now to the vectors xk+1 and yk+1 in the augmented Lagrangian method (1.7). The
concavity of lrk(x

k+1, y) in y gives us

lrk(x
k+1, y) ≤ lrk(x

k+1, yk) +∇ylrk(x
k+1, yk)·(y − yk) for all y ∈ IRm.

This can be partnered through (2.25) with the inequality in (2.16) to obtain

ĥck(y
k) +∇ĥck(y

k)·[y − yk]− 1

2ck
|y − yk|2 ≤ lrk(x

k+1, yk) +∇ylrk(x
k+1, yk)·(y − yk),

from which it follows that

lrk(x
k+1, yk)− ĥck(y

k) ≥ [∇ylrk(x
k+1, yk)−∇ĥck(y

k)]·(y − yk)− 1

2ck
|y − yk|2 for all y ∈ IRm,

where, by (2.16) and the rule for obtaining yk+1 in (1.7),

∇ylrk(x
k+1, yk)−∇ĥck(y

k) = c−1
k [yk+1 − yk]− c−1

k [Pk(y
k)− yk)] = c−1

k [yk+1 − Pk(y
k)].

Therefore, in terms of z = y − yk,

ck
[
lrk(x

k+1, yk)− ĥck(y
k)
]
≥ max

z∈IRm

{
[yk+1 − Pk(y

k)]·z − 1
2 |z|2

}
= 1

2 |yk+1 − Pk(y
k)|2.

Under (2.26), this becomes the estimate claimed in (2.19).
Recalling now from Theorem 2.2 that the proximal point algorithm, when initiated as prescribed,

always has Pk(y
k) ∈ intY, we reach comfirmation of the statements about the sequence {yk} generated

by the augmented Lagrangian method with stopping criterion (1.15a).
What happens in the meantime to the sequence {xk}? The objective fk in (P̂ k) has been deter-

mined to be ≤ lrk(·, yk), but we have also verified that

min
x∈X

fk(x) = min
x∈X

lrk(x, y
k) = ĥck(y

k). (2.27)

Since xk+1 is chosen under the stopping criterion (1.15a) to have lrk(x
k+1, yk)− ĥck(y

k) ≤ ε2k/2ck, it
follows that

fk(xk+1) ≤ lr̄(x
k+1, yk) ≤ αk := ĥck(y

k) +
ε2k
2ck

. (2.28)

Here, from the definition of ĥck(y
k) in (2.14), we know ĥ(yk) ≤ ĥck(y

k) ≤ max ĥ, but ĥ(yk) → max ĥ
according to Theorem 2.2, hence

αk → ᾱ = max(D̂) = min(P̂ ) = min
x∈X

lr̄(x, ȳ). (2.29)
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On another front, the definition of fk entails the lower bound fk(x) ≥ lr̄(x, y
k), which in the limit

as yk → ȳ implies

{x ∈ X | fk(x) ≤ α} ⊂ {x ∈ X | lr̄(x, ȳ) ≤ α} for all α ∈ IR,

where sets on the right are bounded under the argmin assumption in the theorem [32, 3.23]. From
(2.28) we therefore have

xk+1 ∈ {x ∈ X | lr̄(x, ȳ) ≤ α} for any α ≥ αk.

and can confirm through (2.29) that the sequence {xk} is bounded with all its cluster points belong
to argminX lr̄(·, ȳ).

It will be demonstrated now that the vectors xk can be paired with vectors uk → 0 in IRm for
which φ(xk, uk) converges to the minimum in (P̂ ). This will justify the claim of asymptotic feasibility
in the sense of (2.2) and also show that every cluster point x̄ of {xk} is an optimal soultion to (P̂ ),
inasmuch as φ̂(x̄, 0) ≤ lim infk φ̂(x

k, uk) by the lower semicontinuity of φ̂. Then, with a look back at
(2.6), the proof of the theorem will be complete.

From the ALM update in (1.7) we have ∇ylrk(x
k+1, yk) = c−1

k [yk+1 − yk], where yk+1 − yk → 0 as
ck → c∞ ≤ ∞. Taking uk+1 = ∇ylrk(x

k+1, yk), we get a sequence {uk} partnered with {xk} such that
not only uk → 0 but in fact

cku
k+1 → 0. (2.30)

Because the convex function −lrk(xk+1, ·) is conjugate to φrk(x
k+1, ·), with uk+1 being in particular a

subgradient of the former at yk, we also have

uk+1·yk + lrk(x
k+1, yk) = φrk(x

k+1, uk+1) = φ(xk+1, uk+1) +
r̄ + ck

2
|uk+1|2,

where the initial and final terms tend to 0 by (2.30). We have determined via (2.28) and (2.29) that
lrk(x

k+1, yk) tends to the optimal value in (P̂ ), and we see now that φ(xk+1, uk+1) does the same, as
claimed.

The assertion at the end of the theorem about the stronger stopping criteria (1.15b) and (1.15c)
is justified obviously by (2.19).

Corollary 2.3.1 (convergence to an isolated local minimium). Suppose x̄ satisfies the variational
sufficient condition for local optimality in (P ), but is isolated from any other such point (i.e., is unique
with respect to a neighborhood). This holds in particular if a dual vector ȳ paired with x̄ in the
Lagrangian characterization of variational sufficiency in Theorem 1.1 has x̄ as the only minimizer of
lr̄(·, ȳ) over X , as for instance under strong variational sufficiency. Then, in the associated framework
of local duality passed from Theorem 1.1 to Theorem 2.1 and utilized in Theorem 2.3, the sequence
{xk} generated by the augmented Lagrangian method must converge to that local solution x̄.

Proof. This refers to the situation in which x̄ is unique initial component of the pairs in the set
in assumption (2.3). The claim about how that can be a consequence of a minimization property of
lr̄(·, ȳ) is based on the characterization in Theorem 2.1(d). When the sequence {xk} in Theorem 2.3
has only one possible cluster point x̄, it must converge to that point.

Corollary 2.3.2 (application to the convex case). In the convex case of problem (P ), the sets X
and Y can be taken to be all of IRn and IRm. The augmented Lagrangian method, as implemented in
Theorem 2.3 under the assumptions there, can then have r̄ arbitrarily near to 0, and it can start from
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any y0, inasmuch as ρ can be arbitrarily large in (2.13). Moreover the locally optimal solutions x̄ it
generates will be globally optimal solutions to (P ).

In asking that r̄ be positive, even if arbitrarily close to 0, the statement in Corollary 2.3.2 falls a
bit short of what might be wished in the convex case. Why can’t r̄ just be 0, so that the problems
(P̂ ) and (D̂) reduce to (P ) and its dual (D) that maximizes h(y) = infy l(x, y)? The update from yk

to yk+1 could then be simplified from r′k = rk − r̄ to r′k = rk. This is merely artificial trouble coming
from the choices adopted for the exposition in this paper. The Lagrangian l in (1.2) can be identified
as the case of the augmented Lagrangian lr in (1.3) in which r = 0, but as l0 it wouldn’t have the
differentiability properties in y that we have utilized so conveniently. The special treatment needed
to take care of that didn’t seem worth the effort here. What could be better is a separate, if parallel,
development of the augmented Lagrangian method for optimization problems like (P ) having convex
φ(x, u), but not necessarily limited to the generalized nonlinear programming form chosen here.

But in fact, confirmation of convergence when taking r′k = rk instead of r′k = rk− r̄ can be provided
even in the nonconvex case of (P ) by appealing to the relaxed version of the proximal point algorithm
developed by Eckstein and Bertsekas [7]. That version differs from (2.9) under (2.11a) in having

yk+1 = (1− θk)y
k + θkŷ

k+1 with |ŷk+1 − Pk(y
k)| ≤ εk. (2.31)

The original version corresponds to θk ≡ 1. As translated to the maximization in Theorem 2.2,
the result in [7, Theorem 3] gives global convergence of the relaxed iterations (2.31) to some point
ȳ ∈ Z = argmax ĥ, as long as

θk ∈ (0, 2), lim sup
k→∞

θk < 2, lim inf
k→∞

θk > 0. (2.32)

Although Eckstein and Bertsekas didn’t address the specifics of a localization to a set Y, that topic
was taken up by Pennanen. His result in [15, Proposition 6] tells us in the case of θk ≥ 1 that if

∃ δ > 0 such that dist(y, Z) ≤ δ =⇒ y ∈ intY, (2.33)

and the procedure is initiated with y0 close enough to Z, the sequence {yk} will stay inside Y while
converging to ȳ.10

How would the replacement of the original proximal point algorithm by the relaxed version play
out in the ALM derivation argument in the proof of Theorem 2.3? Nothing changes except that the
updating expression yk + ck∇ylrk(x

k+1, yk) in (1.7) now designates the approximation ŷk+1 in (2.31)
rather than yk+1, which is given instead then by

yk+1 = (1− θk)y
k + θk[y

k + ck∇ylrk(x
k+1, yk)] = yk + r′k∇ylrk(x

k+1, yk) for r′k = θkck. (2.34)

Theorem 2.4 (relaxed stepsizes in the ALM derivation). Suppose the argmin sets (2.18) are nonempty
and bounded when y ∈ intY, and that (2.33) holds. Let the augmented Lagrangian algorithm
(1.7) with stopping criterion (1.15a), error parameters εk as in (2.13), parameters rk ∈ (r̄,∞) with
rk → r∞ ∈ (r̄,∞] and stepsizes r′k such that

1 ≤ r′k
rk − r̄

< 2, lim sup
k→∞

r′k
rk − r̄

< 2, (2.35)

10Pennanen has an assumption in [15, Proposition 6] that is needed to get a rate of linear convergence, but that
assumption is irrelevant to his proof of localization of the generated sequence.
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be initiated with y0 close enough to Z. Then the convergence properties in Theorem 2.3 will prevail
along with their specialization in Corollary 2.3.1.

In particular, this applies with the stepsize r′k taken to be rk itself, provided that rk > 2r̄ and,
in the limit, also r∞ > 2r̄. In the application to the convex case of (P ) in Corollary 2.3.2, r′k = rk
suffices always, and the initial y0 can be arbitrarily far from Z.

