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ADVANCES IN CONVERGENCE AND SCOPE

OF THE PROXIMAL POINT ALGORITHM

R. Tyrrell Rockafellar1

Abstract

The proximal point algorithm, as an approach to finding a zero of a maximal monotone mapping,
is well known for its role in numerical optimization, such as in methods of multipliers (ALM).
Although originally designed for global reach, versions of the algorithm have been developed that
can operate with only local maximal monotonocity, which is essential for applications to nonconvex
optimization. Here such local articulation is investigated with inexact iterations involving trust
regions. The main accomplishment is the development of much sharper criteria for when the
convergence to a solution will be linear or superlinear, even if the solution might not be locally
unique. The case of subgradient mappings receives extra attention.

The results are furthermore extended to a variable metric version of the localized algorithm that
potentially offers additional improvements in the rate of linear convergence. For problems where
the solution has a number of components, this version supports an articulation of the iterations
that admits separate proximal parameters for each of those components.
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1 Introduction

An enormous range of problems in optimization and equilibrium modeling can be reduced to solving
a generalized equation for a possibly set-valued mapping T : H →→ H in a real Hilbert space H:

find z̄ such that 0 ∈ T (z̄), or equivalently, z̄ ∈ Z for Z = T−1(0). (1.1)

Especially prominent among such problems are those in which T is maximal monotone, in which case
T and T−1 are closed-convex-valued. Monotonicity of T means that

⟨w1 − w0, z1 − z0⟩ ≥ 0 when (zi, wi) ∈ gphT, (1.2)

where gphT is the graph set { (z, w) |w ∈ T (z)}, and ⟨·, ·⟩ denotes the inner product in H. Maximality
adds that there is no monotone mapping T ′ : IRn →→ IRn with gphT ′ ⊃ gphT and gphT ′ ̸= gphT .
Then a solution to (1.1), if any exists, can be determined by the proximal point algorithm as laid out
in 1976 [20] which, starting from any initial z0, takes2

zk+1 ≈ Pk(z
k) for Pk = (I + ckT )

−1, where 1 ≤ ck → c∞ ∈ (0,∞]. (1.3)

Although T may be set-valued, maximal monotonicity makes the resolvant mappings Pk in (1.3) be
single-valued and globally Lipschitz continuous with modulus 1, i.e., nonexpansive — in fact with the
stronger property of being firmly nonexpansive:

||Pk(z)− Pk(z
′)||2 + ||Qk(z)−Qk(z

′)||2 ≤ ||z − z′||2 with Qk = I − Pk = (I + (ckT )
−1)−1. (1.4)

Solutions to (1.1) are the fixed points of the mappings Pk.
Although it may be hard to imagine how the iterations in (1.3) could be executed in a practical

manner, if (1.1) itself can’t just be solved directly, the long history of applications in optimization [21],
[18], and elsewhere, testifies the opposite. The procedure has the remarkable property of generating a
sequence of points zk that weakly converges to some particular solution z̄ ∈ Z, even when the set Z
isn’t a singleton. Questions of rate of convergence have remained open, however.

In [20], only the singleton case of Z was supplied with a criterion for linear convergence. The non-
singleton case is important, though, for applications of the proximal point algorithm to augmented
Lagrangian methods. In that context the procedure is invoked in solving a dual problem in the
multiplier space. Requiring the multiplier vector to be unique may be inconvenient — the associated
solution to the primal problem may be all that really matters.

Luque [11] in 1984 provided a linear convergence criterion for the non-singleton case of Z, although
with a slightly weakened result. He obtained linear convergence to 0 not of the distance of zk from
the limit point z̄ ∈ Z, just the distance of zk from Z. His condition on Z was global in character, and
that nowadays raises a further issue because of advances in localization. Pennanen [14] in 2003 showed
(under some restrictions that no longer appear necessary) that the proximal point algorithm could
manage with global maximal monotonicity replaced by maximal monotonicity relative a neighborhood
of a pair (z, 0) with z ∈ Z. The iterations only need to start from a point z0 near enough to such a z
and take care not to stray too far from it. In such an execution of the procedure, a global condition
on the solution set Z isn’t appropriate.

A virtue of the kind of localization introduced by Pennanen is that it enables the proximal point
algorithm to be applied to problems in optimization and equilibrium modeling in which the local

2In [20], the requirement on the ck values was just that lim supk ck < ∞ and lim infk ck > 0, but here it will help us
to have a limit c∞. The restriction to ck ≥ 1 harmlessly simplifies some considerations.
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monotonicity is hidden from sight, yet can be “elicited.” Decomposition schemes presented in [24] in
2019 especially underscore this and strongly motivate further efforts.

Here we develop alternative guarantees for linear and superlinear convergence which avoid the
globality of Luque’s condition, but depend on the sequence {zk} generated by the algorithm converging
strongly to a solution point in z̄ ∈ Z, not just weakly. To support this, we assume throughout that3

the Hilbert space H is finite-dimensional.

In other improvements, we supply missing details on carrying out the localized iterations. We show
how the focus of the convergence rate analysis can be returned to the distance of the points zk from
their eventual limit z̄, instead of their distance from Z. We then specialize our conditions to problems
of minimization.

The criterion for zk+1 being a good enough appoximation to Pk(z
k) in the iterations (1.3) will use

error parameters
εk ∈ (0, 1) with

∑∞
k=0

εk = σ < ∞. (1.5)

Three levels of increasing tightness can be invoked:

||zk+1 − Pk(z
k)|| ≤


(a) εk
(b) εk min{1, ||zk+1 − zk||}
(c) εk min{1, ||zk+1 − zk||2}

(1.6)

or alternatively

ck dist(0, Sk(z
k+1)) ≤


(a) εk
(b) εk min{1, ||zk+1 − zk||}
(c) εk min{1, ||zk+1 − zk||2}

(1.6′)

through the estimate in [20, Proposition 3] that

||zk+1 − Pk(z
k)|| ≤ ck dist(0, Sk(z

k+1)) for Sk(z) = T (z) + c−1
k (z − zk). (1.7)

All are satisfied of course in exact execution of the algorithm, where zk+1 = Pk(z
k).

Pennanen in [14] allowed for additional inexactness by incorporating the relaxations of Eckstein
and Bertsekas [8], which replace Pk(z

k), equaling zk −Qk(z
k) in (1.3), by zk − θkQ

k(zk) for stepsizes
θk ∈ (0, 2). In his convergence analysis, aimed at the singleton case of Z as in [20] and limiting the
relaxations to θk ∈ [1, 2), he found that with θk → θ∞ the best linear rate would only be achieved when
θ∞ = 1. This suggests that little advantage can be gained in linear convergence from this feature, and
so we keep here to the original iterations in (1.3). The applications of the proximal point algorithm in
[24], which particularly motivate us, seem anyway unable to work with Eckstein-Bertsekas relaxations.

Note that if at some stage actually zk ∈ Z, as signaled by having Pk(z
k) = zk or equivalently

Qk(z
k) = 0, the procedure can come to a halt and under (1.6bc) or (1.6′bc) automatically does. This

is the case of finite termination, which is welcome but doesn’t demand further attention. Therefore,
in our asymptotic convergence analysis, we will always take for granted that zk /∈ Z for all k.

Embracing localization of the kind pioneered by Pennanen [14], we suppose

Z ∩ Z ̸= ∅ and 0 ∈ W for open convex sets Z and W (1.8)

3For the sake of applications such as in stochastic optimization, where inner products based on expectations are
essential, we keep to the Hilbert space context, rather than reverting to IRn with its canonical Euclidean norm.
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and henceforth only require the monotonicity in (1.2) and its maximality to hold relative to the elements
of Z ×W. It will emerge that, when the algorithm is initiated at a point z0 ∈ Z near enough to Z,
the iterations in (1.3) will be feasible and never draw on aspects of gphT from outside of Z ×W.

Such localization raises an issue that must be settled before we continue. Although maximal mono-
tone mappings T and their inverses T−1 are closed-convex-valued, that’s under the global definition
of maximal monotonicity. What do we know about the closedness and convexity of T−1(0) merely
under the assumption that T is maximal monotone relative to the open convex set Z ×W in (1.8)?
The answer is that Z = T−1(0) is closed convex relative to Z, i.e.,

Z ∩ Z is convex and agrees with Z ∩ cl[Z ∩ Z]. (1.9)

The reason is that any monotone mapping can be extended to one that is maximal monotone globally,
cf. [26, 12.6]. In application to the monotone mapping T ′ with gphT ′ = [Z × W] ∩ gphT , which is
already maximal monotone relative to Z ×W, this tells us that

∃ maximal monotone T such that [Z ×W] ∩ gphT = [Z ×W] ∩ gphT. (1.10)

That fact was the key to the results on localizing the proximal point algorithm in Pennanen [14] and
also in our recent papers [23] and [24].

In the foundational results of [20], the stopping criterion (1.6a) was enough to ensure convergence
of the sequence of points zk generated by the proximal point algorithm to some particular solution
z̄ ∈ Z. For a linear rate of convergence the stopping criteria (1.6b) was combined with assuming
a “one-sided property of Lipschitz continuity” of T−1 at 0 (nowadays instead called the property of
calmness [26]), namely

∃ δ > 0, a ≥ 0, such that z ∈ T−1(w), ||w|| < δ =⇒ ||z − z̄|| ≤ a||w||. (1.11)

Then the solution set Z consists just of z̄. Luque [11] showed in 1984, though, that linear convergence
can be obtained for the global version of the algorithm without Z being a singleton, and under the
same stopping criterion (1.6b), provided that the condition in (1.11) is modified to4

∃ δ > 0, a ≥ 0, such that z ∈ T−1(w), ||w|| < δ =⇒ dist(z, Z) ≤ a||w||. (1.12)

His linear convergence to a solution z̄ ∈ Z was not that of ||zk − z̄|| to 0, but that of dist(zk, Z) to 0.
Moreover, in formulating his condition with localization in w but not in z, he triggered an unsuspected
limitation. The convex set cl[domT−1] must have a property at 0 akin to polyhedrality.5 An appeal
to the finite-dimensionality of H will allow us to avoid this limitation simply by modifying (1.12) to

∃ δ > 0, a ≥ 0, such that z ∈ T−1(w), ||w|| < δ, ||z − z̄|| < δ =⇒ dist(z, Z) ≤ a||w||. (1.13)

In utilizing the stopping criterion (1.6c), however, we will be able to go much further than this,
even recovering linear convergence of ||zk− z̄|| to 0, while refining (1.13) sharply in our localized setting

4Luque’s formulation of his result asked to have ck ↗ c∞, but his proof never made use of having ck+1 ≥ ck except for
getting the existence of c∞ as a limit. The condition on ck in (1.3) is therefore adequate.

5In (1.12), in contrast to (1.11), the sets T−1(w) may be unbounded. Since the recession cone for T−1(w) is the
normal cone to cl[domT−1] at w [26, 12.37], it may vary with w in its direction. That would be incompatible with
the globally enforced bound in (1.11), unless the normal cones to cl[domT−1] are locally around 0 all contained in the
normal cone at 0. Such normal cone behavior can be counted on for a polyhedral convex set, but otherwise only occurs
in unusual situations. The same trouble comes up with the closely similar condition of “upper Lipschitz continuity” of
T−1 at 0 that was furnished by Robinson [17] in 1999 as supporting linear convergence when T is a subgradient mapping.
Robinson did not refer to Luque’s earlier work.
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with z̄ ∈ Z ∩ Z. The refinement centers on the normal cone NZ(z̄) to Z at z̄ (this being the same as
the normal cone to the convex set Z ∩ Z at z̄ because z̄ ∈ Z):

∃ ε > 0, δ > 0, a ≥ 0, such that
z ∈ T−1(w), 0 < |w| < δ, 0 < ||z − z̄|| < δ,

dist

(
w

||w||
, NZ(z̄)

)
< ε, dist

(
z − z̄

||z − z̄||
, NZ(z̄)

)
< ε

 =⇒ dist(z, Z) ≤ a||w||. (1.14)

Note here that, when ||z − z̄|| < δ for δ small enough, the distance of z from Z is the same as its
distance from Z ∩Z. The restriction in (1.14) to ||w|| > 0 and ||z− z̄|| > 0 is needed to make sense of
w/||w|| and (z − z̄)/||z − z̄||, but is inconsequential anyway. Having z ∈ T−1(w) when w = 0 results
in dist(z, Z) = 0 on the right.

The secret to this refinement is establishing that, under (1.6c), the convergence of the proximal
point algorithm to a particular solution z̄ has a directional property. The angle of approach of zk to
z̄ must eventually come close to aligning with the normal cone in question, and the same also for the
angles of the vectors zk − zk+1. Until now, this has escaped notice, but it has powerful implications
for analyzing convergence in various applications of the algorithm. Of course, when z̄ is the unique
element of Z ∩ Z, the normal cone NZ(z̄) is the whole space H. Then (1.14) reverts to the original
condition of [20] in (1.11).

Although the directionality innovation in (1.14) comes with the price that the stopping criterion
(1.6c) must be deployed instead of (1.6b), that only would be called for in the final stretch as zk

gets near to z̄. On the other hand, (1.14) also offers something intriguingly different for theoretical
developments in this subject. We will be able to recast it into a “pointwise” condition in terms of
the graphical derivative of the mapping T relative to the pair (z̄, 0) ∈ gphT . In specialization to
subgradient mappings, it will come out as a quadratic growth condition just over a normal cone.

In the end, we will also undertake improvements in another direction, where the mappings ckT
in (1.3) are replaced by mappings Tk enriched by other algorithmic parameters than just ck. One
important incentive for this comes out of applications in which the space H is a product H1×· · ·×Hs

of Hilbert spaces Hj , with z = (z1, . . . , zs) for zj ∈ Hj , and T has the structure

T (z) = (T1(z1, . . . , zs), . . . , Ts(z1, . . . , zs)). (1.15)

In the proximal point algorithm as formulated in (1.3), Pk(z
k) is obtained by solving the generalized

equation
0 ∈ T (z) + c−1

k [z − zk] (1.16)

for z, and in (1.15) with z = (z1, . . . , zs) that means solving

0 ∈ Tj(z1, . . . , zs) + c−1
k [zj − zkj ] for j = 1, . . . , s. (1.17)

The different behaviors of the different components zj may suggest allowing the flexibility of a separate
cjk for each j, with these proximal parameters cjk converging to different values cj∞ ∈ (0,∞], some
faster and some slower, depending on numerical insights. A particular instance of this can be envisioned
in applications of the proximal point algorithm to calculating saddle points in convex optimization
[20, Section 5], which is the origin of the proximal method of multipliers [21]. Then z is divided into a
primal component and a dual component, and it ought to be possible to compute without the primal
and dual proximal terms moving in lockstep.

But with the door open to different cjk parameters in (1.17), other ideas enter with their own
attractions. The generalized equation (1.16) might be replaced by 0 ∈ C−1

k [z− zk]+T (z) for positive-
definite linear transformations Ck. Then (1.17) would be just a special case — except for awkwardness

5



over not covering situations in which some of the parameters cjk might have limits in k that are infinite,
as an echo of the original version allowing ck → ∞.

Out of this we adopt a compromise in which (1.16) is generalized to 0 ∈ T (z) + c−1
k Bk[z − zk]

for linear transformations Bk : H → H. The mappings Pk = (I + ckT )
−1 are replaced then by P ′

k =
(I+ckB

−1
k T )−1, so that zk+1 is to be obtained as an approximate solution to 0 ∈ T (z)+c−1

k Bk[z−zk]
instead of (1.16). An obvious possibility would be to have Bk serve in rescaling to enhance the
rate of linear convergence. If T is differentiable at a solution z̄, for example, Bk could be aimed at
approximating the Jacobian ∇T (z̄) in a sort of quasi-Newton manner. We insist, though, on each Bk

being self-adjoint and positive-definite, so as to give rise to an auxiliary inner product

⟨z, w⟩Bk
:= ⟨Bkz, w⟩ = ⟨z,Bkw⟩ with associated norm ||z||Bk

= ⟨z,Bkz⟩1/2. (1.18)

Maximal monotonicity of T , local or global, with respect to the given inner product ⟨·, ·⟩ of H carries
over to the mapping T ′

k = B−1
k T having that property with respect to ⟨·, ·⟩Bk

. From this perspective,
the modified iterations constitute a variable metric version of the proximal point algorithm to which
existing theory can in some ways still be applied. Of course, because H is finite-dimensional here,
all norms on it are equivalent in the sense of providing the same standards for whether a sequence
converges or not. But they provide different standards for rates of convergence.

Variable metric versions of the proximal point algorithm are not new and have already been the
subject of much research, starting in 1999 with Burke and Qian [3], [4], [5], but eventually in a more
complex format. For the general case of the algorithm in determining a zero of a monotone mapping,
that higher stage was first reached in the 2008 paper of Parente, Lotito and Solodov [13], although
similar advances had been made earlier, at least in part, in the context of convex minimization problems
in [2], [6], [9], [16]. There is also a huge, active literature on variable metric proximal-type methods,
which however does not deal with extensions of the proximal point algorithm itself; see for instance
[10], [12], and their references.

Our contribution to the topic differs by not insisting on global monotonicity, thereby making the
method available for application to nonconvex problems where monotonicity can merely be elicited
locally around a solution. We show how our localized results on rates and directions of convergence
can be replicated in this context with adaptations of the inexactness rules. It remains, of course, that
these results only uncover how the algorithm behaves when initiated close enough to the solution set.
The construction of a globally convergent algorithm that first finds a way to get close enough to the
solution set is still a major challenge that isn’t addressed here.

2 Central results

The original version of the proximal point algorithm, for mappings T that are maximal monotone
globally, will also benefit from some of the convergence results we are about to obtain, but our
particular challenge is the localized version. For that, the starting point z0 must be close enough to
the solution set Z = T−1(0) in a region Z × W (1.8) where maximal monotonicity prevails locally,
and the iterations must keep within that region. More about that needs to be pinned down next.

We suppose the initial point z0 is close enough to Z that, with respect to the σ employed in (1.5),

∃ ρ > dist(z0, Z) + σ such that (z, w) ∈ Z ×W if ||z − z0|| < 3ρ, ||w|| < 2ρ, (2.1)

and we add to the tests for admissibility of the choice of zk+1 in (1.6) the “trust region” stipulation
that

||zk+1 − zk|| < ρ. (2.2)
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This will later be seen to ensure that the procedure only utilizes elements (z, w) of (Z ∩W) ∩ gphT .
Observe in (2.1) that

dist(z0, Z) = |z0 − z̄0| for z̄0 = proj(z0, Z), the point of Z closest to z0. (2.3)

That projection is well defined under (2.1) and the convexity in (1.9). Here we don’t exclude from
(2.1) and (2.2) the possibility that ρ = ∞ with Z × W = H × H, because that provides a way of
keeping the global version of the algorithm covered.

Theorem 2.1 (local convergence of the proximal point algorithm). In the circumstances of (1.8) for
the solution set Z = T−1(0), let T be maximal monotone relative to Z ×W. Suppose the proximal
point algorithm (1.3) is initiated at a point z0 satisfying (2.1) with the approximations controlled by
(1.6a) or (1.6′a) under (1.5), augmented by (2.2), and let z̄0 be the point of Z in (2.3).

Then the iterations will be feasible and, without need of any elements of gphT outside of Z ×W,
will generate a sequence of points zk that converges to a point

z̄ ∈ Z ∩ Z such that ||z̄ − z̄0|| < ρ (2.4)

while ensuring also that Pk(z
k) → z̄ and Qk(z

k) → 0.

Proof. This is so close to [20, Theorem 1] that we can take the proof of that as our platform
and concentrate just on what needs updating. The localization will ultimately pass through applying
convergence results under global maximal monotonicity to an extension T of T as provided by (1.10),
so we begin by explaining how things would work if T itself were maximal monotone globally. A
simplification is that here we already know Z ̸= ∅ and have in sight one of its elements, namely z̄0.

The proof of [20, Theorem 1] establishes under global maximal monotonicity that, from any starting
point z0, the iterations (1.3) utilizing (1.6a) generate a sequence {zk} satisfying

||zk+1 − Pk(z
k)|| ≤ εk with (Pk(z

k), c−1
k Qk(z

k)) ∈ gphT (2.5)

that converges to some z̄ ∈ Z, hence also Pk(z
k) → z̄ and Qk(z

k) → 0, since ||zk+1 − Pk(z
k)|| → 0

and Qk(z
k) = zk − Pk(z

k). A crucial detail in the convergence argument in [20] is the estimate

||zk − z̄0|| ≤ ||z0 − z̄0||+ σk = dist(z̄0, Z) + σk < ρ for σk = ε0 + ε1 + · · ·+ εk−1, (2.6)

where the upper bound ρ supplied at the end comes from (2.1). In the limit as zk → z̄, this yields the
inequality in (2.4), which in particular confirms through (2.1) that z̄ ∈ Z.