Proof. The discussion leading up to the statement of the theorem covers everything up to some
details about r′k. The ALM derivation in the proof of Theorem 2.3 has rk = r̄ + ck, so the relaxed
stepsize r′k = θkck deduced in (2.34) coresponds to θk = r′k/(rk − r̄). That turns the conditions on θk
in (2.32) and Pennanen’s restriction to θk ≥ 1 into the conditions in (2.35). In specializing r′k to rk,
(2.32) reduces to requiring rk > 2r̄ and r∞ > 2r̄. In Corollary 2.3.2, r̄ can be assigned any positive
value, no matter how small, so taking r′k to be rk works under the stipulation that lim infk rk > 0. The
nearness condition on y0, aimed at making sure the procedure keeps within Y, is superfluous becuase
Y is all of IRm.

Note that the condition (2.33) assumed in Theorem 2.4 trivializes when there is only one ȳ in Z∩Y.
That uniqueness of the multiplier vector has been a typical assumption in much of the literature on
the augmented Lagrangian method.

Theorem 2.4 provides an extension of Theorem 2.3 that is attractive especially in reconciling the
stepsize rule with the traditional one, but how useful is it really? In the linear convergence result
of Pennanen in [15, Proposition 6] for the proximal point algorithm, getting the optimal rate when
ck → c∞ < ∞ requires θk → 1. But ck → c∞ < ∞ corresponds in Theorem 2.4 to rk → r∞ < ∞,
while r′k = rk corresponds to θk = rk/(rk − r̄), and θk → r∞/(r∞ − r̄) < 1. In other words, the
traditional ALM stepsize is somehow inherently incompatible with achieving the best convergence rate
unless stepsizes are forced toward ∞.

The connection with the proximal point algorithm in Theorem 2.3 involved implementing the
augmented Lagrangian method with the stopping criteria in (1.15), but the alternative stopping criteria
in (1.16) could well be more convenient. Can they safely be used instead? For that, the duality
framework leading to Theorem 2.1 must incorporate the strong convexity in x furnished by Theorem
2.1 under strong variational sufficiency.

Theorem 2.5 (convergence with alternative stopping criteria). Let strong variational sufficiency
hold, the duality framework behind Theorem 2.1 being that of Theorem 1.2 with its strong convexity
modulus s, instead of just Theorem 1.1. The stopping criteria (1.15) in Theorem 2.3 and its corollaries,
as well as Theorem 2.4, can be replaced then respectively by the stopping criteria (1.16) with

ε′k > 0,
∑∞

k=1
ε′k =: σ′ <∞, (2.36)

as long as ε′k ≤ 1/
√
s and the initialization condition (2.13) in Theorem 2.2 is fulfilled with σ = σ′/

√
s.

These extra conditions on ε′k are not needed in the convex case covered in Corollary 2.3.2.

Proof. As explained when introducing (1.16) at the end of Section 1 as a potential substitute for
(1.15), the key is an estimate based on the augmented Lagrangians being strongly convex in x ∈ X
with modulus s. The error parameters are related in this by ε′k = εk

√
s. Given (2.36), the question

then is whether, in taking εk = ε′k/
√
s, the conditions on εk in (2.12) and (2.13) will hold. That is

answered by the indicated limitations on ε′k.
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3 Linear convergence set-up under strong variational sufficiency

From here on in this paper, the variational sufficiency we have been working with will be replaced by
strong variational sufficiency at a level r̄ > 0. We retain the localized primal-dual framework of the
preceding section, but now have a single x̄ in our view without designating a particular accompanying
ȳ. In other words, we continue with X , Y, l̂(x, y), and the problems (P̂ ) and (D̂) under assumption
(2.3) on the first-order set S in (2.1), with

∅ ≠ S ∩ [intX × intY] = {x̄} × [Z ∩ intY], where Z = argmaxY ĥ. (3.1)

Because solutions to the dual problem are secondary to the goal of solving (P ), it’s best to avoid, as
far as possible, supposing that Z is a singleton {ȳ}.

Strong variational sufficiency puts at our disposal the extra tools in Theorem 1.2. For r ≥ r̄, the
functions lr(·, y) on X are strongly convex with the same modulus s, and the mappings

Ar : (v, y) → argmin
x∈X

{ lr(x, y)− v·x} on V × Y for a neighborhood V of 0 (3.2)

are all Lipschitz continuous with the same modulus s−1. This has a big effect on the dual objective
function ĥ = ψ̂(0, y) in (D̂) as derived from the minimization formula for ψ̂ in (2.4). Because the
function (v, y) 7→ lr̄(x, y) − v·x is differentiable with gradient (−x,∇ylr̄(x, y)), that formula with

the minimum attained uniquely by x = Ar̄(v, y) makes the concave function ψ̂ be differentiable at
(v, y) ∈ V × Y with its gradient being the evaluation of (−x,∇ylr̄(x, y)) at x = Ar̄(v, y) and thus
depending Lipschitz continuously on (v, y) ∈ V × Y. Hence

ĥ is a C1+ concave function on intY with ∇ĥ(y) = ∇ylr̄(x, y) for x = Ar̄(0, y). (3.3)

In the maximization of ĥ over Y by the proximal point algorithm that turns into the augmented
Lagrangian method, such extra properties can be beneficial in getting linear or superlinear convergence
of different kinds, Q-linear and R-linear. Recall that a sequence of values αk > 0 converges Q-linearly
to 0 at a rate ρ if lim supk[αk+1/αk] ≤ ρ < ∞, this being Q-superlinear convergence if ρ = 0. A
sequence of values ak ≥ 0 converges R-linearly to 0 at a rate ρ if αk ≤ βk for values βk > 0 that
Q-linearly converge to 0 at that rate. Linear or superlinear convergence of a sequence of vectors wk

to a vector w refers to such convergence of the norms |wk − w̄|.
The main concern in the augmented Lagrangian method is ordinarily with the convergence charac-

teristics of the primal sequence {xk} that it produces. Convergence characteristics of the dual sequence
{yk} are important mostly for their impact on {xk}. But now, in light of the minimization step in
each iteration having a unique exact solution, due to strong convexity, our attention is drawn also to
the sequence of vectors x̄k defined by

x̄k+1 := argmin
x∈X

lrk(x, y
k), so that lrk(x̄

k+1, yk) = min
x∈X

lrk(x, y
k). (3.4)

Interestingly, there are circumstances in which x̄k can be guaranteed to converge R-linearly to x̄
without a parallel guarantee of R-linear convergence for xk.

Although the x̄k sequence is only “implicit,” in contrast to the xk sequence, its rate of convergence
can anyway have genuine practical significance. The algorithm can be implemented with approximate
minimization while generating the vectors xk, but when terminated at some point, the minimization
(3.4) in the final iteration can be carried out with more precision to get x̄k+1 in effect as the end
product. In other words, the augmented Lagrangian method can rightly be interpreted as terminating
in iteration k, not just with xk+1, but effectively also x̄k+1 from just a bit of final push. This observation
affects how the attainment of linear convergence is assessed.
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Theorem 3.1 (ALM primal convergence from ALM dual convergence).
(a) Under strong variational sufficiency, the convergence yk → ȳ ∈ Z in the augmented La-

grangian method (1.7), as implemented in Theorem 2.3 (with the stopping criterion (1.15a) potentially
replaced by (1.16a) on the basis of Theorem 2.5), induces both xk → x̄ and x̄k → x̄. It entails that
∇xlrk(x̄

k+1, yk) = 0 for k beyond some k̄, along with

s

2
|xk+1 − x̄k+1| ≤ lrk(x

k+1, yk)− lrk(x̄
k+1, yk) ≤ 1

2s
|∇xlrk(x

k+1, yk)|2. (3.5)

(b) If dist(yk, Z) → 0 Q-linearly at a rate ρ as yk → ȳ, then x̄k → x̄ R-linearly at that rate.
(c) If yk → ȳ Q-linearly at a rate ρ, then xk → x̄ R-linearly at that rate — as long as the stopping

criterion in approximate minimization is supplemented by the proviso that

|∇xlrk(x
k+1, yk)| ≤ c|yk+1 − yk| for some fixed c. (3.6)

Proof. In (a) we know from Corollary 2.3.1 that xk → x̄. However, that doesn’t immediately tell
us that x̄k+1 → x̄, or even that eventually x̄k+1 ∈ intX . Because x̄k+1 minimizes lrk(·, yk) over X , we
know that ∇xlrk(x̄

k+1, yk)·(x̄− x̄k+1) ≥ 0. On the other hand, the strong convexity of lrk(·, yk) yields

lrk(x̄, y
k) ≥ lrk(x̄

k+1, yk) +∇xlrk(x̄
k+1, yk)·(x̄− x̄k+1) +

s

2
|x̄− x̄k+1|2,

where also lrk(x̄, y
k) ≥ lrk(x̄, ȳ) = lr̄(x̄, ȳ. Therefore,

lr̄(x̄, ȳ) ≥ lrk(x̄
k+1, yk) +

s

2
|x̄− x̄k+1|2. (3.7)

In the proof of Theorem 2.3, the values ĥck(y
k) in (2.26), identifiable now as lrk(x̄

k+1, yk), were shown
through (2.27) to converge to the value in (2.28), which is in turn identifiable now as lr̄(x̄, ȳ). Thus
lrk(x̄

k+1, yk) → lr̄(x̄, ȳ) in (3.7), and this confirms that x̄k+1 → x̄.
Eventually then, x̄k+1 must belong to intX and have ∇xlrk(x̄

k+1, yk) = 0 as the condition for it
to give the minimum. The left side of (3.5) follows from that and the strong convexity. For the right
side of (3.5), we again make use of strong convexity to see that

lrk(x, y
k)− lrk(x

k+1, yk) ≥ ∇xlrk(x
k+1, yk)·(x− xk+1) +

s

2
|x− xk+1|2 for all x ∈ X .