The estimate in (2.6) provides information on how much of gphT actually comes under consider-
ation in the iterations. The nonexpansiveness of both Pk and Qk in (1.4) lets us compare Pk(z

k) and
Qk(z

k) with Pk(z̄
0) = z̄0 and Qk(z̄

0) = 0 to see that

||Pk(z
k)− z̄0|| ≤ ||zk − z̄0|| and ||Qk(z

k)|| ≤ ||zk − z̄0||. (2.7)

Together with (2.6), this tells us that the elements of gphT in (2.5) have

||Pk(z
k)− z0|| ≤ ||Pk(z

k)− z̄0||+ ||z̄0 − z0|| < 2ρ, and ||c−1
k Qk(z

k)|| < c−1
k ρ ≤ ρ,

since ck ≥ 1 in (1.3). Those elements thus always lie in Z ×W by (2.1). Next, because zk+1 − zk =
zk+1 − [Pk(z

k) +Qk(z
k)], we have through (2.5), (2.6) and (2.7) that

||zk+1 − zk|| ≤ ||Qk(z
k)||+ ||zk+1 − Pk(z

k)|| ≤ ||zk − z̄0||+ εk
≤ dist(z0, Z) + σk + εk = dist(z0, Z) + σk+1 < ρ.
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Thus, when T is maximal monotone globally, initiation of the algorithm in the circumstances of (2.1)
will cause the extra condition in (2.2) on the choice of zk+1 to be satisfied automatically. Moreover
the “trust region” { z | ||z − zk|| < ρ} behind (2.2) will lie entirely in Z, because of (2.6) and having
||zk − z0|| ≤ ||zk − z̄0||+ ||z̄0 − z0|| < ρ+ dist(z0, Z) ≤ 2ρ.

This confirms that the algorithm will not draw on elements of gphT outside of Z ×W, at least in
working directly with the error level (1.6a). But even the alternative in (1.6′a) in terms of Sk(z

k+1)
meets this test. According to its definition in (1.7), we have

Sk(z
k+1) = {w | (zk+1, c−1

k (zk − zk+1) + w) ∈ gphT},

so in replacing (1.6a) by (1.6′a) we are concerned with the elements (zk+1, c−1
k (zk−zk+1)+w) belonging

to gphT that have ||w|| < εk. We already know here that zk+1 ∈ Z, and also that ||zk+1 − zk|| < ρ.
Then ||c−1

k (zk − zk+1) + w|| < ρ+ εk since ck ≥ 1, and therefore c−1
k (zk − zk+1) + w ∈ W by (2.1).

We have been supposing up to now that T is maximal monotone globally, not just locally. But our
observations about the procedure never utilizing more of gphT than lies in Z ×W, when initiated in
tune with (2.1) according to the closeness of z0 to z̄ and the size of σ, indicate that the global property
isn’t needed for local convergence. The argument could be applied to any extension T of T beyond
Z ×W as in (1.10), and in the end it is only T in its maximal monotone localization that matters.

In what follows, we use the terminology that a sequence of values αk > 0 converges to 0 at a linear
rate bounded by β if

lim sup
k→∞

αk+1

αk
≤ β.

Theorem 2.2 (linear convergence to solution set). Let the stopping criterion in Theorem 2.1 be
strengthened to (1.6b), and suppose the property in (1.13) holds for T at the limit z̄ of the sequence
of points zk. Then

dist(zk, Z) → 0 at a linear rate bounded by
a√

a2 + c2∞
, (2.8)

this being superlinear convergence when c∞ = ∞. Moreover, (1.13) is sure to hold at z̄ if actually

∃ δ > 0, a ≥ 0, such that z ∈ T−1(w), ||w|| < δ, ||z − z̄0|| < ρ =⇒ dist(z, Z) ≤ a||w|| (2.9)

Proof. We can build on the proof given by Luque [11] that invoked (1.12) in place of the original
(1.11) of [20]. All that’s necessary is to demonstrate, in the light of Theorem 2.1 (and our restriction
to finite-dimensionality), that his proof merely requires (1.13). The juncture where his (1.12) enters
is in ensuring that the pair (Pk(z

k), c−1
k Qk(z

k)) in (2.5) has

dist(Pk(z
k), Z) ≤ a||c−1

k Qk(z
k)||.

Thus, (1.12) needs only to be invoked when z = Pk(z
k) and w = c−1

k (zk−Pk(z
k)). Because Pk(z

k) → z̄
and Qk(z

k) → 0 while c−1
k ≤ 1, it’s enough to have the localization of (1.12) in (1.13).

Although (1.13) is specific to the limit point z̄, the broader condition in (2.9) guarantees through
the bound in (2.4) that it will hold regardless of the particular z̄ that is reached.

The next theorem reveals a local characteristic of convergence in the proximal point algorithm
that had previously not been detected, but allows linear convergence to Z to be sharpened to linear
convergence to z̄.
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Theorem 2.3 (linear convergence to solution point). When the stopping criterion in the execution
of the proximal point algorithm in Theorem 2.1 is tightened to (1.6c), the convergence of zk to z̄ has
the directional property that

dist

(
zk − z̄

||zk − z̄||
, NZ(z̄)

)
→ 0, dist

(
zk − zk+1

||zk − zk+1||
, NZ(z̄)

)
→ 0. (2.10)

Then the linear convergence (2.8) in Theorem 2.2 is obtained without assuming (1.13), but just (1.14),
and moreover entails

||zk − z̄|| → 0 at a linear rate bounded by
a√

a2 + c2∞
, (2.11)

this being superlinear convergence when c∞ = ∞.

Proof. Denoting by IBρ(z) the closed unit ball of radius ρ centered at a point z. Let Zρ = Z∩IBρ(z̄)
for the ρ in (2.1), which ensures through (2.4) in Theorem 2.1 that Zρ ⊂ Z. Then Zρ is a compact
convex set having at z̄ the same normal cone NZ(z̄). The function

hρ(w) = sup { ⟨w, z − z̄⟩ | z ∈ Zρ} (2.12)

is positively homogeneous, convex and finite (hence also continuous), and moreover hρ(w) ≥ 0 for
all w, with equality if and only if w ∈ NZ(z̄). The directional property in (2.10) can therefore be
expressed in terms of hρ by

hρ

(
zk − z̄

||zk − z̄||

)
→ 0, hρ

(
zk − zk+1

||zk − zk+1||

)
→ 0, (2.13)

and this is what our analysis will aim at confirming. The localization established in Theorem 2.1 allows
us, for simplicity of exposition, to assume with the support of (1.10) that T is maximal monotone
globally, since nothing outside of Z ×W enters the current picture anyway.

Consider now first the case of exact execution of the proximal point algorithm, where zk+1 = Pk(z
k)

and zk − zk+1 = Qk(z
k). Because Pk is firmly nonexpansive with the elements of Zρ among its fixed

points, we have
||zk+1 − z|| < ||zk − z|| for all z ∈ Zρ. (2.14)

In expanding ||zk − z||2 = ||zk+1 − z) + (zk − zk+1)||2 we get from (2.14) that

2⟨zk − zk+1, zk+1 − z⟩+ ||zk − zk+1||2 = ||zk − z||2 − ||zk+1 − z||2 > 0. (2.15)

By then substituting (zk+1 − z̄)− (z − z̄) for zk+1 − z on the left, we arrive at

⟨zk − zk+1, z − z̄⟩ < ⟨zk − zk+1, zk+1 − z̄⟩+ 1
2 ||zk − zk+1||2 = 1

2 ||zk − z̄||2 − 1
2 ||zk+1 − z̄||2

for all z ∈ Zρ, where the equation on the right comes from specializing (2.15) to z = z̄. Therefore

hρ(z
k − zk+1) ≤ ⟨zk − zk+1, zk+1 − z̄⟩+ 1

2 ||zk − zk+1||2 = 1
2 ||zk − z̄||2 − 1

2 ||zk+1 − z̄||2, (2.16)

and in particular hρ(z
k − zk+1) ≤ ||zk − zk+1||·||zk − z̄|| + 1

2 ||zk − zk+1||2. In dividing both sides of
the latter by ||zk − zk+1|| and utilizing the positive homogeneity of hρ and the fact that zk and zk+1

tend to z̄, we arrive at the second of the limits in (2.13).
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Turning toward the first of the limits in (2.13), we observe through (2.16), in terms of having
zj − zi =

∑i−1
k=j(z

k − zk+1) when i− 1 > j, that

hρ(z
j − zi) ≤

i−1∑
k=j

hρ(z
k − zk+1) < 1

2

i−1∑
k=j

(
||zk − z̄||2 − ||zk+1 − z̄||2

)
= 1

2 ||zj − z̄||2 − 1
2 ||zi − z̄||2.

Passing to the limit as i → ∞, we get hρ(z
j − z̄) ≤ 1

2 ||zj − z̄||2. Dividing by ||zj − z̄|| we see from
zj → z̄ that the first of the limits in (2.13) is likewise correct.

So far, we have been focused on exact execution of the proximal point algorithm, but the only
property guaranteed by exactness that we’ve actually made use of is (2.14). Therefore, in order to
prove that the limits in (2.13) are valid even with inexact execution under the stopping criterion (1.6c),
we only need to show that (2.14) continues to hold at that reduced level of inexactness, at least for k
sufficiently high.

We begin by noting that ||zk−zk+1|| = ||Pk(z
k)+Qk(z

k)−zk+1)| ≤ ||Qk(z
k)||+ ||zk+1−Pk(z

k)|| ≤
||Qk(z

k)||+ εk||zk − zk+1||2 under (1.6c), so that

||Qk(z
k)|| ≥ δk(1− εkδk) in the case of δk = ||zk − zk+1||. (2.17)

Another thing we know, because Pk(z
k) → z̄, is that

||Pk(z
k)− z|| < ρ for all z ∈ Zρ when k is high enough. (2.18)

For any z ∈ Zρ we have ||zk − z||2 > ||Pk(z
k) − z||2 + ||Qk(z

k)||2, but on the other hand from
zk+1 − z = (Pk(z

k)− z) + (zk+1 − Pk(z
k)) that

||zk+1 − z||2 = ||Pk(z
k)− z||2 + 2⟨Pk(z

k)− z, zk+1 − Pk(z
k)⟩+ ||zk+1 − Pk(z

k)||2,

and consequently, with the criterion (1.6c) again coming into play along with (2.17) and (2.18),

||zk − z||2 − ||zk+1 − z||2 > ||Qk(z
k)||2 − 2||Pk(z

k)− z||·||zk+1 − Pk(z
k)|| − ||zk+1 − Pk(z

k)||2
≥ δ2k(1− εkδk)

2 − 2ρεkδ
2
k − ε2kδ

4
k = δ2k[(1− εkδk)

2 − 2ρεk − ε2kδ
2
k].

This reveals that our wish for (2.14) will be granted if, for high k,

0 < (1− εkδk)
2 − 2ρεk − ε2kδ

2
k = 1− 2εkδk − 2ρεk.

That does hold, inasmuch as εk → 0 and δk → 0.
With (2.10) thereby secured under the stopping criterion (1.6c), it’s obvious that the condition

(1.14) assumed in Theorem 2.2 is no longer fully needed. The reduced property in (1.15) is enough.
All that remains is demonstrating that linear convergence in the sense of (2.8) is equivalent in

these circumstances to linear convergnece in the sense of (2.11). That can be accomplished by proving
that the ratio of dist(zk, Z) to ||zk− z̄|| approaches 1 as k → ∞. Because all is local, we can again, for
convenience based on (1.10), imagine that T is maximal monotone globally and thus avoid grappling
with a truncation of gphT .