By taking the minimum over x ∈ X on the left and the minimum over x ∈ IRn on the right, we get

lrk(x̄
,yk)− lrk(x

k+1, yk) ≥ min
ξ∈IRn

{
∇xlrk(x

k+1, yk)·ξ + s

2
|ξ|2

}
=

1

2s
|∇xlrk(x

k+1, yk)|2,

as claimed.
For part (b), we use the fact that, when yk is close enough to ȳ, its projection ȳk on Z gives

dist(yk, Z) = |yk − ȳk|. Because x̄k+1 minimizes lrk(·, yk) on X whereas x̄ minimizes lrk(·, ȳk) on X ,
the augmented tilt stability property in Theorem 1.2 gives us |x̄k+1−x̄| ≤ s−1|yk−ȳk| = s−1 dist(yk, Z).
Thus, if dist(yk, Z) → 0 Q-linearly at a rate ρ, then |x̄k+1 − x̄| → 0 R-linearly at the rate ρ.

Augmented tilt stability acts similarly for part (c). We have

xk+1 = argmin
x∈X

{ lrk(x, yk)− vk·x} for vk = ∇xlrk(x
k+1, yk),

whereas x̄ = argmin
x∈X

{ lrk(x, ȳ)− v̄·x} for v̄ = 0,
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and therefore |xk+1 − x̄| ≤ s−1|(vk, yk)− (v̄, ȳ)|. Bringing in (3.6) we get

s2|xk+1 − x̄|2 ≤ |vk|2 + |yk − ȳ|2 ≤ c2|yk+1 − yk|2 + |yk − ȳ|2,

where |yk+1 − yk| ≤ |yk+1 − ȳ|+ |yk − ȳ| ≤ (θk + 1)|yk − ȳ| for θk := |yk+1 − ȳ|/|yk − ȳ|, hence

s2|xk+1 − x̄|2 ≤ (c2(1 + θk)
2 + 1)|yk − ȳ|2. (3.8)

The assumption that yk converges to ȳ at the Q-linear rate ρ means lim supk θk ≤ ρ. Thus, (3.8)
implies the existence of a bound |xk+1 − x̄| ≤ b|yk − ȳ| for some b. This confirms that xk+1 → x̄ at
the R-linear rate ρ.

The dual ALM sequence {yk} comes from applying the proximal point algorithm in the maximiza-
tion of ĥ. We can therefore make use of convergence properies of that algorithm (as translated from
the customary format of minimizing a convex function to that of maximizing a concave function).
The original linear convergence result for the proximal point algorithm in minimization, in [25] with
the stopping criterion (2.11b) invoked instead of (2.11a), depended on having a unique maximizer
ȳ. It deduced a rate of Q-linear convergence out of assuming a quadratic growth condition on ĥ at
ȳ. This is unsatisfying for our purposes, which include enabling nonuniqueness of solutions to (D̂).
Luque [14] developed an alternative to the result in [25] that gets around uniquenss by assuming
ĥ(y) ≤ ĥ(ȳ) − bdist2(y, Z) for some b > 0 when dist2(y, Z) < δ. But that growth condition can be
problematical when Z is unbounded, and it only guarantees Q-linear convergence of dist(yk, Z) to 0,
not that of |yk − ȳ| to 0. This could still be of value to us through part (b) of Theorem 3.1, but there
has been a recent advance. We showed in [31] that Luque’s growth condition doesn’t need to apply
to all of Z. In the context of the proximal point algorithm in Theorem 2.2, it only needs to hold for
y in a neighborhood of ȳ. We showed moreover that Q-linear convergence of yk to ȳ can be obtained
by employing the tighter stopping criterion (2.11c).

That result will be recalled precisely in Theorem 3.2 below, along with a criterion for the underlying
growth condition in terms of generalized second derivatives. The derivatives in question are usually
articulated in terms of epigraphs of difference quotient functions, but here we are dealing with a
concave function ĥ, for which hypographs would be appropriate instead. Rather than entering that
parallel universe, we can pass to the convex function −ĥ. But because the concept will be utilized
later for convex functions other than just −ĥ, we’ll pose the definition neutrally in terms of a closed
proper convex function k on IRm. The second-order difference quotient functions ∆2

τk(y |u) associated
with having u ∈ ∂k(y) take the form

∆τk(y |u)(η) =
[
k(y + τη)− k(y)− τη·u

]/
1
2τ

2 for τ > 0, (3.9)

and the corresponding second subderivative function is given by

d2k(y |u)(η) = lim inf
η′→η
τ ↘ 0

∆τk(y |u)(η′). (3.10)

Much more about these concepts will enter the discussion in the lead-up to Theorem 4.3 in the next
section. For the moment we are focused on k = −ĥ, y = ȳ and u = 0 = ∇ĥ(ȳ).

Theorem 3.2 [31] (linear convergence of the proximal point algorithm in maximization).
(a) In the circumstances of Theorem 2.2 with stopping criterion (1.15a) strengthened to (1.15b)

(or (1.16b) on the basis of Theorem 2.5) to get yk → ȳ ∈ Z = argmaxY ĥ, suppose

∃ b > 0, λ > 0, such that ĥ(y) ≤ [maxY ĥ]− bdist2(y, Z) when |y − ȳ| < λ. (3.11)
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Then dist(yk, Z) → 0 at the Q-linear rate ρ = 1/
√
1 + b2c2∞, which is 0 when c∞ = ∞

(b) If the still tighter stopping criterion (1.15c) is used (or (1.16c) on the basis of Theorem 2.5),
then yk → ȳ at that Q-linear rate ρ. Moreover the growth condition (3.11) can be replaced by the
weaker condition, in terms of second subderivatives and the normal cone NZ(ȳ), that

0 < b ≤ min
{

1
2d

2[−ĥ](ȳ |0)(η)
∣∣∣ η ∈ NZ(ȳ), |η| = 1

}
, (3.12)

this minimum being positive as long as

d2[−ĥ](ȳ |0)(η) > 0 for all nonzero η ∈ NZ(ȳ). (3.13)

That holds in particular if only the vectors η in the tangent cone TZ(ȳ) have d
2[−ĥ](ȳ |0)(η) = 0.

(c) If the growth condition (3.11) in (a) holds at a boundary point ȳ0 of Z ∩ intY, then for any
boundary ȳ′ with |ȳ′ − ȳ| < λ, it holds at ȳ with λ replaced by λ′ = λ− |ȳ′ − ȳ|.
Proof. Part (a) is taken from [31, Theorem 3.2], whereas part (b) rests on [31, Theorem 3.3]. The b
here is 1/a there. Part (c) is an elementary observation about (3.12) that deserves to be recorded.

The observation in (c) of Theorem 3.2 is valuable in the light of Theorem 2.2 and the uncertainty
about where the sequence generated by the proximal point algorithm will end up when the solution
isn’t unique. If the procedure is initiated at a point y0 in the circumstances specified, it will end up at
a point ȳ within distance ρ from the projection ȳ0 of y0 on Z. Quadratic growth of ĥ out of Z around
ȳ0 can therefore be inherited by ȳ, if ρ is small enough, and then linear convergence to ȳ is achieved.

In the convex case of (P ), where the unaugmented Lagrangian l is concave-convex on IRn × IRm

with global saddle point at (x̄, ȳ) and the algorithm specializes as in Corollary 2.3.2, there is a possible
boost toward verifying the conditions in Theorem 3.2. They can be tested on an underlying concave
function h which might be determined explicitly in some situations. This h is the objective function
of the dual problem (D) associated with the convex case of (P ) in Section 1.

Thorem 3.3 (simplification in the convex case). For the convex case of (P ), the concave function ĥ
can essentially be replaced in the conditions in (3.11), (3.12), (3.13), by the concave function h(y) =
infy l(x, y). Specifically, if (3.11) holds for h with a value b0, then it holds for ĥ for b = b0/(1 + r̄b0),
and likewise in (3.12), and this is true for r̄ arbitrarilly close to 0.

Proof. In this case, where X × Y can be taken to be all of IRn × IRm as explained at the end of
Section 2, we have

ĥ(y) = minx lr̄(x, y) = minxmaxy′
{
l(x, y′)− 1

2r̄ |y
′ − y|2

}
= maxy′ infx

{
l(x, y′)− 1

2r̄ |y
′ − y|2

}
= maxy {h(y′)− 1

2r̄ |y
′ − y|2},

(3.14)

where min max = max inf because the bracketed expression is now convex in x as well as strongly
concave in y′.11 In particular, this relationship between ĥ and h implies that they have the same max
value µ and the same argmax set Z containing ȳ. To simplify, we can harmlessly suppose in what
follows that µ = 0 and ȳ = 0.

In terms of the self-conjugate function j(y) = 1
2 |y|2, (3.14) says −ĥ = (−h) r̄−1j, where denotes

infimal convolution. The mapping from y to the unique y′ giving the max at the end of (3.14) is the
prox mapping (I + r̄∂[−h])−1, which is single-valued and nonexpansive with the elements of Z, in
particular our ȳ = 0, as its fixed points [32, 12.12+12.17]. Hence for any λ > 0,

y ∈ λIB =⇒ ∃ y′ ∈ λIB with ĥ(y) = h(y′)− 1

2r̄
|y′ − y|2, (3.15)

11This is a special case of the minimax rule in [18, Theorem 37.3(b)].

21



where IB denotes the closed unit ball. Suppose (3.11) holds for h and the value b0. This can be
expressed under our simplification as −h ≥ δZ 2b0j on λIB. Then, for any y ∈ λIB, we have from
(3.15) the existence of y′ ∈ λIB such that

−ĥ(y) ≥ [δZ 2b0j](y
′) + r̄−1j(y′ − y) ≥ ( [δZ 2b0j] r̄−1j)(y). (3.16)

But the operation , being dual to addition, is commutative and associative, with α−1j β−1j =
(α + β)−1j (as seen through conjugacy). Therefore the right side of (3.16) is δZ ((2b−1

0 + r̄)−1j(y),
which is bdist2(y, Z) for the indicated choice of b.