Express zk as z̄ + τkζ
k with τk = ||zk − z̄|| and ||ζk|| = 1. Denoting the closed convex cone NZ(z̄)

just by N for simplicity, let ζ̄k = proj(ζk, N), so that

dist(ζk, N) = ||ζk − ζ̄k|| → 0. (2.19)
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Let z̄k = proj(zk, Z) and τ̄k = dist(zk, Z) = ||zk − z̄k||. Then τ̄k/τk is the ratio we want to approach
1. Because ζ̄k ∈ N , the nearest point of Z to z̄ + τkζ̄

k is z̄. Hence

||z̄k − z̄|| = ||proj(z̄ + τkζ
k, Z)− proj(z̄ + τkζ̄

k, Z)||
≤ ||(z̄ + τkζ

k)− (z̄ + τkζ̄
k)|| = τk||ζk − ζ̄k|| = τk dist(ζk, N),

and then in consequence of (2.19),

ηk → 0 for the vectors ηk = (z̄k − z̄)/τk. (2.20)

Next write zk − z̄k as (zk − z̄) − (z̄k − z̄) = τkζ
k − τkη

k to identify τ̄k = ||zk − z̄|| with τk||ζk − ηk||.
The ratio τ̄k/τk comes out then as ||ζk − ηk||, where ||ζk|| = 1 by choice. In view of (2.20), it clear
then that τ̄k/τk → 1, as we had to show.

It needs to be kept in mind that the directionality in Theorem 2.3 only has an influence when
the localized solution set Z ∩ Z isn’t a singeton. In the singleton case, the normal cone NZ(z̄) is the
entire Hilbert space H. But there may be intermediate grades of the phenomenon. If Z ∩ Z isn’t
full-dimensional and z̄ belongs to its relative interior, NZ(z̄) will be the product of the subspace M
orthogonal to the affine hull of Z ∩ Z and a pointed convex cone in its complement M⊥. Then the
points zk will be comprised of a component in M and a component in M⊥. The directional limits in
(2.10) will only act in that case to stablize the second components and have no effect on the first.

It could be wondered whether, regardless of the nature of the normal cone, the difference between
the unit vectors (zk − z̄)/||zk − z̄|| and (zk − zk+1)/||zk − zk+1|| might anyway always tend to 0.
No, this is dispelled by simple examples. Consider for instance, in the case of H = IR2 under the
usual Euclidean norm, the (maximal) monotone linear mapping T : (z1, z2) → (−z2, z1), for which the
solution set Z is the singleton {(0, 0)}. Take ck ≡ 1, so that Pk ≡ P := (I+T )−1 and Qk ≡ Q := I−P
with

P : (z1, z2) → 1
2(z1 − z2, z1 + z2), Q : (z1, z2) → 1

2(z1 + z2,−z1 + z2).

The algorithm in exact execution has zk+1 = P (zk) and zk − zk+1 = Q(zk), and the sequence must
converge to z̄ = (0, 0). The question therefore is whether the angle between P (zk) and Q(zk) will tend
to 0, but in fact P (zk) ⊥ Q(zk) always.

The next result will tie the property in (1.14) to a kind of generalized directional differentiation
of T through a change of variables. Expressing (z, w) as (z̄, 0) + τ(ζ, ω), we can translate having
z ∈ T−1(w) into having τω ∈ T (z̄ + τζ). A key issue then is what can happen to the set of such
possible pairs (ζ, ω) as τ ↘0. For that we appeal to the notion of the graphical derivative of the
set-valued mapping T at a point z̄ in its domain domT with respect to an element w̄ ∈ T (z̄). This is
the mapping DT (z̄ | w̄) having as its graph the tangent cone to gphT at (z̄, w̄) [26]. In limits,

ω ∈ DT (z̄ | w̄)(ζ) ⇐⇒ ∃τk ↘0 and (ζk, ωk) → (ζ, ω) with w̄ + τkω
k ∈ T (z̄ + τkζ

k), (2.21)

and the graphical derivative mapping DT (z̄ | w̄) thus has closed graph and is positively homogeneous,

ω ∈ DT (z̄ | w̄)(ζ), λ > 0 =⇒ λω ∈ DT (z̄ | w̄)(λζ). (2.22)

The directions of the pairs (ζ, ω) in (2.21) are the directions from which a sequence of pairs (zk, wk)
in gphT can approach (z̄, w̄). In connection with (1.15), of course, our interest lies with w̄ = 0 and
limit pairs (ζ, ω) ∈ NZ(z̄)×NZ(z̄). Assistence comes from the fact that

ω ∈ DT (z̄ |0)(ζ) =⇒ ω ∈ NZ(z̄), ⟨ω, ζ⟩ ≥ 0. (2.23)
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This is a consequence of the monotonicity of T in Z ×W as applied to having w̄+ τkω
k ∈ T (z̄+ τkζ

k)
in (2.21) with w̄ = 0 and 0 ∈ T (z) when z ∈ Z. That yields 0 ≤ ⟨τkωk−0, z̄+τkζ−z⟩ when z ∈ Z∩Z,
hence ⟨ωk, z − z̄⟩ ≤ τk⟨ωk, ζk⟩, and indicates beyond (2.23) that the distance of ωk/||ωk|| from NZ(z̄)
must go to 0 (as seen from the early part of the proof of Theorem 2.3 in terms of the function hρ).

Theorem 2.4 (graphical derivative criterion). In terms of the graphical derivative DT (z̄ |0) with
z̄ ∈ Z, the condition in (1.14) holds if and only if

ζ ∈ NZ(z̄), 0 ∈ DT (z̄ |0)(ζ) =⇒ ζ = 0. (2.24)

That is equivalent in turn to having

∞ > ā := inf
{
a ≥ 0

∣∣∣ ||ζ|| ≤ a||ω|| when ζ ∈ NZ(z̄), ω ∈ DT (z̄ |0)(ζ)
}
. (2.25)

More specifically, (1.14) entails a ≥ ā, while on the other hand (1.14) is sure to hold for any a > ā
when ε and δ are small enough. Thus, ā can replace a in (2.11).

Proof. The equivalence between (2.24) and (2.25) can be taken care of first. It is based on NZ(z̄)
and the graph of DT (z̄ |0) being closed cones, which allows both conditions to be focused on ||ζ|| = 1.
Then (2.24) can be restated as

0 < min
{
||ω||

∣∣∣ω ∈ DT (z̄ |0)(ζ) for some ζ ∈ NZ(z̄) with ||ζ|| = 1
}

and identified that way obviously with (2.25).
Next we look at the relationship between (2.25) and (1.14). Changing the notation from z ∈ T−1(w)

to τω ∈ T (z̄ + τζ) with τ > 0 allows (1.14) to be posed as the existence of ε > 0, δ > 0, a ≥ 0, such
that, when τ > 0,

τω ∈ T (z̄ + τζ), 0 < τ ||ω|| < δ, 0 < τ ||ζ|| < δ

dist

(
ζ

||ζ||
, NZ(z̄))

)
< ε, dist

(
ω

||ω||
, NZ(z̄))

)
< ε

 =⇒ ||ζ|| ≤ a||ω||.

This can be translated into a limit condition, namely the existence of a ≥ 0 such that

τkω
k ∈ T (z̄ + τkζ

k), τk ↘0, (ζk, ωk) → (ζ, ω) ̸= (0, 0)

dist

(
ζk

||ζk||
, NZ(z̄))

)
→ 0, dist

(
ωk

||ωk||
, NZ(z̄))

)
→ 0

 =⇒ ||ζk|| ≤ a||ωk|| for high k.

In comparison, the existence of a ≥ 0 such that

τkω
k ∈ T (z̄ + τkζ

k), τk ↘0, (ζk, ωk) → (ζ, ω) ̸= (0, 0)

dist

(
ζk

||ζk||
, NZ(z̄))

)
→ 0

 =⇒ ||ζk|| ≤ a||ωk|| for high k

corresponds to (2.21) with the relationship between a and ā indicated in the theorem. But the ζ limit
in the latter automatically entails the ω limit in the former. This was observed in discussion just
ahead of the theorem.

It might be hoped that the condition (2.24) in Theorem 2.4 would automatically persist to points
of Z in an neighborhood of z̄, but it may not. An illustration of this will come at the end of the next
section, once function versions of the conditions here are available. Still, investigations may uncover
classes of functions where there is a form of such persistence, which could produce a guarantee that
the point z̄, even if not known in advance, will enjoy (1.14).
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3 Specialization to subgradient mappings

Our attention focuses now on having T be the subgradient mapping ∂f associated with a lower
semicontinuous (lsc) function f : H → (−∞,∞], f ̸≡ ∞, so that

Z = T−1(0) = { z | 0 ∈ ∂f(z)}. (3.1)

When f is convex, ∂f is maximal monotone globally and Z = argmin f (the set of points minimizing
f over all of H). The proximal point algorithm is well understood in that setting as a method for
determining a global minimizer of f . It can be applied indirectly also in solving implicit dual problems
concave problems of maximization. Here, though, our interest goes beyond such global optimization
to concern also localizations in which the graph of T = ∂f is truncated by intersection with a set
Z ×W. Then subgradients that generalize those of convex analysis have to enter the picture.

As laid out in [26], the inequality f(z′) ≥ ⟨w, z′ − z⟩+ o(||z′ − z||) describes a regular subgradient
of f at z, indicated by w ∈ ∂̂f(z). General subgradients w ∈ ∂f(z) are defined in terms of taking
limits of regular subgradients:

∃wk ∈ ∂̂f(zk) with wk → w, zk → z, f(zk) → f(z).

For many functions, not just convex, f(zk) → f(z) is automatic from the rest in this definition. That’s
subdifferential continuity of f at z for w. Many classes of functions anyway have ∂f(z) = ∂̂f(z). For
them taking limits yields nothing more. (See “subdifferential regularity” in [26].)

With this extension of the subgradient concept, the functions f for which the mapping ∂f is
maximal monotone globally are still precisely the convex functions [15]. But what can be said about
the maximal monotonicity of ∂f with respect to an open convex set Z ×W? When W is the whole
space H, that holds if f is convex on Z, but otherwise something less obvious characterizes the
situation. We showed in [23] that for such local maximal monotonicity of ∂f it is sufficient that f
be variationally convex with respect to Z ×W, and necessary when the subgradients in question are
regular, which anyway is what we’ll be occupied with in our context of minimization. The property
of variational convexity is simpler to explain under regularity, where it means that

there exists a proper lsc convex function f̂ ≤ f on Z such that

[Z ×W] ∩ gph ∂f̂ = [Z ×W] ∩ gph ∂f

and, for (z, w) belonging to this common set, also f̂(z) = f(z).

(3.2)

In other words, in localization, the subgradients of f and the function values associated with them
can’t be distinguished from those coming from a convex function. In particular then, if z ∈ Z every
w ∈ ∂f(z) ∩W will be a regular subgradient: w ∈ ∂̂f(z).

Many implications of this property are explained, along with telling examples, in [23] and more
recently [25]. The main fact of importance to us here concerns the points z̄ ∈ Z with 0 ∈ ∂f(z̄).
Under the variational convexity condition (3.2), f attains its minimum over Z at z̄.

Implementations of the proximal point algorithm in such localized subgradient circumstances as
a method of iterative local minimization have already been explored in [23] and further in [24], but
only for exact execution. Here we extend the theory to inexact execution,6 benefiting from details in
Theorem 2.1 involving the “trust region” condition introduced in (2.2). When T = ∂f , the iteration
rule in (1.3) specializes with

Pk(z
k) = { z | 0 ∈ ∂fk(z)}, where fk(z) = f(z) +

1

2ck
||z − zk||2. (3.3)

6The localization results of Pennanen [14] for inexact execution apply also to subgradients, but only to such mappings
directly, i.e., without the iterations being identified with steps of local minimization.
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For f convex, fk is strongly convex and Pk(z
k) = argmin fk, a singleton. That remains important for

applying the new results on a linear rate of convergence, but in our localization of ∂f we are interested
in tying (3.3) to local minimization. Over what set, however? That was left somewhat vague in [23]
and [24], with Z indicated despite it not necessarily being known.

Here, through (2.2), the answer will be a ball of radius ρ around zk. The iteration (1.3) under
(2.2), will thus take the form

get zk+1 from zk by approximately minimizing fk(z) subject to ||z − zk|| < ρ. (3.4)

The standards for approximation come from adaptations of the stopping criteria (1.6′) to this context.
Such adaptations go back to [20] and utilize (1.7), taking advantage of the fact that the set Sk(z) =
T (z) + c−1

k (z − zk) reduces to ∂fk(z) when T = ∂f . The resulting version of (1.6′) is

ck dist (0, ∂f
k(zk+1)) ≤


(a) εk
(b) εk min{1, ||zk+1 − zk||}
(c) εk min{1, ||zk+1 − zk||2}

(3.5)

For differentiable f , this test thus concerns the nearness to 0 of the gradient of fk at zk+1.

Theorem 3.1 (local convergence of the proximal point algorithm in minimization). For T = ∂f and
accordingly Z as in (3.1), let f have the variational convexity property in (3.2) (or simply be convex
itself, as the case where Z×W = H×H). Suppose the proximal point algorithm in the mode of (3.4),
with approximations controlled by (3.5a), is initiated at a point z0 satisfying (2.1), and let z̄0 be the
point of Z in (2.3).

Then in each iteration there is a unique point giving the exact minimum in (3.4), so an approximate
minimizer zk+1 fulfilling (3.5a) will always exist (and be able to be determined without any involvement
of elements of gph ∂f outside of Z × W). The generated sequence of points zk will converge to a
particular point z̄, as in (2.4), which will minimize f over Z and in particular have f(z) ≥ f(z̄) when
||z − z̄|| < ρ. Moreover, the sequence of values f(zk) will be finite and converge to f(z̄).

Proof. Under (3.2), the algorithm acts on f as if it were acting on the convex function f̂ instead,
and as if the minimization steps were based on the modifications f̂k of f̂ corresponding to fk in (3.3).
Those functions f̂k are strongly convex on Z, so there is a uniquely determined exact minimizer in
each iteration (3.4). The claims are justified that way from Theorem 3.1 through the connections
explained above, except for the convergence of f(zk) to f(z̄). For that, consider on the basis of
(3.5a) vectors wk ∈ ∂fk(zk+1) with ck|wk| ≤ εk, hence wk → 0. The subgradient inequality fk(z̄) ≥
fk(zk+1) + ⟨wk, z̄ − zk+1⟩ gives through (3.3) the estimate that

f(zk+1)− f(z̄) ≤ 1

2ck
||z̄ − zk||2 − 1

2ck
||zk+1 − zk||2 − ⟨wk, z̄ − zk+1⟩,

were all the terms on the right tend to 0. Therefore lim supk f(z
k+1) ≤ f(z̄). Since f(z̄) = min f , this

means that f(zk+1) → f(z̄).

The question needing to be answered next is how the extra properties in (1.13) and (1.14) that
have featured in our linear convergence results are manifested in terms of f when T = ∂f . In [20]
with f convex on H, it was demonstrated that the original property offered for linear convergence in
(1.11) corresponded to a quadratic growth condition holding at the unique minimizing point z̄. Here,
in looking beyond uniqueness, a modified quadratic growth condition will enter for a point z̄ ∈ Z,
namely

∃a > 0, λ > 0, such that f(z) ≥ µ+
1

a
dist2(z, Z) when ||z − z̄|| < λ, (3.6)
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where
µ = minimum value of f over Z, taken on at every z ∈ Z ∩ Z under (3.2). (3.7)

That modified condition (3.6) happens in fact to be equivalent to the condition on T = ∂f in (1.13),
which in the terminology of [26, Sec. 9I] is the calmness of T−1 at w̄ for z̄ and can also be identified
with the property of T being metrically subregular at z̄ for w̄ [7, Theorem 3H.3]. But Aragon and
Geoffroy, in a comprehensive analysis of metric regularity-type properties of subdifferential mappings
in 2008 [1], proved that this property of ∂f is equivalent to (3.6).

Theorem 3.2 (linear convergence in minimization). For f satisfying the variational convexity condi-
tion (3.2) and z̄ ∈ Z ∩ Z, the growth condition in (3.6) ensures the property (1.13) that supports the
linear rate of convergence in Theorem 2.2. Moreover, in the circumstances of Theorem 3.1 concerning
initiation at z0, (3.6) is guaranteed at z̄ under the broader growth condition that

∃a > 0 such that f(z) ≥ µ+
1

a
dist2(z, Z) when ||z − z̄0|| < ρ. (3.8)

Proof. For convex f , the condition (1.13) for T = ∂f is equivalent to (3.6), as explained ahead of
the statement of this theorem in citing [1]. But (1.13) is local in the graph of ∂f , so when ∂f is just
variationally convex at z̄ for 0, it corresponds to the same property holding for the associated function
f̂ as in (3.2). Because f̂ ≤ f locally, the quadratic growth condition (3.6) on f̂ implies the same for
f , with a possible shrinking of the neighborhood. The guarantee under (3.8) then follows accordingly
from the estimates in Theorem 2.1.

For the property in (1.14) that supports the linear convergence in Theorem 2.3, we can work with
its characterization in Theorem 2.4. That comes down to a condition on the graphical derivative of
the mapping ∂f at z̄ with respect to 0 being a subgradient there. Graphical derivatives of subgradient
mappings are known however to be closely related to generalized second derivatives of the functions
themselves, and that’s what we will be able to exploit. The second-order epi-derivative of f at z̄ and
w̄ ∈ ∂f(z̄) is the function d2f(z̄ | w̄) defined by

d2f(z̄ | w̄)(ζ) = lim inf
ζ′→ζ
τ ↘ 0

∆2
τf(z̄ | w̄)(ζ ′), where ∆2

τf(z̄ | w̄)(ζ ′) =
f(z̄ + τζ ′)− f(z̄)− τ⟨w̄, ζ ′⟩

1
2τ

2
. (3.9)

In many situations this definition can draw on a further property with respect to any ζ for which
d2f(z̄ | w̄)(ζ) < ∞: for every sequence τk ↘0 there is a sequence ζk → ζ such that ∆2

τk
f(z̄ | w̄)(ζk) →

d2f(z̄ | w̄)(ζ). Then ∆2
τf(z̄ | w̄) epi-converges to d2f(z̄ | w̄) (the epigraphs of these functions set-converge).

All of this is explained in depth in [26, Chapter 13]. The powerful consequence then is a formula for
the graphical derivative of ∂f at z̄ for w̄, namely that it is the subgradient mapping associated with
the function 1

2d
2f(z̄ | w̄).

A more subtle connection will developed here, however, in not assuming twice epi-differentiability
of f , but just utilizing (3.9) by itself. In set-convergence terms, (3.9) says that the epigraph of d2f(z̄ | w̄)
is the outer limit of the epigraphs of the functions ∆2

τf(z̄ | w̄) as τ ↘0. The cluster description of outer
limits in [26, 4.19] tells us that

epi
[
1
2d

2f(z̄ | w̄)
]
=
⋃

{ epi q | ∃ τk ↘0 such that 1
2∆

2
τk
f(z̄ | w̄) epiconverges to q}, (3.10)

and therefore

1
2d

2f(z̄ | w̄)(ζ) = min{ q(ζ) | ∃ τk ↘0 such that 1
2∆

2
τk
f(z̄ | w̄) epiconverges to q}. (3.11)
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In a similar vein, the definition of the graphical derivative DT (z̄ | w̄) in (2.18) says in set-convergence
terms that gphDT (z̄ | w̄) is the outer limit, as τ ↘0, of the graphs of the difference quotient mappings
∆τT (z̄ | w̄) given by

∆τT (z̄ | w̄)(ζ) = τ−1[T (z̄ + τζ)− w̄]. (3.12)

The cluster description of outer limits in [26, 4.19] lets us pose this in terms of mappings Q that are
graphical limits of extracted sequences,

gphDT (z̄ | w̄) =
⋃

{ gphQ | ∃ τk ↘0 such that ∆τkT (z̄ | w̄) converges graphically to Q}. (3.13)

In application to T = ∂f in our context of variational convexity and w̄ = 0, we will be able to tie
(3.13) to (3.11) through Q = ∂q.

Theorem 3.3 (second-derivative characterization of the convergence criterion). For f satisfying the
variational convexity condition (3.2) and z̄ ∈ Z, the graphical derivative condition (2.21) on T = ∂f ,
which in Theorem 2.4 captures the property (1.14) that supports the convergence in Theorem 2.3, is
equivalent in terms of second-order epiderivatives (3.9) to

d2f(z̄ |0)(ζ) > 0 for all nonzero ζ ∈ NZ(z̄), (3.14)

which holds in particular when

d2f(z̄ |0)(ζ) = 0 only for ζ in the tangent cone TZ(z̄). (3.15)

The value ā in Theorem 2.4 then satisfies

ā ≤ â for â = 1/min
{

1
2d

2f(z̄ |0)(ζ)
∣∣∣ ζ ∈ NZ(z̄), ||ζ|| = 1

}
< ∞, (3.16)

where also

â = inf
{
a > 0

∣∣∣ ∃λ > 0 such that f(z) ≥ f(z̄) +
1

a
||z − z̄||2 if z ∈ NZ(z̄), ||z − z̄|| < λ

}
. (3.17)

Proof. The variational convexity puts us in a situation where f is locally (primally and dually)
indistinguishable from a convex function. Adding to it the indicator of clZ, if need be, we can just
as well suppose that f itself is convex on the whole space H. The subgradient mapping ∂[12∆

2
τf(z̄ |0)]

comes out as ∆τ∂f(z̄ |0), and this leads to an important connection between (3.13) for T = ∂f and
the formulas in (3.10) and (3.11). By Attouch’s Theorem [26, 12.35], the graphical convergence in the
former identifies with the epiconvergence in the latter: we have Q = ∂q.