The claim about (3.12) and (3.13) is based on identifying the function k̂ := 1
2d

2[−ĥ](ȳ |0) with
the function k r̄−1j for k := 1

2d
2[−h](ȳ |0), since that leads in parallel to b0 for h in (3.12) being

replaced by the indicated b for ĥ. In our simplified setting, ∆2
τ [−h](ȳ |0) = kτ in the notation kτ (η) =

τ−2[−h](τη), so that

k(η) = lim inf
η′→η
τ ↘ 0

kτ (η
′), or equivalently, epi k = lim sup

τ ↘ 0

epi kτ .

By the cluster description of outer limits in [32, 4.18], this corresponds to

epi k =
⋃{

epi k0
∣∣∣ ∃τk ↘0 with epi kτk → epi k0

}
, (3.17)

where epi kτk → epi k0 means that kτk epi-converges to k and implies that k0 is convex [32, 7B+4.15].
In the same way, in terms of k̂τ (η) = τ−2[−ĥ](τη), we have

epi k̂ =
⋃{

epi k̂0
∣∣∣ ∃τk ↘0 with epi k̂τk → epi k̂0

}
. (3.18)

Moreover, direct calculation reveals that

k̂τ = kτ [r̄−1j], or dually, k̂∗τ = k∗τ + r̄j. (3.19)

Confirming that k̂ = k r̄−1j amounts to confirming geometrically that epi k̂ = epi k+epi[r̄−1f ], where
the latter, by (3.16), is the union of all sets epi k0 + epi[r̄−1j] such that a sequence of functions kτk
with τk ↘0 epi-converges to k0. In view of (3.18), we can do that by demonstrating that the functions
k̂0 occuring there are the functions of the form k0 [r̄−1j] for k0 obtainable as one of the epi-limits
in (3.17). For this we can rely on (3.19) and the fact that epi-convergence is preserved in passing to
conjugates [32, 11.34]. The conclusion follows this way because epi-convergence of k∗τk + r̄j to some

k̂0 is equivalent to epi-convergence of k∗τk to some k0 [32, 7.8(a)].

4 Model support for confirming linear convergence

The obvious challenge in confirming linear convergence of the augmented Lagrangian method by
applying Theorems 3.2 to Theorem 3.1 is the obscurity of the dual objective function ĥ. Aside from
circumstances in the convex case of (P ) in which Theorem 3.3 might yield a convenient alternative
function h, which will be illustrated at the end of Section 5, we only have at our disposal conditions like
(3.11), (3.12) and (3.13). How can such conditions be understood as induced from verifiable properties
of problem (P ) itself? Conditions on the model function g can have a powerful role in answering this
question.
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As a first step toward demonstrating that, we look at a more general version of the quadratic growth
property in (3.11) with the aim of eventually invoking it for g∗ at ȳ with respect to F (x̄) ∈ ∂g(ȳ).
To maintain versatility, because the facts to be reported will have applications beyond just that one
situation, we pass to a general notational formulation in terms of a conjugate pair of functions f and
f∗ on IRm, where in particular f∗ might stand for −ĥ. Suppose ū ∈ ∂f∗(ȳ), or equivalently ȳ ∈ ∂f(ū),
so that

f∗(y) ≥ f∗(ȳ) + ū·(y − ȳ), with equality ⇐⇒ y ∈ ∂f(ū), (4.1)

and consider the property

∃ b > 0, λ > 0 such that |y − ȳ| ≤ λ =⇒ f∗(y) ≥ f∗(ȳ) + ū·(y − ȳ) + bdist2(y, ∂f(ū)). (4.2)

Aragon and Geoffroy have shown in [1] that this local growth condition on f is equivalent to a property
of ∂f called calmness at ū with respect to the subgradient ȳ ∈ ∂f(ū) [32, Sec. 9I]. With IB denoting
the closed unit ball (in any Euclidean space at hand), so that adding εIB to a point or cloed set creates
a “closed ε-neighborhood around it, the property in question can be expressed as

∃ a > 0, δ > 0, λ > 0, such that u ∈ [ū+ δIB] =⇒ ∂f(u) ∩ [ȳ + λIB] ⊂ ∂f(ū) + a|u− ū|IB. (4.3)

The sufficient criterion for the latter that we develop next will provide a valuable handle on verifying
the quadratic growth in (4.2).

Theorem 4.1 (a sufficient condition for subdifferential calmness). For a closed proper convex f
having ȳ ∈ ∂f(ū), the following circumstances, in particular, guarantee that ∂f is calm at ū for ȳ in
the sense of (4.3). On some neighborhood of ū, there is a composite representation f(u) = γ(Γ(u))
for a C2 mapping Γ and a closed proper convex function γ under the constraint qualification

ζ ∈ Ncl dom γ(Γ(ū)), ∇Γ(ū)∗ζ = 0 =⇒ ζ = 0 (4.4)

and the assumption that ∂γ is calm at w̄ = Γ(ū) in the sense that

∃κ ≥ 0 that ∂γ(w) ⊂ ∂γ(w̄) + κ|w − w̄|IB for w near w̄. (4.5)

Proof. The constraint qualification (4.4) activates the chain rule for subgradients in [32, 10.6], here
in the “regular” case, since γ is convex. That gives us, for u near ū, the formula

∂f(u) = ∇Γ(u)∗∂γ(Γ(u)) =
{
y
∣∣∣ ∃ z ∈ ∂γ(Γ(u)) with ∇Γ(u)∗z = y

}
. (4.6)

Let Z(u, y) denote the set of z corresponding to a pair (u, y) in this formula. We assert that

∃ ρ such that Z(u, y) ⊂ ρIB when (u, y) is near to (ū, ȳ) in gph ∂f . (4.7)

Otherwise there would exist (uk, yk) → (ū, ȳ) in gph ∂f with zk ∈ Z(uk, yk) having |zk| → ∞.
Then for εk = 1/|zk| → 0 and ζk = εkz

k with |ζk| = 1 we would have ζk ∈ ∂(εkγ)(Γ(u
k)) and

∇Γ(uk)∗ζk = εky
k → 0. Passing to a subsequence if necessary, we can suppose that ζk converges to

some ζ̄ with |ζ̄| = 1 and ∇Γ(ū)∗ζ̄ = 0. The functions εkγ epi-converge to the indicator of cl dom γ as
εk → 0 [32, 7.3], and their subdifferential mappings ∂(εγ) therefore converge graphically by Attouch’s
Theorem [32, 12.35] to the subdifferential of that indicator, which is the normal cone mapping Ncl dom γ .

Then from (Γ(uk), ζk) ∈ gph ∂(εkγ) with (Γ(uk), ζk) → (Γ(ū), ζ̄) we have (Γ(ū), ζ̄k) ∈ gphNcl dom γ .
But this constitutes for z = ζ̄ a violation of the constraint qualification (4.4).
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Therefore (4.7) is correct, so that for δ and λ chosen small enough, we have

|u− ū| ≤ δ =⇒ ∂f(u) ∩ [ȳ + λIB] = ∇Γ(u)∗[ρIB ∩ ∂γ(Γ(u))] (4.8)

and can estimate further that

∇Γ(u)∗
[
ρIB ∩ ∂γ(Γ(u))

]
⊂ ∇Γ(ū)∗

[
ρIB ∩ ∂γ(Γ(u))

]
+

[
∇Γ(u)∗ −∇Γ(ū)∗

][
ρIB ∩ ∂γ(Γ(u))

]
⊂ ∇Γ(ū)∗∂γ(Γ(u)) + [∇Γ(u)∗ −∇Γ(ū)∗][ρIB],

(4.9)
Because Γ is C2, there exist α > 0 and β > 0 such that

|Γ(u)− Γ(ū)| ≤ α|u− ū| and ||∇Γ(u)−∇Γ(ū)|| ≤ β|u− ū| when |u− ū| ≤ δ.

Then at the end of (4.9) we have [∇Γ(u)∗ − ∇Γ(ū)][ρIB] ⊂ βρ|u − ū|IB, and on the other hand, by
the calmness assumed in (4.5), ∂γ(Γ(u)) ⊂ ∂γ(Γ(ū)) + α|u − ū|IB. That lets us to propagate the
combination of (4.8) and (4.9) into

|u− ū| ≤ δ =⇒ ∂f(u) ∩ [ȳ + λIB] ⊂ ∇Γ(ū)∗
[
∂γ(Γ(ū)) + ακ|u− ū|IB

]
⊂ ∇Γ(ū)∗∂γ(Γ(ū)) + ||∇Γ(ū)||ακ|u− ū|IB + βρ|u− ū|IB
= ∂f(ū) + a|u− ū|IB for a = βρ+ ακ||∇Γ(ū)||.

This confirms the property in (4.3) that was our goal.

The calmness property on ∂γ in (4.5) is stronger than the one on ∂f in (4.3) in being localized
only in the domain and not around a pair in the graph. It is known to hold in particular for set-valued
mappings that are piecewise polyhedral in having a graph that is the union of finitely many polyhedral
convex sets [32, 9.57]. For mappings that are the subdifferentials of convex functions, that property
corresponds precisely to the function being piecewise linear-quadratic in the sense that its domain is
the union of finitely many polyhedral convex sets, on each of which it is given by a polynomial of
degree no more than 2 [32, Sec. 10E].

A function f that has a local representation at ū as described in Theorem 4.1 in which γ is
piecewise linear-quadratic is, by definition, fully amenable at ū [32, 10F]. Theorem 4.1 therefore covers
fully amenable convex functions and brings to view a rich class of examples of functions having the
equivalent properties in (4.2) and (4.3).

Corollary 4.1.1 (dual quadratic growth from full amenability). If ȳ ∈ ∂f(ū) for a convex function
f on IRm that is fully amenable at ū, then the mapping ∂f is calm at ū for ȳ as in (4.3), and the
conjugate function f∗ has the local quadratic growth property in (4.2).

With these results about quadratic growth and subdifferential calmness in hand, we can proceed
to establish a means of verifying the growth assumption in Theorem 3.2(a) in terms of a property of
the model function g.

Theorem 4.2 (criterion for the growth condition). Express Z as G ∩ M for G = ∂g(F (x̄)) and
M = { y | 0 = ∇xL(x̄, y) = ∇f0(x̄) +∇F (x̄)∗y}, noting that G = { y | g∗(y) = g∗(ȳ) + F (x̄)·(y − ȳ)}.
Suppose that G is polyhedral, and

∃ b0 > 0, λ0 > 0 such that, when |y − ȳ| < λ0,
g∗(y) ≥ g∗(ȳ) +∇F (x̄)∗(y − ȳ) + b0 dist

2(y,G).
(4.10)
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Assume ∇F (z̄) ̸= 0 to avoid the degenerate case where the affine set M is all of IRm, and with respect
to M⊥, the subpace orthogonal to M , let

β(∇F (x̄)) = min
{
|∇F (x̄)∗η|

∣∣∣ η ∈M⊥, |η| = 1
}
. (4.11)

Then β(∇F (x̄)) > 0 and there exists κG,M > 0 such that condition (3.11) in Theorem 3.2(a) holds for

b =
κG,M

aG + aM
with aG = b−1

0 + 2r̄ and aM =
2||∇2

xxL(x̄, ȳ) + r̄I||
β(∇F (x̄))2

. (4.12)

Proof. Let µ = maxY ĥ, hence µ = l(x̄, ȳ) = f0(x̄) + g(F (x̄)) as well, through Theorem 2.1. We

want to identify b such that µ− ĥ(y) is bounded below by bdist2(y, Z) on a neighborhood of ȳ.
The functions d2G(y) := dist2(y,G) and d2M (y) := dist2(y,M) will have a crucial role to play. Our

assumption that G is polyhedral makes d2G be piecewise linear-quadratic [32, 11.28] as well as C1+. On
the other hand, d2M is quadratic, since M is affine. Then d2G + d2M is piecewise linear-quadratic and
C1+, moreover with

min(d2G + d2M ) = 0, argmin(d2G + d2M ) = Z, 0 ∈ ∂(Dg +Dm)(ȳ).

The conjugate function f = (d2G + d2M )∗, having ȳ ∈ ∂f(0), is then piecewise linear-quadratic, too,
because that property is dual to itself [32, 11.14]. Piecewise linear-quadratic functions are fully
amenable everywhere, so Corollary 4.1.1 is applicable and yields for f∗ = d2G + d2M the quadratic
growth property that

∃κG,M > 0 such that dG(y) + dM (y) ≥ κG,M dist2(y, Z) for y near ȳ. (4.13)

If we can establish local bounds of the form

µ− ĥ(y) ≥ a−1
G d2G(y), µ− ĥ(y) ≥ a−1

M d2M (y), for some aG > 0, aM > 0, (4.14)

for aG and aM as described in (4.12), we will have (aG + aM )[µ− ĥ] ≥ d2G + d2M around ȳ and be able
to conclude through (4.13) that the value b designated in (4.12) is valid for (3.11).

A shift in perspective will facilitate the development of the estimates in (4.14). Recalling that
g(F (x̄)) + g∗(ȳ) = F (x̄)·ȳ, because ȳ ∈ ∂g(F (x̄), consider the conjugate pair

ḡ(u) = g(F (x̄) + u)− g(F (x̄)), ḡ∗(y) = g∗(y)− g∗(ȳ)− F (x̄)·(y − ȳ),
with ḡ(0) = 0 = min ḡ∗ = ḡ∗(ȳ), argmin ḡ = G, ḡ∗(y) ≥ b0 dist

2(y,G),
(4.15)

the last by our assumption (4.10). Switching from functions of x to functions of ξ = x− x̄, define

f̄0(ξ) = f0(x̄+ ξ)− f0(x̄) with f̄0(0) = 0, ∇f̄0(0) = ∇f0(x̄),
F̄ (ξ) = F (x̄+ ξ)− F (x̄) with F̄ (0) = 0, ∇F̄ (0) = ∇F (x̄). (4.16)

Then g(F (x) + u) = g
(
F (x̄) + F̄ (ξ) + u

)
= ḡ(F̄ (ξ) + u) + g(F (x̄)), so that

φ(x̄+ ξ, u) = µ+ f̄0(ξ) + ḡ(F̄ (ξ) + u),
l(x̄+ ξ, y) = µ+ f̄0(ξ) + y·F̄ (ξ)− ḡ(y),
lr̄(x̄+ ξ, y) = µ+ f̄0(ξ) + y·F̄ (ξ) + r̄

2 |F̄ (ξ)|
2 − ḡ(y + r̄F̄ (ξ)).

(4.17)
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According to the definition of ĥ, this gives us

µ− ĥ(y) = max
x̄+ξ∈X

{
ḡ∗r̄ (y + r̄F̄ (ξ))−

(
f̄0(ξ) + y·F̄ (ξ) + r̄

2 |F̄ (ξ)|
2
)}
. (4.18)

In particular, in taking ξ = 0, we see from (4.18) that µ− h̄(y) ≥ ḡ∗r̄ (y). Here ḡ
∗
r̄ , like g

∗
r , is given

by infimal convolution of ḡ∗ with r̄−1j for the function j = 1
2 | · |2, so by the final part of (4.15), ḡ∗r̄

is bounded above by the infimal convolution of r̄−1j with b0 dist
2(·, Z), which is itself generated by

infimal convolution of δG with 2b0j. Infimal convolution of α−1j with β−1j produces (α+β)−1j, since
in conjugacy with j∗ = j this corresponds to αj + βj = (α + β)j. In the present case where α = r̄
and β = (2b0)

−1, we are looking at the infimal convolution of δG with α−1j and β−1j, hence that of
δG with (α + β)−1j, which results in 1

2(α + β)−1 dist2(·, Z). This function, therefore, is ≤ ḡ∗r̄ , hence
≤ µ − ĥ. Thus, the first inequality in (4.14) holds for aG = 2(r̄ + (2b0)

−1) = b−1
0 + 2r̄, which is the

value of aG indicated in (4.12).
Working now towards the second inequality in (4.13), we take advantage of the fact that min ḡ∗ = 0

to derive from (4.18) the estimate

µ− ĥ(y) ≥ − min
x̄+ξ∈X

k(ξ, y) for k(ξ, y) = f̄0(ξ) + yF̄ (ξ) + r̄
2 |F̄ (ξ)|

2. (4.19)

The function k is strongly convex in ξ when x̄ + ξ ∈ X , inasmuch as lr̄(x̄ + ξ, y) has this property
when y ∈ Y (from our set-up with strong variational sufficiency). It has

k(0, y) = 0 and ∇ξk(0, y) = ∇f0(x̄) +∇F (x̄)∗y = ∇F (x̄)∗(y − ȳ),

since ∇f0(x̄) +∇F (x̄)∗ȳ = ∇xL(x̄, ȳ) = 0, as well as

∇2
ξξk(0, y) = ∇2

xxL(x̄, ȳ) + r̄I +
∑m

i=1
(yi − ȳi)∇2fi(x̄),

where the matrix ∇2
xxL(x̄, ȳ) + r̄I is positive-definite (by virtue of the strong concavity of lr̄ in its

primal argument). But the norm of the matrix term at the end can be brought below any ε by
restricting y to a small-enough neighborhood of ȳ. Hence through quadratic expansion,

∀r > r̄, ∃ ρ, δ > 0 such that, for the matrix Hr = ∇2
xxL(x̄, ȳ) + rI,

k(ξ, y) ≤ ξ·∇F (x̄)∗(y − ȳ) + 1
2ξ·Hrξ for |ξ| ≤ ρ when |y − ȳ| ≤ δ.

(4.20)

To gain understanding of the vector ∇F (x̄)∗(y − ȳ) in (4.20), we appeal to the subspace M⊥

orthogonal to the affine set M , which is the range of the linear transformation ξ 7→ ∇F (x̄)ξ and
is complementary to the subspace M0 parallel to M , that being in turn the kernel of the linear
transformation η 7→ ∇F (x̄)∗η. The projection mappings PM and PM⊥ furnish the decomposition

y = PM (y) + PM⊥(y) with |PM⊥(y)| = dM (y) (4.21)

and yield ∇F (x̄)∗(y − ȳ) = ∇F (x̄)∗PM⊥(y), since both PM (y) and ȳ belong to M , so their difference
belongs to M0. Applying this insight to (4.20) and looking back to (4.19), we see that

|y − ȳ| ≤ δ =⇒ µ− ĥ(y) ≥ −min
|ξ|≤ρ

{
ξ·∇F (x̄)∗PM⊥(y) +

1
2ξ·Hrξ

}
≥ −min

|ξ|≤ρ

{
ξ·∇F (x̄)∗PM⊥(y) +

1
2 ||Hr|| |ξ|2

}
.

(4.22)
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By letting η stand for ∇F (x̄)∗PM⊥(y) in the last minimization for simplicity, it can be seen that the
minimizing ξ equals −||Hr||−1η when ||Hr||−1|η| < ρ, in which case the minimum is global over IRm

by convexity. Then

−min
|ξ|≤ρ

{
ξ·∇F (x̄)∗PM⊥(y) +

1
2 ||Hr|| |ξ|2

}
= max

|ξ|∈IRm

{
ξ·[−∇F (x̄)∗PM⊥(y)]− 1

2 ||Hr|| |ξ|2
}

=
1

2||Hr||
|∇F (x̄)∗PM⊥(y)|2 ≥

1

2||Hr||
β(∇F (x̄))2|PM⊥(y)|2

by (4.11), as continued from (4.22). But |PM⊥(y)2| = dist(y,M). Thus, the second estimate in (4.14)
holds for the value of aM indicated in (3.15). This completes the proof of the theorem.

The result in Theorem 4.2 is formulated to bring out the influence of the threshold value r̄ in the
variational sufficiency. Both aG and aM increase with r̄, and that lowers b and the accompanying rate
of linear convergence.