What does this reveal about the condition in (2.21)? Having 0 ∈ DT (z̄ |0)(ζ) means having
0 ∈ Q(ζ) for some Q in (3.13), but that can be identified now with 0 ∈ ∂q(ζ) for some q as in
(3.11). Recall now that f is minimized by z̄, so that the functions 1

2∆
2
τf(z̄ |0), likewise convex, have

minimum value 0, attained at ζ = 0. Hence 0 ∈ ∂q(ζ) if and only if q(ζ) = 0. Altogether then, having
0 ∈ DT (z̄ |0) is equivalent through (3.11) to having 1

2d
2f(z̄ |0)(ζ) = 0. Thus, (2.21) can correctly

be identified here with (3.14), which holds in particular under (3.15) because of the rule in convex
analysis that the cones TZ(z̄) and NZ(z̄) are polar to each other.

Under (3.14) and lower semicontinuity, the minimum in (3.16) is positive, so â is well defined and
not ∞. The restriction to ||ζ|| = 1 takes advantage of d2f(z̄ |0) being positively homogeneous of degree
2; it yields

1
2d

2f(z̄ |0)(ζ) ≥ 1

â
||ζ||2 for all ζ ∈ NZ(z̄), (3.18)
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and going back to (3.11), the same bound for each q indicated there. Then such a q has for ω ∈ ∂q(ζ)
with ζ ∈ NZ(z̄) that 0 = q(0) ≥ q(ζ) − ⟨ω, ζ⟩, and consequently 1

a ||ζ||
2 ≤ ⟨ω, ζ⟩ ≤ ||ω||·||ζ||. Thus,

||ζ|| ≤ a||ω|| for ω ∈ ∂q(ζ) when ζ ∈ NZ(z̄). But, as seen earlier, ∂q = Q for Q in (3.13) in the case
of T = ∂f and w̄ = 0. Hence, a > â implies that ||ζ|| ≤ a||ω|| when ω ∈ DT (z̄ |0)(ζ) with ζ ∈ NZ(z̄),
as we needed to show.

Finally, (3.18) yields the claimed equivalent description of â in (3.17) on the basis of the definition
(3.9) of d2f(z̄ |0).

Although Theorem 3.3 only addresses circumstances at the limit z̄ of the zk sequence generated by
the algorithm, which usually isn’t known in advance, it does purvey some broader information along
the lines of (3.8) in Theorem 3.2. If we can be sure that the condition in (3.14) holds for every z ∈ Z
with ||z − z̄0|| < ρ, we will have it holding at z̄, since ||z̄ − z̄0|| < ρ by Theorem 2.1. There may be
traction in that, because the property can be automatic for some classes of functions. For instance,
as seen through (3.15), it is universal for convex functions f that are piecewise linear-quadratic [26].

It might be wondered whether the property (3.14) is “stable” in the sense of holding for z in a
neighborhood of z̄ in Z when it holds at z̄, but no. This is shown by the following example based on
Theorem 3.2, which will help also to bring out the difference between the two conditions (1.13) and
(1.14) employed in Theorems 2.2 and 2.3. In IR2 with the Euclidean norm, let

f(z1, z2) =
1

4
dist4 ((z1, z2), IB) +

1

2
max2{0, z1 − 1}, (3.19)

where IB = IB1((0, 0)) is the unit disk. This is a differentiable convex function with minimum value 0
attained on Z = IB. At the point z̄ = (1, 0) ∈ Z, the normal cone NZ(z̄) is { (ζ1, 0) | ζ1 ≥ 0}, and f is
twice epi-differentiable with d2f(z̄ |0) = max2{0, ζ1}. We have the condition in Theorem 3.3 fulfilled
with â = 1

2 , hence (1.14) holding for a = 1
2 . But the quadratic growth condition in Theorem 3.2 fails

for all values of a, and indeed condition (1.13) doesn’t hold in this case. In fact, at every boundary
point z of Z other than z̄, one has d2f(z̄)(ζ) = 0 for all ζ ∈ NZ(z).

4 Generalization to a variable-metric implementation

The task now is extending our convergence results to the variable metric version of the proximal point
algorithm that was outlined at the end of Section 1. Instead of (1.3), the iterations will have

zk+1 ≈ P ′
k(z

k) for P ′
k = (I + ckB

−1
k T )−1, where 1 ≤ ck → c∞ ∈ (0,∞]

and the linear mappings Bk : H → H are self-adjoint, positive-definite.
(4.1)

Fixed points of the modified mappings P ′
k are the same as for Pk:

z = P ′
k(z) ⇐⇒ z ∈ Z = T−1(0), (4.2)

Conditions on Bk will need to be joined under which the zk sequence generated by iterations is sure to
tend to such a point z̄. However, the eventual goal isn’t just getting convergence but enabling effects
that the more flexible scheme might bestow on rates of convergence.

The inner products ⟨·, ·⟩Bk
and norms || · ||Bk

in (1.18) will have a role alongside of the given
inner product and norm in H. The key observation is that our assumed monotonicity of T in Z ×W
translates into such monotonicity of T ′

k = B−1
k T in Z ×B−1

k W with respect to ⟨·, ·⟩Bk
instead of ⟨·, ·⟩:

if wi ∈ B−1
k T (zi) for i=0,1, so that Bkwi ∈ T (zi), then for Wk = B−1

k W,
0 ≤ ⟨z1 − z0, Bkw1 −Bkw0⟩ = ⟨z1 − z0, w1 − w0⟩Bk

when (zi, wi) ∈ Z ×Wk.
(4.3)
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Maximal monotonicity translates in the same way and applies not just to T ′
k but also to I + ckT

′
k =

I+ckB
−1
k T (inasmuch as I is trivially maximal monotone with respect to ⟨·, ·⟩Bk

as well as ⟨, ·, ·⟩, even
strongly monotone). That leads to P ′

k being a single-valued mapping which is firmly nonexpansive
with respect to || · ||Bk

, i.e.,

||P ′
k(z1)− P ′

k(z0)||2Bk
+ ||Q′

k(z1)−Qk(z0)||2Bk
≤ ||z1 − z0||2Bk

for Q′
k = I − P ′

k. (4.4)

(This just follows from expressing zi = P ′
k(zi) +Q′

k(zi) in expanding ||z1 − z0||2Bk
.) Here

(P ′
k(z), c

−1
k BkQ

′
k(z)) ∈ gphT, (4.5)

and the domain of the firm nonexpansiveness property (4.4) consists therefore of the points z ∈ Z
such that c−1

k Qk(z) ∈ Wk for the open neighborhood Wk of 0 in (4.3).
If Bk converges as k → ∞ to some mapping B∞, likewise positive-definite, then Wk → W∞ =

B−1
∞ W, so that ultimately the domains of firm nonexpansiveness will stabilize and rate-of-convergence

properties will be dictated by B∞ in its relationship to T . The prospect, however, is that we maybe
don’t have knowledge of B∞ in advance and instead contemplate creating it by successive modifications
from Bk to Bk+1 as computations proceed. That could be aimed at a sort of Jacobian approximation
to T in approaching a solution point, but more simply it could just be matter of separate adjustments
in proximal parameters attached to different components of the solution in the case of block-coordinate
structure (1.15).

Although convergence of Bk to some B∞ won’t be essential to convergence of zk, assumptions will
be needed that keep these linear mappings and their inverses from blowing up. The passage from Bk

to Bk+1 requires scrutiny from that perspective.
In exact execution, the algorithm with iterations (4.1) would have zk+1 = (P ′

k ◦ · · · ◦ P ′
1 ◦ P ′

0)(z
0).

But while each P ′
k is nonexpansive in its own way, little can be said in that direction about the product

P ′
k ◦ · · · ◦ P ′

1 ◦ P ′
0, because the standard for nonexpansiveness changes from one factor to the next.

Even the boundedness of the generated sequence {zk} could then be in question, in contrast with
the situation in exact execution of the original proximal point algorithm and its iterations (1.3). To
prevent that, we assume

||z||B0 ≤ α0||z|| and ||z||Bk
≤ αk||z||Bk−1

with αk ≥ 1 such that ∞ > β = Π∞
k=0αk. (4.6)

In a similar context in [13], Parente, Lotito and Solodov introduce bounds that here would come out
as having αk = 1+α′

k and
∑∞

k=1 α
′
k < ∞. This is a slightly stricter condition, as can be seen through

identifying (4.6) with
∑∞

k=1 log(1 + α′
k) < ∞ and invoking the inequality log(1 + α′

k) ≤ α′
k.

As a byproduct, the bounds in (4.6) put a ceiling β over the norms ||Bk||, since they lead to

β−1
k ||z||Bk

≤ β−1
k−1||z||Bk−1

≤ · · · ≤ β−1
0 ||z||B0 ≤ ||z|| for βk = αkαk−1 · · ·α0 ∈ [1, β], (4.7)

hence ⟨z,Bkz⟩ ≤ β2
k||z||2 in particular, so that ||Bk|| ≤ β2

k.
7

To rein in the inverses B−1
k , we suppose that

0 < γk ≤ γ ∈ [1,∞) with γ−1
k ||z|| ≤ ||z||Bk

or equivalently ||B−1
k || ≤ γ2k , (4.8)

where the equivalence is seen from writing γ−1
k ||z|| ≤ ||z||Bk

as γ−2
k ||z||2 ≤ ⟨z,Bkz⟩ and identifying

that with γ−2
k being a lower bound to the eigenvalues of Bk. That makes γ2k be an upper bound to

the eigenvalues of B−1
k , the max of which gives the matrix norm ||B−1

k ||.
7The printed version of the paper mistakenly had β in place of β2 here.
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For inexact iterations, within the indicated domains where the mappings P ′
k are nonexpansive with

respect to the norms || · ||Bk
, an appropriate substitute for the rules in (1.6) must be chosen. We take

it to be

||zk+1 − Pk(z
k)||Bk

≤


(a) εk
(b) εk min{1, ||zk+1 − zk||Bk

}
(c) εk min{1, ||zk+1 − zk||2Bk

},
(4.9)

with the conditions on εk still being those in (1.5). Alternatively, errors can be guided by

ckγ
2
k dist (0, S

′
k(z

k+1)) ≤


(a) εk
(b) εk min{1, ||zk+1 − zk||Bk

}
(c) εk min{1, ||zk+1 − zk||2Bk

}
where S′

k(z) = T (z) + c−1
k Bk[z − zk],

(4.9′)

through the estimate

||zk+1 − Pk(z
k)||Bk

≤ ck distBk
(0, B−1

k S′
k(z

k+1)) ≤ ckγ
2
k dist (0, S

′
k(z

k+1)) (4.10)

in which distBk
gives distances with respect to the norm || · ||Bk

. That estimate comes from the
observation that having w ∈ S′

k(z
k+1) is equivalent to having zk + ckB

−1
k w ∈ [I + ckB

−1
k T ](zk+1),

hence zk+1 = P ′
k(z

k + ckB
−1
k w). The Bk-nonexpansiveness of P ′

k implies that ||zk+1 − P ′
k(z

k)||Bk
≤

||(zk + ckB
−1
k w)− zk||Bk

= ck||B−1
k w||Bk

and thereby yields the first inequality in (4.10). The second
inequality then follows via (4.8) from ||B−1

k w||2Bk
= ⟨B−1

k w,BkB
−1
k w⟩ = ⟨w,B−1

k w⟩ ≤ ||B−1
k ||·||w||2.