In the degenerate case excluded from Theorem 4.2, where ∇F (x̄) = 0 and M = IRm, there is no
distinction between Z and G. Then linear convergence comes out anyway under (4.10) with b = a−1

G ,
and no polyhedral assumption on G. That’s the situation also when G ⊂M , even if ∇F (x̄) ̸= 0.

An example illustrating the general reason for assuming G to be polyhedral in Theorem 4.2 is
produced in IR2 by taking G to be the closed disk of radius 1 centered at (1, 0) and M to be the
vertical axis. Then Z is just {(0, 0)}, so that dist2(y, Z) = y21 + y22, but dist

2(y,G) + dist2(y,M) = y21
when (12y1, y2) ∈ G. That precludes the existence of the positive κG,M in (4.13) that enters in the
growth conditionn (4.12). This trouble could be avoided by replacing the assumption of polyhedality
by the assumption that M meets the relative interior of G. But that wouldn’t offer much practical
assistance in the absence of a tool of verification.

Second-order difference quotients and second subderivatives as in (3.9) and (3.10) have already been
put to important use in formulating Theorem 3.2 and proving Theorem 3.3, but will help even more
in the next stage of development. The vehicle for explaining additional background most conveniently
will now be the model function g, although other convex functions like g∗, gr, g∗r , and the primal/dual
functions φ̂ and −ψ̂ will benefit later as well. Shifting from the k notation in (3.9) and (3.10), consider
u and y with y ∈ ∂g(u) for τ > 0 the second-order difference quotient function

∆2
τg(u |y)(ω) =

[
g(u+ τω)− g(u)− τω·y

]
/12τ

2 (4.23)

and the corresponding second subderivative function

d2g(u |y)(ω) = lim inf
ω′→ω
τ ↘ 0

∆2
τg(u |y)(ω′), (4.24)

the formula for which means that the epigraph of d2g(u |y) is the outer limit of the epigraphs of the
functions ∆2

τg(u |y) as τ ↘0 in the sense of set convergence [32, Chap. 4]. If that epigraph is also
the inner limit, so that ∆2

τg(u |y) epi-converges to d2g(u |u) as τ ↘0, then g is said to be twice epi-
differentiable at u for y. That’s especially of interest in our situation, because epi-convergence preserves
convexity [32, 7.17] and is itself preserved in conjugacy [32, 11.34]. The conjugate relationship between
the convex functions 1

2∆
2
τg(u |y) and 1

2∆
2
τg

∗(y |u) leads to the striking fact that

g is twice epi-diff. at u for y ⇐⇒ g∗ is twice epi-diff. at y for u,

and then 1
2d

2g(u |y) and 1
2d

2g∗(y |u) are conjugate convex functions.
(4.25)

Another remarkable thing about second-order epi-differentiabiliy is the prescription it affords for differ-
entiating subgradient mappings. The mapping ∂g is said to be proto-differentiable at u for y ∈ ∂g(u)
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if the set-valued difference quotient mapping ∆τ [∂g](u |y) : ω 7→ τ−1[∂g(u+ τω)− y] converges graph-
ically at τ → 0; the limit mapping, the graphical derivative, is denoted then by D[∂g](u |y) [32, 10G]..
In fact ∆τ [∂g](u |y) is the subgradient mapping for the function 1

2∆
2
τg(u |y), so it’s immediate from

Attouch’s Theorem [32, 12.35+13.40] that

g is twice epi-diff. at u for y ⇐⇒ ∂g is proto-diff. at u for y,

and then ∂[12d
2g(u |y)] = D[∂g](u |y).

(4.26)

A special aspect of the duality in (3.28) that we’ll need to draw on here is the role of nonnegativity.
Convexity of g and g∗ with y ∈ ∂g(u), equivalently u ∈ ∂g∗(y), makes the conjugate convex functions
1
2d

2g(u |y) and 1
2d

2g∗(y|u) be nonnegative. Because those functions are positively homogeneous of
degree two, the convex sets dom d2g(u |y) = {ω | d2g(u |y)(ω) <∞} and

ker d2g∗(y |u) := { η | d2g∗(y |u)(η) = 0} = argmin d2g∗(y |u)

are cones. Moreover from a rule of convex analysis (specializing [32, 11.5] to nonnegagive functions
that are positively homegeneous of degree 2), we have the polarity relations

[dom d2g(u |y)]∗ = ker d2g∗(y |u), [ker d2g∗(y |u)]∗ = cl[dom d2g(u |y)]. (4.27)

It’s also known from [32, 13.5] that dom d2g(u |y) lies in the normal cone N∂g(u)(y), which through
convexity is polar to the tangent cone T∂g(u)(y). That leads through (4.27) to the conclusion in the
context of (4.25) that

cl[dom d2g(u |y)] ⊂ N∂g(u)(y) and ker d2g∗(y |u) ⊃ T∂g(u)(y) always,

with cl[dom d2g(u |y)] = N∂g(u)(y) ⇐⇒ ker d2g∗(y |u) = T∂g(u)(y).
(4.28)

Theorem 4.3 (criterion for the second-order condition). Under the assumption that ∂g(F (x̄)) is
polyhedral, condition (3.13) in Theorem 3.2(b) will be satisfied if g∗ is twice epi-differentiable at ȳ for
F (x̄) ∈ ∂g∗(ȳ) and

d2g∗(ȳ|F (x̄))(η) = 0 =⇒ η ∈ T∂g(F (x̄)(ȳ), (4.29)

which is equivalent to having g twice epi-differentiable at F (x̄) for ȳ ∈ ∂g(F (x̄)) and the closure of
dom d2g(F (x̄) | ȳ)] being all of the normal cone N∂g(F (x̄))(ȳ). Furthermore, this sufficient condition is
necessary for (3.13) to hold without drawing on further information about ∇F (x̄) in the relationship
between Z and ∂g(F (x̄)).

Proof. This will depend on connecting d2[−ĥ](ȳ |0) with d2g∗(ȳ |F (x̄)), which will be possible from
the perspective of ĥ in (D̂) coming from a restriction operation on ψ̂. It’s important from that angle to
understand the subgradients and second subderivatives of the convex function −ψ̂, which are partnered
through the conjugacy (2.5) with those of φ̂.

The argument based on the Lipschitz continuity of the argmin mappings in (3.2), which led to the
conclusion about −ĥ in (3.3), leads equally through the formula for ψ̂ in (2.4) to the conclusion that

ψ̂ is C1+ concave on int[V × Y] with ∇ψ̂(y) = (x,∇ylr̄(x, y)) for x = Ar̄(0, y). (4.30)

This simplifies consideration of second subderivatives of −ψ̂ from the perspective of their tie to proto-
derivatives of the subgradient mapping ∂[−ψ̂] in the pattern of (4.26). With that subgradient mapping
reduced to −∇ψ̂ and being Lipschitz continuous, the formula for d2[−ψ̂](v, y |x, u), in which (x, u) =
−∇ψ̂(v, y), reduces to

d2[−ψ̂](v, y |x, u)(θ, η) = lim inf
τ→0

∆2
τ [−ψ̂](v, y |x, u)(θ, η).

28



Twice epi-diffferentiability corresponds to lim inf = lim, because pointwise convergence of functions
of (θ, η) as τ → 0 automatically results in uniform convergence on bounded sets of (θ, η) vectors by
the Lipschitz continuity. It follows then from having ĥ(y) = ψ̂(0, y) that

twice epi-differentiability of −ψ̂ at (0, ȳ) for (x̄, 0) = −∇ψ̂(0, ȳ)
=⇒ twice epi-differentiability of −ĥ at ȳ for 0 = −∇ĥ(ȳ),

moreover with d2[−ĥ](ȳ |0)(η) = d2[−ψ̂](0, ȳ | x̄, 0)(0, η).

(4.31)

On the other hand, because −ψ̂ and φ̂ are conjugate convex functions (2.5), we have in the pattern
of (4.25) that

[twice epi-differentiability of −ψ̂ at (v, y) for (x, u) = −∇ψ̂(v, y)]
⇐⇒ [twice epi-differentiability of φ̂ at (x, u) for (v, y) ∈ ∂φ̂(x, u)]

and then 1
2d

2[−ψ̂](v, y |x, u) is conjugate to 1
2d

2φ̂(x, u |v, y).

(4.32)

In applying this to (4.31) we can appeal to the duality between the operations of restriction and
inf-projection of convex functions [32, 11.23(c)] to see that

twice epi-differentiability of φ̂ at (x̄, 0) for (0, ȳ) ∈ ∂φ̂(x̄, 0)

=⇒ twice epi-differentiability of −ĥ at ȳ for 0 = −∇ĥ(ȳ), and then
1
2d

2[−ĥ](ȳ |0) is conjugate to the function ω 7→ minξ[
1
2 φ̂(x̄, 0 |0, ȳ)](ξ, ω).