To accommodate the extra flexibility in the algorithm, we strengthen our earlier assumption (2.1)
on the closeness of z0 to Z and the size of the errors εk in (1.5) to8

∃ ρ > γβ3[dist(z0, Z) + σ] such that (z, w) ∈ Z ×W if ||z − z0|| < 3ρ, ||w|| < 2ρ. (4.11)

We adapt the “trust region” condition (2.2) on the admissibility of zk+1 to

||zk+1 − zk||Bk
< ρ. (4.12)

Theorem 4.1 (local convergence of the variable metric version). Suppose the modified algorithm in
(4.1) under (4.6)–(4.7) is initiated at a point z0 satisfying (2.1) with approximations controlled by
(4.9a) (as could be guaranteed by (4.9′a)), along with (4.12). Let z̄0 be the point of Z in (2.3).

Then the iterations will be feasible and, without needing to consider any elements of gphT outside
of Z × W, will generate a sequence of points zk that converges to a point z̄ as in (2.4), while also
ensuring that P ′

k(z
k) → z̄ and Q′

k(z
k) → 0.

Proof. As in the proof of Theorem 2.1, we can suppose at first that T is maximal monotone globally
and later claim that this doesn’t matter because the procedure will automatically be limited to Z×W,
where maximal monotonicity of T prevails locally. Because P ′

k is nonexpansive with respect to || · ||Bk

and has z̄0 as a fixed point, the estimate ||zk+1 − z̄0||Bk
≤ ||P ′

k(z
k) − z̄0||Bk

+ ||zk+1 − P ′
k(z

k)||Bk
in

combination with the inexactness rule in (4.9a) gives us

||zk+1 − z̄0||Bk
≤ ||zk − z̄0||Bk

+ εk. (4.13)

The challenge is extracting from this a connection from one iteration to the next that shows an overall
boundedness of the sequence of points zk.

8The printed version had β ∗ 2 here instead of β3
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Multiplying (4.13) by the factor β−1
k ∈ (0, 1], and invoking the relationship between || · ||Bk+1

and
|| · ||Bk

in (4.7), we obtain

β−1
k+1||z

k+1 − z̄0||Bk+1
≤ β−1

k ||zk − z̄0||Bk
+ εk. (4.14)

When applied iteratively starting at k = 0, this reveals through (4.7) that

β−1
k ||zk − z̄0||Bk

≤ β−1
0 ||z0 − z̄0||B0 + σk ≤ ||z0 − z̄0||+ σk for σk =

∑k−1

j=0
εj ,

where ||z0 − z̄0|| = dist(z0, Z). Therefore

||zk − z̄0||Bk
≤ βk[dist(z

0, Z) + σk] < β[dist(z0, Z) + σ]. (4.15)

Because ||P ′
k(z

k)− z̄0||2Bk
+ ||Q′

k(z
k)||2Bk

≤ ||zk − z̄0||2Bk
as the case of the firm nonexpansivity relation

(4.4) for z1 = zk and z0 = z̄0, we then actually have

||zk − z̄0||Bk

||P ′
k(z

k)− z̄0||Bk

||Q′
k(z

k)||Bk

 ≤ βk[dist(z
0, Z) + σk] < β[dist(z0, Z) + σ]. (4.16)

as well as, by (4.8) and (4.11),

||zk − z0||
||P ′

k(z
k)− z0||

}
< 2γβ[dist(z0, Z) + σ] < 2β−1ρ ≤ 2ρ. (4.17)

Thus, the sequences of points zk and P ′
k(z

k) are bounded and contained in Z.
The points c−1

k BkQ
′
k(z

k) are also of interest in connection with (4.5). Since ck ≥ 1, we have for
them that ||c−1

k BkQ
′
k(z

k)|| ≤ ||Bk||·||Q′
k(z

k)||, where ||Bk|| ≤ β2
k,

9 but on the other hand, ||Q′
k(z

k)|| ≤
γk||Q′

k(z
k)||Bk

by (4.8). From (4.16) that furnishes us with10

||c−1
k BkQ

′
k(z

k)|| ≤ γβ3[dist(z0, z) + σ] < ρ, (4.18)

so c−1
k BkQ

′
k(z

k) ∈ W by (4.11). Thus, the elements of gphT in (4.5) all lie in Z × W. A further
observation, utilizing (4.9a) and zk = P ′

k(z
k) +Q′

k(z
k), is that

||zk+1 − zk||Bk
≤ ||Q′

k(z
k)||Bk

+ ||zk+1 − P ′
k(z

k)||Bk
≤ ||Q′

k(z
k)||Bk

+ εk,

hence in applying (4.16),

||zk+1 − zk||Bk
≤ βk[dist(z

0, Z) + σk] + εk = βk[dist(z
0, Z) + σk+1]

< β[dist(z0, Z) + σ] < ρ/γβ ≤ ρ.
(4.19)

Thus, the restriction on zk+1 in (4.12) won’t come into play when T is maximal monotone globally
and the algorithm is initiated in the manner specified. Indeed, with zk belonging to an open ball
around z0 of radius 2ρ by (4.17), the “trust region” for zk+1 in (4.12) will, by (4.19), lie within such
a ball of radius 3ρ and therefore entirely within Z in each iteration. The addition of (4.12) to the
iteration rule (4.1) with (4.9a), while superfluous under global maximal monotonicity, safeguards the
algorithm under local maximal monotonicity with respect to Z ×W to operate ain the same way.

9The printed version had βk instead of β2
k.

10The printed version has β2 instead of β3.

20



Substituting (4.9′a) for (4.9a) in this would make it necessary to consider vectors w ∈ S′
k(z

k+1)
having ||w|| < εk. Could that involve parts of gphT outside of Z×W, which has so far been avoided?
No, because w ∈ S′

k(z
k+1) corresponds to11 (zk+1, c−1

k Bk[z
k − zk+1] + w) ∈ gphT , where we already

know zk+1 ∈ Z and on the other hand have ||c−1
k Bk[z

k − zk+1] + w|| ≤ c−1
k ||Bk||·||zk − zk+1|| + ||w||

with ck ≥ 1, ||Bk|| ≤ βk, and ||zk − zk+1|| ≤ γk||zk+1 − zk||Bk
by (4.8) but ||zk+1 − zk||Bk

< ρ/βγ by
(4.19). Therefore, with ρ as in (4.11) and ||w|| < εk, we have ||c−1

k Bk[z
k − zk+1] + w|| < ρ+ εk ≤ 2ρ,

which ensures that c−1
k Bk[z

k − zk+1] + w ∈ W.
Now let Z∞ denote the nonempty set of all cluster points of the bounded zk sequence, which by

(4.17) and (4.11) lies within Z. To complete the proof of the theorem, we must show that Z∞ ⊂ Z,
that Z∞ can’t contain more than one element z̄, and that such z̄ satisfies (2.4), i.e., ||z̄ − z̄0|| < ρ.
The latter is easy: any z̄ ∈ Z must by (4.15) and (4.8) satisfy ||z̄ − z̄0|| ≤ γβ[dist(z0, z) + σ] but from
(4.11) that is < ρ.

It will help in the rest that Z∞ is also the set of all cluster points of the P ′
k(z

k) sequence, because

||zk+1 − P ′
k(z

k)|| ≤ γk||zk+1 − P ′
k(z

k)||Bk
≤ γkεk ≤ γεk → 0

through (4.8) and (4.9a). It will also help that, in deriving (4.13) and then (4.14), all we used about
z̄0 was that it was a fixed point of the mappings P ′

k, an element of Z. The same would work for any
z ∈ Z, yielding β−1

k+1||zk+1−z||Bk+1
≤ β−1

k ||zk−z||Bk
+εk. Since βk ↗β as k → ∞, and

∑∞
k=0 εk < ∞,

this implies the existence of a finite limit value

µ(z) = lim
k→∞

||zk − z||Bk
= lim

k→∞
||P ′

k(z
k)− z||Bk

for any z ∈ Z. (4.20)

By posing the firm nonexpansiveness relation (4.4) in the case of z0 = z ∈ Z and z1 = zk as

||Q′
k(z

k)||2Bk
≤ ||zk − z||2Bk

− ||P ′
k(z

k)− z||2Bk

and taking the limit as k → ∞, in which both terms on the right approach µ(z) by (4.20), we see that
||Q′

k(z
k)||2Bk

→ 0. But ||Q′
k(z

k)||2Bk
≥ γ−1||Q′

k(z
k)|| by (4.8), so this implies Q′

k(z
k) → 0.

Consider next, along with the elements (P ′
k(z

k), c−1
k BkQ

′
k(z

k)) of gphT in (4.5), any other pair
(z, w) ∈ [Z ∩W] ∩ gphT . The monotonicity of T gives us 0 ≤ ⟨z − P ′

k(z
k), w − c−1

k BkQ
′
k(z

k)⟩, where
c−1
k BkQ

′
k(z

k) → 0 because Q′
k(z

k) → 0, ck ≥ 1, and the mappings Bk are known from (4.7) to be
bounded in norm. In consequence of this, any z̄ ∈ Z∞, as a cluster point of the P ′

k(z
k) sequence, must

satisfy 0 ≤ ⟨z − z̄, w⟩. This being true for arbitrary (z, w) ∈ gphT in Z ×W, the maximality of the
monotonicity of T with respect to Z ×W allows us to conclude that (z̄, 0) ∈ gphT . Thus, Z∞ ⊂ Z,
and accordingly from (4.20) we have

µ(z̄) = lim
k→∞

||zk − z̄||Bk
for any z̄ ∈ Z∞. (4.21)

As a cluster point of {zk}, any z̄ ∈ Z∞ is the limit of a subsequence of {zk}, and ||zk − z̄|| then tends
to 0 for that subsequence. Since ||zk− z̄||Bk

≤ γ||zk− z̄|| by (4.7), it follows from (4.21) that µ(z̄) = 0,
but then further that ||zk − z̄|| → 0, because ||zk − z̄||Bk

≥ α−1||zk − z̄|| by (4.8). In other words
zk → z̄, this therefore being the unique element of Z∞.

Our aim now is to gain an understanding of linear convergence of the proximal point algorithm
in the variable metric framework by generalizing Theorem 2.2. Clearly this should involve distances
distBk

(z, Z) with respect to the norm || · ||Bk
instead of just dist(z, Z), but the simple idea that ||w||Bk

11The arguments of this pair were reversed in the printed version
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should likewise replace ||w|| in assumption (1.13) turns out to be wrong. The right kind of condition
is that

∃ δ > 0, ak ≥ 0 such that z ∈ T−1(w), ||z − z̄|| < δ, ||w|| < δ ⇒ distBk
(z, Z) ≤ ak||w||B−1

k
, (4.22)

where ||w||B−1
k

is the norm associated with the inner product in H induced by B−1
k rather than Bk.

We know of course from (4.6) and (4.8) that

γ−1||z|| ≤ γ−1
k ||z|| ≤ ||z||Bk

≤ βk||z|| ≤ β||z||, (4.23)

with γ−1
k and βk being lower and upper bounds, respectively, to the eigenvalues of Bk, so that also

β−1||w|| ≤ β−1
k ||w|| ≤ ||w||B−1

k
≤ γk||w|| ≤ γ||w||. (4.24)

In fact, the adapted conditions in (4.22) are thereby equivalent to the earlier condition (1.13) and each
other as existence statements. But the progression of norms and their constants ak may be able to
unlock secrets about a rate of linear convergence that would otherwise not come to light.

The reader may wonder why the δ bounds in (4.22) only refer to the original norm and don’t
vary with k. That’s because we’ll need a core neighborhood of (z̄, 0) that is stable amid the changing
metrics.

Theorem 4.2 (linear convergence of the variable metric version). Tighten the stopping criterion in
Theorem 4.1 to (4.9b) or (4.9′b), and suppose that (4.22) holds for T at the limit point z̄ of the
sequence of points zk, moreover with Bk → B∞ and ak → a∞ < ∞. Then

distB∞(zk, Z) → 0 at a linear rate bounded by
a∞√

a2∞ + c2∞
, (4.25)

this being superlinear convergence when c∞ = ∞. Moreover, (4.25) is sure to hold at z̄ if actually

∃ δ > 0, ak ≥ 0, such that
z ∈ T−1(w), ||w|| < δ, ||z − z̄0|| < ρ =⇒ distBk

(z, Z) ≤ ak||w||B−1
k
.

(4.26)

Proof. The argument of Luque [11] that we relied on in proving Theorem 2.2 will be extended to
this new situation. We know from Theorem 4.1 that all action in the iterations takes place within the
region Z ×W in which T is assumed to be maximal monotone locally and the nearest point of zk to
the convex set Z ∩ Z is well defined and unique, being also the nearest point of zk to Z. The same
must eventually be true then also for the norms || · ||Bk

by (4.23), so we can pose

distBk
(zk, Z) = ||zk − z̄k||Bk

for z̄k = projBk
(zk, Z) (4.27)

and similarly, since also P ′
k(z

k) → z̄ by Theorem 4.1, express

distBk
(P ′

k(z
k), Z) = ||pk − z̄k||Bk

for pk = projBk
(P ′

k(z
k), Z), (4.28)

as will be needed a bit later. From the firm nonexpansiveness rule in (4.4) in the case of the points
z1 = zk and z0 = z̄k ∈ Z, we have ||P ′

k(z
k) − z̄k||2Bk

+ ||Q′
k(z

k)||2Bk
≤ ||zk − z̄k||2Bk

= dist2Bk
(zk, Z),

where ||P ′
k(z

k)− z̄k||Bk
≥ distBk

(P ′
k(z

k), Z). Therefore

||Q′
k(z

k)||2Bk
≤ dist2Bk

(zk, Z)− dist2Bk
(P ′

k(z
k), Z). (4.29)
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On the other hand, from (4.22) we know for the elements in (4.5) that

dist2Bk
(P ′

k(z
k), Z) ≤ a2k||c

−1
k BkQ

′
k(z

k)||2
B−1

k

= a2kc
−2
k ⟨BkQ

′
k(z

k), B−1
k BkQ

′
k(z

k)⟩ = a2kc
−2
k ||Q′

k(z
k)||2Bk

.

Combining this with (4.29) yields dist2Bk
(P ′

k(z
k), Z) ≤ a2kc

−2
k [ dist2Bk

(zk, Z)−dist2Bk
(P ′

k(z
k), Z)], which

can be written as

distBk
(P ′

k(z
k), Z) ≤ µk distBk

(zk, Z) for µk = ak
/√

a2k + c2k. (4.30)

We have to translate (4.30) into a condition on distBk
(zk+1, Z) instead of distBk

(P ′
k(z

k), Z), and
this is where the stopping rule (4.9b) will come in. Since zk+1 − zk → 0 and εk ↘0, we can suppose in
(4.9b) that ||zk+1 − zk||Bk

< 1 and εk < 1. In terms of (4.28) we then have

distBk
(zk+1, Z) ≤ ||zk+1 − pk||Bk

. (4.31)

Using ||zk+1 − zk||Bk
≤ ||zk+1 − pk||Bk

+ ||zk − pk||Bk
, we can estimate through (4.9b) that

||zk+1 − pk||Bk
≤ ||zk+1 − P ′

k(z
k)||BK

+ ||P ′
k(z

k)− pk||Bk

≤ εk||zk+1 − pk||Bk
+ εk||zk − pk||Bk

+ distBk
(P ′

k(z
k), Z).

(4.32)

Also ||zk − pk||Bk
≤ ||zk − z̄k||Bk

+ ||z̄k − pk||Bk
and

||z̄k − pk||Bk
= ||projBk

(zk, Z)− projBk
(P ′

k(z
k), Z)||Bk

≤ ||zk − P ′
k(z

k)||Bk
= ||Q′

k(z
k)||Bk

,

where ||Q′
k(z

k)||Bk
≤ distBk

(zk, Z) by (4.29). Through this we get from (4.32) that

(1− εk)||zk+1 − pk||Bk
≤ (1 + 2εk) distBk

(zk, Z)

and then from (4.30) vua (4.31) that

distBk
(zk+1, Z) ≤ µ′

k distBk
(zk, Z) for µ′

k = µk
1 + 2εk
1− εk

. (4.33)

We can now bring in the assumption that Bk → B∞, which implies the existence of θk ≥ 1 such that
θ−1
k ||z||B∞ ≤ ||z||Bk

≤ θk||z||B∞ with θk → 1. For (4.33) this says distBk
(zk+1, Z) ≥ θ−1

k dist(zk+1, Z)
and distBk

(zk, Z) ≤ θk dist(z
k+1, Z), so that

distB∞(zk+1, Z) ≤ µ′′
k distB∞(zk, Z) for µ′′

k = θ2kµk
1 + 2εk
1− εk

.

Then in the limit as ak → a∞ and ck → c∞, we have µ′′
k → µ∞ = a∞/

√
a2∞ + c2∞. Hence the rate of

linear convergence in (4.25) is correct.
Finally, the condition in (4.25) guarantees that (4.22) will be available regardless of the particular

limit point z̄ of the sequence generated by the algorithm, since that point is known through (2.4) to
have ||z̄ − z̄0|| < ρ.

Theorem 4.2 can be compared to the linear convergence result of Parente, Lotito and Solodov
[13] for their variable metric version of the proximal point algorithm. A key distinction is that
their focus was on global convergence under global monotonicity, whereas ours has been on local
convergence under local monotonicity and the mathematical maneuvers entailed by that. From the
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angle of computational methology, their developments are more sophisticated and moreover also allow
an additional kind of approximation of the mapping T to be brought in. However, the condition they
require is the “upper Lipshitz continuity” of T−1 at 0 used by Robinson [17]. That is a global property
of the possibly unbounded set Z = T−1(0) which is akin to Luque’s condition (1.12) and subject to
the same troubles as Luque’s, as we noted in Section 1. Here we get by with something weaker.

How does this all play out in application to problems of minimization, in which T = ∂f as in
Section 3 with variational convesity coming in as there? Parallel to (3.3), we have the mappings P ′

k

described in this case by

P ′
k(z

k) = { z | 0 ∈ ∂fk(z)}, where fk(z) = f(z) +
1

2ck
||z − zk||2Bk

. (4.34)

Then, because ∂fk(z) = ∂f(z) + c−1
k Bk[z − zk], the stopping rules in (4.9’) have

dist(0, S′
k(z

k+1)) = dist(0, ∂fk(z)). (4.35)

This explains in particular why those rules have been formulated with dist rather than distBk
. The

mode of excecution of the algorithm is now to

get zk+1 from zk by approximately minimizing fk(z) subject to ||z − zk|| < ρ, (4.36)

and, for that, (4.35) is an appropriate quanitity to monitor.
In this setting, the growth condition that will replace the one in (3.6) for generalizing Theorem

3.3 is as follows:

∃ ak ≥ 0, λ > 0, such that f(z) ≥ µ+
1

ak
dist2Bk

(z, Z) when ||z − z̄|| < λ, (4.37)

where µ is the minimum value of f on Z as in (3.7).

Theorem 4.3 (variable metric growth condition). In the local minimization version of the proximal
point algorithm as extended from Theorems 3.1 and 3.2 in the manner of (4.36), the condition (4.22)
posed at z̄ for the linear convergence result in Theorem 4.2 will hold under (4.37). Moreover, in
the specified circumstances of initiation at z0, (4.22) is guaranteed at z̄ under the broader growth
condition that

∃ ak ≥ 0, λ > 0, such that f(z) ≥ µ+
1

ak
dist2Bk

(z, Z) when ||z − z̄0|| < ρ. (4.38)

Proof. The proof of Theorem 3.2 can be imitated with minor changes. In considering w ∈ ∂f(z)
with z near enough to z̄ and ||z|| < δ, the projection projBk

(z, Z) is taken instead of proj(z, Z) to
give z′. Then distBk

(z, Z) = ||z − z′||Bk
. The argument based on the variational convexity of f

that previously showed a−1||z − z′||2 ≤ ⟨w, z − z′⟩ shows instead, with (4.37) replacing (3.6), that
a−1
k ||z − z′||2Bk

≤ ⟨w, z − z′⟩. The key difference comes then in recognizing that

⟨w, z − z′⟩ = ⟨B−1
k w,Bk(z − z′)⟩ = ⟨B−1

k w, z − z′⟩Bk
≤ ||B−1

k w||Bk
·||z − z′||Bk

and moreover that ||B−1
k w||2Bk

= ⟨B−1
k w,BkB

−1
k w⟩ = ||w||−1

Bk
. When that is put together with the

earlier inequality a−1
k ||z − z′||2Bk

≤ ⟨w, z − z′⟩, the result is a−1
k dist2Bk

(z, Z) ≤ ||w||B−1
k
·distBk

(z, Z).

This confirms (4.22).

Our results in Theorems 2.3, 2.4 and 3.3 could be targets also for generalization to a variable
metric setting, but we stop short of that. Issues are raised that need more space to be worked out
than is available here.
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