(4.33)

In carrying this further, we look at the close relationship between φ̂ and φr̄. The definition of lr̄
in (1.3) as infu {φr̄(x, u)− y·u} says that −lr̄(x, ·) is the convex function on IRm conjugate to φr̄(x, ·),
whereas the definition of φ̂ in (2.4) says that φ̂(x, ·) is the convex function conjugate to −lr̄(x, ·),
when x ∈ X . For such x, therefore, φ̂(x, ·) is the biconjugate of φr̄(x, ·), which is its convex hull. In
our setting of strong variational sufficiency, however, φr̄ is variationally strongly convex at (x̄, 0) for
(0, ȳ) ∈ ∂φr̄(x̄, 0); the graph of ∂φr̄ in some localization around (x̄, 0; 0, ȳ), and the associated values
of φr̄ there are indistinguishable from those of some convex function. The convex hull connection with
φ̂ requires that convex function to agree locally with φ̂. In that localization, then,

[twice epi-differentiability of φ̂ at (x, u) for (v, y) ∈ ∂φ̂(x, u)]
⇐⇒ [twice epi-differentiability of φr̄ at (x, u) for (v, y) ∈ ∂φr̄(x, u)]

and then d2φ̂(x, u |v, y) = d2φr̄(x, u |v, y).
(4.34)

In particular, d2φ̂(x̄, 0 |0, ȳ) can be replaced in (4.33) by d2φr̄(x̄, 0 |0, ȳ).
To arrive at a formula for d2φr̄(x̄, 0 |0, ȳ), we calculate directly with the second-order difference

quotients:

∆2
τφr̄(x̄, 0 |0, ȳ)(ξ, ω) =

[
φ(x̄+ τξ, 0 + τω)− φr̄(x̄, 0)− τ(ξ, ω)·(0, ȳ)

]
/12τ

2

=
[
f0(x̄+ τξ) + g(F (x̄+ τξ) + τω) + r̄

2 |τω|
2 − f0(x̄)− g(F (x̄))− τω·ȳ

]
/12τ

2.
(4.35)

In terms of ∆τF (x̄)(ξ) = τ−1[F (x̄+ τξ)− F (x̄)], which converges to ∇F (x̄)ξ as τ ↘0, we can express
g(F (x̄+ τξ) + τω) as g(F (x̄) + τ [∆τF (x̄)(ξ) +ω] ) and aim to incorporate the second-order difference
quotient

∆2
τg(F (x̄) | ȳ)(ω

′) =
[
g(F (x̄) + τω′)− g(F (x̄))− τω′·ȳ

]
/12τ

2
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into a reformulation of (4.35) by way of[
g(F (x̄) + τ [∆τF (x̄)(ξ) + ω])− g(F (x̄))− τω·ȳ

]
/12τ

2

= ∆2
τg(F (x̄) | ȳ)(∆τF (x̄)(ξ) + ω) +

[
∆τF (x̄)(ξ)/

1
2τ

]
.

(4.36)

Assistance will come from recognizing, through 0 = ∇L(x̄, ȳ) = ∇f0(x̄) +∇F (x̄)∗ȳ, that[
L(x̄+ τξ, ȳ)− L(x̄, ȳ)− τξ·∇xL(x̄, ȳ)

]
/12τ

2 =
[
f0(x̄+ τξ)− f0(x̄) + τ∆τF (x̄)(ξ)

]
/12τ

2,

and consequently

f0(x̄+ τξ)− f0(x̄)
1
2τ

2
+

∆τF (x̄)(ξ)
1
2τ

= ξ·∇2
xxL(x̄, ȳ)ξ +

o(τ2)

τ2
.

We are able from this and (4.36) to continue (4.35) as the expression

ξ·∇2
xxL(x̄, ȳ)ξ + r̄|ω|2 +∆2

τg(F (x̄) | ȳ)(∆τF (x̄)(ξ) + ω) +
o(τ2)

τ2

and get from the definition of second subderivatives that

d2φr̄(x̄, 0 |0, ȳ)(ξ, ω) = lim inf
(ξ′,ω′)→(ξ,ω)

τ ↘ 0

∆2
τφr̄(x̄, 0 |0, ȳ)(ξ′, ω′)

= ξ·∇2
xxL(x̄, ȳ)ξ + r̄|ω|2 + lim inf

(ξ′,ω′)→(ξ,ω)
τ ↘ 0

∆2
τg(F (x̄) | ȳ)(∆τF (x̄)(ξ

′) + ω′).

This makes clear that

[twice epi-differentiability of φr̄ at (x, u) for (v, y) ∈ ∂φr̄(x, u)]
⇐⇒ [twice epi-differentiability of g at F (x̄) for ȳ], and then

d2φr̄(x̄, 0 |0, ȳ)(ξ, ω) = ξ·∇2
xxL(x̄, ȳ)ξ + r̄|ω|2 + d2g(F (x̄) | ȳ)(∇F (x̄)ξ + ω).

(4.37)

In consolidating with (4.33), we have learned that

[twice epi-differentiability of g at F (x̄) for ȳ]

=⇒ [twice epi-differentiability of −ĥ at ȳ for 0 = −∇ĥ(ȳ)], and then(
1
2d

2[−ĥ](ȳ |0)
)∗
(ω) = minξ

{
ξ·∇2

xxL(x̄, ȳ)ξ + r̄|ω|2 + d2g(F (x̄) | ȳ)(∇F (x̄)ξ + ω)
}
.

(4.38)

In particular then, through the equivalence of the assumed twice epi-differentiability of g at F (x̄) for
ȳ with that of g∗ at ȳ for F (x̄), we see that

dom (d2[−ĥ](ȳ |0))∗ = {ω | ∃ ξ with ∇F (x̄)ξ + ω ∈ dom d2g(F (x̄) | ȳ)},

By taking polars to get kernels as indicated in (4.27), we obtain

ker g∗(ȳ |F (x̄)) ∩ ker∇F (x̄)∗ = ker d2[−ĥ](ȳ |0) = { η | d2[−ĥ](ȳ |0)(η) = 0}, (4.39)

where ker∇F (x̄)∗ := { η | ∇F (x̄)∗η = 0}.
We are close to our goal of establishing under the assumed twice epi-differentiability that (4.29)

furnishes a criterion for condition (3.13) of Theorem 3.2(b) to hold. Tbat condition can be stated as
ker[−ĥ]∩NZ(ȳ) = {0}. In the G, M , notation of Theorem 4.2 expressing Z as G∩M , our assumption
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that G is polyhedral (whereas M is affine) makes NZ(ȳ) = NG(ȳ) +M⊥. Also, ker∇F (x̄)∗ = M⊥⊥.
This translates (3.13) via (4.39) into the condition that

ker d2g∗(ȳ |F (x̄)) ∩M⊥⊥ ∩ [NG(ȳ) +M⊥] = {0}, (4.40)

while (4.29) takes the form that
ker g∗(ȳ |F (x̄)) ⊂ TG(ȳ). (4.41)

Our claim is that (4.41) implies (4.40). Indeed, if we had (4.41) but not (4.40), there would exist
nonzero a ∈ TG(ȳ) ∩M⊥⊥ and u ∈ M⊥ such that a − u ∈ NG(ȳ). But then a·(a − u) ≤ 0 from the
usual relationship between tangent vectors and normal vectors, and yet a·u = 0 because these vectors
belong to complementary subspaces, so a·a = 0 in contradiction to a ̸= 0.

The final task is illustrating that, if (4.38) doesn’t hold, i.e., if ker g∗(ȳ |F (x̄))\TG(ȳ) contains a
vector a ̸= 0, then there exists F such that (4.40) fails. Take F to be an affine mapping x 7→ ȳ+A(x−x̄)
for which the range of x 7→ Ax is the hyperplane a⊥. Then∇F (x̄) = A,M⊥ = a⊥ andM⊥⊥ is the one-
dimensional subspace generated by a. In this case, a ∈ ker d2g∗(ȳ |F (x̄) ∩M⊥⊥ by choice. However,
since a /∈ TG(x̄), there must exist b in the polar cone NG(x̄) such that a·b > 0. Choose λ to make
(a−λb)·a = 0, i.e., λ = |a|2/a·b. Then a−λb ∈M⊥ whilc λb ∈ NG(ȳ), hence a ∈ NG(x̄)+M

⊥. Thus,
a violates (4.40), and the claim of necessity is confirmed.

5 Linear convergence examples and conclusions

The hard work in the two preceding sections has brought insights that enable us now to reach help-
ful conclusions about the behavior of the augmented Lagrangian method for solving (P ) in various
situations..

In this section our focus will continue to be on vector pairs (x̄, ȳ) that satisfy, along with the first-
order optimality conditions ȳ ∈ g(F (x̄)) and ∇xL(x̄, ȳ) = 0, the strong variational sufficient condition
for local optimality. We’ll refer to these as strongly optimal pairs for short. Theorem 3.1 established
that the pairs (xk, yk) generated by the algorithm (under the given details of implementation with
inexact minimization steps) are sure to converge to some strongly optimal pair (x̄, ȳ), if initiated in
adequate proximiity. The question of when that convergence might be linear, in one way or another,
was addressed at a basic level in Theorems 3.1 and 3.2, but the answer there hinged on properties
of a localized dual objective function, rather than on aspects of (P ) that might be checked directly.
Criteria developed in Theorems 4.2 and 4.3, however, opened a path to verification through properties
just of the model function g or its conjugate g∗. Our plan now is to follow that path toward results
which can more readily be appreciated for their applicability. Afterward we’ll take up the alternative
possibilities for the convex case of (P ) offered by Theorem 3.3.

The picture of linear convergence in Theorem 3.1 embraced not only xk and yk, but also the
vectors x̄k that tacitly follow along in (2.14) and converge to x̄ as well. When the decision is made
to terminate the xk sequence, the vector at the same stage in the x̄k sequence can be effectively be
pulled up by “exact minimization” in that final iteration, without any attention to such exactness
having to be paid in earlier iterations. The superior linear convergence properties of the x̄k sequence
can therefore be of real practical interest.

To juggle all of this for the task at hand, we pose a catch-all definition which covers both of the
stopping criteria (1.15b) and (1.15c) used in Theorem 2.3.

Definition (full model support for linear convergence). The model function g in (P ) will be said to
provide full support for linear and superlinear convergence at a strongly optimal pair (x̄, ȳ) when the
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sequences xk → x̄, yk → ȳ and x̄k → x̄ generated by the augmented Lagrangian method in accordance
with Theorem 2.3 are guaranteed to have the following convergence properties, without need of any
accompaning assumptions on ∇F (x̄):

(a) under (1.15b), dist(yk, Z) converges Q-linearly to 0 and |x̄k − x̄| converges R-linearly to 0.
(b) under (1.15c), |yk − ȳ| converges Q-linearly to 0 and |xk − x̄| converges R-linearly to 0.

Here the alternative stopping criteria (1.16b) and (1.16c) can replace (1.15b) and (1.15c) under the
stipulations in Theorem 2.5.

Superlinear convergence in each case corresponds to the ultimate rate of linear convergence in
Theorem 3.2 being 0, which is guaranteed when the limit c∞ of the proximal parameters ck is ∞.

We have already brought up, ahead of Corollary 4.1.1, the concept of a function being fully
amenable in the sense of being representable as the composite of a piecewise linear-quadratic function
with a C2 mapping under a basic constraint qualification; see [32, 10F] for background. Full amenability
has many favorable consequences in second-order variational analysis and is enjoyed by large classes
of functions that commonly appear in optimization, cf. [32, 10.24]. Now we consider that property for
the model function g itself.

Example 5.1 (linear convergence with fully amenable modeling). If g is fully amenable at F (x̄), then
g provides full support for linear and superlinear convergence.

Detail. In this case Corollary 4.1.1 is applicable with f = g and ū = F (x̄), and the growth
condition (4.2) it yields for f∗ becomes the growth condition (4.10) assummed in Theorem 4.2 for
g∗. Full amenability furthermore makes ∂g be polyhedral-valued through the chain rule in [32, 10.6]
(as articulated for f in (4.6)). Thus, Theorem 4.2 is applicable and guarantees the growth condition
(3.11) in Theorem 3.2(a) — as long as ∇F (x̄) ̸= 0. But, as observed after the proof of Theorem 4.2,
that growth condition holds trivially in the degenerate case when ∇F (x̄) = 0.

The second-order condition (3.13) in Theorem 3.2(b) is always satisfied under full amenability,
too. To confirm that, we can appeal to the chain rule for second subderivatives in [32, 13.14]. Accord-
ing to that result, full amenability of g at F (x̄) implies twice epi-differentiability with the function
d2g(F (x̄) | ȳ) having N∂g(F (x̄))(ȳ) as its domain. That property is equivalent to (3.13), as pointed out
in Theorem 3.2(b).

Example 5.1 greatly adds to the range of problems (P ) accompanied by results on linear conver-
gence of the augmented Lagrangian method. Even for previously studied cases like classical nonlinear
programming, it offers, under the definition of “full model support,” new conclusions and perspectives.
This will be seen from various specializations of full amenability.

Example 5.2 (linear convergence with piecewise linear-quadratic modeling). If g is piecewise linear-
quadratic, then g provides full support for linear and superlinear convergence. In particular that covers
models where g = δK for a polyhedral convex set, as for instance in classical nonlinear programming.

Detail. This just specializes Example 5.1 to the case of the full amenability representation g =
γ(Γ(u)) in which Γ is the identity mapping.

Linear convergence results in classical nonlinear programming, which Example 5.2 enhances in
several ways, have already been discussed in Section 1. This is only one of many versions of (P ) in
which g is piecewise linear-quadratic and the strong variational sufficient condition for local optimality
is equivalent to, or a bit sharper than, the previously promoted second-order sufficient condition, as
explained in [30]. The g behind the modeling possibility in (1.6), for instance, is piecewise linear-
quadratic when the C component is polyhedral. In fact it’s then piecewise linear (a polyhedral convex
function in the sense of [18]).
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A recent paper of Hang and Sarabi [10] focuses precisely on linear convergence of the augmented
Lagrangian method for the class of generalized nonlinear programming problems in Example 5.2, and
the results there can be compared to the ones obtained here. Instead of strong variational sufficiency
with its tie to the strong convexity in Theorem 1.2, that paper utilizes a “uniform quadratic growth
condition” on the augmented Lagrangian lr(x, y) locally in x and obtains Q-linear convergence of
(xk, yk) to (x̄, ȳ) for some ȳ in Z, which doesn’t need to be a singleton. The relationship between that
kind of convergence and the kinds in our definition of “full support” has already been discussed in
Section 1. The exact relationship in [10] between the ALM parameter rk and our threshold r̄ is not
easy to determine. But rk − r̄ is required to be high enough to cover estimates which, we think, might
well imply rk > 2r̄ and thus signal a connection with relaxed proximal point step-sizes, as discussed
around (1.14) and addressed in Theorem 2.4.

A key point in the comparison with our results, however, is that in [10] exact execution of the
minimization in every iteration of the augmented Lagrangian method is demanded (xk = x̄k), instead
of stopping criteria as in (2.11). But a feature of the piecewise linear-quadratic model in [10] that’s
absent in our model is the incorporation of an abstract constraint x ∈ X for a polyhedral convex set
X, but their culminating results require X to be affine. In the framework we’ve limited ourselves
to, an abstract constraint can be handled only by building it into the model function g with a term
δX . That triggers an extra perturbation component u′, shifting δX(x) to δX(x + u′), and an extra
multiplier component y′ for it in the ALM computations. (Future elaborations could get around this.)

Example 5.1 covers much more than the piecewise linear-quadratic modeling in Example 5.2. For
instance, it allows g to be any convex function that can be characterized locally around ū as

g = g0 + δC with C described by finitely many C2 constraints under a basic constraint
qualification and g0 a C2 function or the pointwise max of finitely many C2 functions.

(5.1)

Furthermore, full amenability is preserved under various operations like addition and some kinds of
composition. Particularly of interest in our modeling framework is the fact that when u ∈ IRm is
comprised of components uj ∈ IRmj , j = 1, . . . , s,

if g(u1, . . . , us) = g1(u1) + · · ·+ gs(us) and each gj is fully
amenable at ūj , then g is fully amenable at ū = (ū1, . . . , ūs).

(5.2)

A very special case of (5.1) lies behind second-order cone programming, as we point out next.

Example 5.3 (linear convergence in second-order cone programming). If g = δK for the second-order
cone K, then g provides full support for linear and superlinear convergence, as long as F (x̄) ̸= 0.

Detail. The cone K in question can be descrbed as consisting of the points u = (u1, . . . , um)
satisfying |(u2, . . . , um)| − u1 ≤ 0. This fits Example 5.1 as a case of full amenability within (4.2)
described by a single C2 constraint, provided that we are not at the origin.

The results for second-order cone programming in the recent article of Hang, Mordukhovich and
Sarabi [9] differ from ours in Example 5.3 in several ways. There, as in [10], a sort of Q-linear
convergence of (xk, yk) is obtained,12 hence R-linear convergence of xk and yk individually, but not
our Q-linear convergence of x̄k and yk. In contrast to [10] and here, [9, Theorem 5.3] requires ȳ be
the unique element of Z; the authors communicate, however, that the proof actually only utilizes that
assumption in handling the very case we’ve left out of Example 5.3 as unresolved, where F (x̄) = 0.

12Specifically, it is shown that, by taking rk large enough, it can be arranged with respect to the norm ||(x, y)|| = |x|+|y|
that ||(xk+1, yk+1)− (x̄, ȳ)|| ≤ 1

2 ||(xk, yk)− (x̄, ȳ)||.
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Another assumption in [9, Theorem 5.3], having no counterpart here, is the calmness of a certain
“multiplier mapping.” Interestingly, the stepsize rk in [9] must exceed a positive-definiteness constant
of the augmented Lagrangian at x̄ that resembles our threshold r̄, and it must also be above other
quantities that emerge in technical estimates. Again, that could relate to relaxed proximal point
stepsizes as in Theorem 2.4.

A different category of optimization problems in the frame of Example 5.1 emphasizes norms.

Example 5.4 (linear convergence with norm modeling). If g = || · ||p for p ∈ [1,∞] then g provides
full support for linear and superlinear convergence, as long as F (x̄) ̸= 0. Likewise, g provides such
support if it is the indicator of a closed ball with respect to one of these norms.

Detail. When p = 1 or p = ∞, the norm in question is piecewise linear and falls into a special case
of Example 5.2. Otherwise it is a C2 function away from the origin and thus is fully amenable there,
fitting with Example 5.1 through (5.1). The case where g is the indicator of a closed ball is covered
by Example 5.2 when p = 1 or p = ∞ and otherwise corresponds to full amenability from a single C2

constraint in specialization of (5.1).

Norms, second-order cones, and many other objective or constraint elements can, of course, come
together in setting up a fully amenable model function g in the pattern of (5.2).

Applications to the convex case. When the function φ(x, u) in (P ) is convex in (x, u), which
corresponds to the Lagrangian l(x, y) being convex in x for each y, the augmented Lagrangian method
simplifies in the manner described in Corollary 2.3.2. The complication of whether a minimum might
only be local goes away. Variational sufficiency is automatic, and strong variational sufficiency can
be easier to establish on the basis of the tools furnished in [30]. The choice of the model function g
may be enough, in itself, to guarantee linear convergence, since the examples presented so far in this
section cover the convex case of (P ) as well. But there is also now another route to establishing linear
convergence, through Theorem 3.3. Our final example shows the way.

Example 5.5 (linear convergence in convex-affine modeling). Suppose in (P ) that f0 is convex and
F is affine, F (x) = b−Ax, so the goal in (P ) is to

determine a minimizer x̄ of the convex function f0(x) + g(b−Ax). (5.3)

Suppose strong variational sufficiency holds, which reduces in this setting to confirming a condition
on how ∇2f0(x̄) relates to certain generalized quadratic forms assocated with g at F (x̄) for ȳ [30,
Theorem 5]. Then the criteria for linear convergence in Theorem 3.3 are applicable, moreover with
the concave function h having the expression

h(y) = b·y − f∗0 (A
∗y)− g∗(y). (5.4)

Detail. In this version of the convex case of (P ) with φ(x, u) = f0(x) + g(b − Ax) and l(x, y) =
f0(x) = y·[b−Ax]− g∗(y), direct calculation of h(y) = infx { l(x, y)− y·u} yields the expression for h
indicated in (5.4).

The generalized quadratic forms associated with g that come into the characterization of strong
variational sufficiency in this example can, for chosen specializations of g, be understood very well,
but that is a subject we can’t get into here; see [30, Sec. 4]. Likewise, the accessibility of the conjugate
functions f∗0 and g∗ can depend on the form of these functions, as must the checking of the conditions
in Theorem 3.3 on the function h in (5.4). Nonetheless, the results in this paper contribute new
perspectives to this popular area of convex optimization.
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