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Abstract

The prox mappings for convex functions that were introduced by Moreau have achieved wide
importance as a tool in optimization theory and numerical methodology, but what can be said about
prox mappings for nonconvex functions? Can the key property of being firmly nonexpansive carry
over to some degree in the absence of convexity, if not globally at least locally? Such questions are
answered in a framework of finite-dimensional variational analysis in which proximal subgradients
can be utilized. On the global level convexity turns out to be essential, while on the local level
variational convexity is sufficient but not necessary unless the function is prox-regular.
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1 Introduction

Let f : IRn → (−∞,∞] be a lower semicontinous (lsc) function, f 6≡ ∞, and let proxf be the associated
prox mapping , defined by

proxf (z) = argminx{ f(x) + 1
2 |x− z|2}, (1.1)

where | · | is the Euclidean norm. When f is convex, proxf is single-valued and has the important
property of being “firmly nonexpansive,” about which more will be explained shortly. When f is not
convex, proxf generally has to be treated as a set-valued mapping. However, there could be examples
of proxf being single-valued despite f not being convex. Might proxf then even be firmly nonexpansive
as well? Such questions can be raised also for localized prox mappings as defined by

proxBf (z) = argmin
x∈B

{ f(x) + 1
2 |x− z|2} for a subset B ⊂ IRn and z ∈ B (1.2)

Prox mappings in the global sense of (1.1) in the case of convex functions f were introduced in 1962
by Moreau [10, 11, 12]. They have since become a workhorse in convex analysis and a key ingredient
of various numerical methods for solving problems of optimization, starting with the proximal point
algorithm in [16, 17] and continuing into decomposition algorithms like those in [22, 20, 5, 6] and
recently [19].

Characterizing the special properties of prox mappings is important for these reasons and motivates
our undertaking here. The proximal point algorithm offers a particularly clear illustration. In simplest
form, it aims to solve the global problem of minimizing f over IRn by solving a sequence of better-
behaved subproblems. It generates a sequence of points xν for ν = 1, 2, . . . by taking

xν+1 ∈ argminx{ f(x) + 1
2 |x− xν |2} = proxf (xν). (1.3)

This can be viewed as a fixed-point type of iteration through the fact that

x̄ ∈ argminx f(x) =⇒ x̄ ∈ proxf (x̄). (1.4)

When f is convex and proxf is accordingly single-valued and “firmly nonexpansive,” the implication
in (1.4) becomes equivalence, and the sequence of points xν is sure always to converge to a particular
global minimizer of f [16, 17]. But there are echoes also in employing the same scheme locally in
pursuit of local minimizers of f when it might not be convex. Then the iterations take the form

xν+1 ∈ argmin
x∈B

{ f(x) + 1
2 |x− xν |2} = proxBf (xν) (1.5)

in a neighborhood B of a local minimizer x̄. Building on the work of Pennanen [13], we showed in
[18], with improvements in [19], that convergence to a local minimizer is assured then as long as f is
“variationally convex” there, which is a weaker requirement than local convexity. This feature was
promoted in [19] as an engine for decomposition methods capable of solving structured problems of
nonconvex optimization by way of augmented Lagrangian-type subproblems.

In such applications the iterations in (1.5) can executed with the 1
2 replaced by 1

2λ for some λ > 0,
and that suggests looking at this modification in (1.1) and (1.2) as well. No really new kinds of
mappings are obtained that way, because

argminx

{
f(x) +

1

2λ
|x− z|2

}
= proxλf (z), (1.6)
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and likewise in (1.2). However, these λ-parameterized mappings will anyway turn out to be useful in
technical analysis. With this in mind, we make the restriction that

henceforth the function f is prox-bounded, (1.7)

which corresponds among other things to the existence of a quadratic function q on IRn such that
q ≤ f , cf. [21, p. 21]. Otherwise all the mappings in (1.6) would have empty graph, because the
infimum would be −∞..

In this paper we won’t be occupied directly with algorithmic procedures but rather with pinning
down facts about prox mappings that enable the success of such procedures. Results will come on
both the global and local levels. In short, we will establish for the first time that proxf is firmly

nonexpansive only when f is convex. For the local version of this with respect to mappings proxBf , we
will show however that variational convexity of f is sufficient without being necessary. But particular
circumstances will be identified in which neccessity does hold nonetheless.

The global result for proxf has in its background a famous issue in approximation theory. A
subset C of a metric space is called a Chebyshev set if the nearest-point projection mapping PC is
everywhere single-valued. When the metric space is IRn with the usual Euclidean norm, the Chebyshev
sets are precisely the nonempty closed convex sets, although for infinite-dimensional Hilbert spaces
the necessity of convexity remains a nagging open problem; see [7]. The connection with our topic in
this paper is that

f = δC [indicator function] =⇒ proxf = PC . (1.8)

This might raise the idea of extending the approximation context from sets to functions by calling
f a Chebyshev function if proxf is a single-valued mapping. Such a function need not be convex,

though, as seen from elementary examples like f(x) = −1
4 ||x||

2. It is the additional property of proxf
being “firmly nonexpansive” that turns out to make the convexity of f essential.

Much of what we uncover here might be conjectured to hold in any Hilbert space, not just IRn, but
the technical challenges involved in such an extension are daunting. The open problem about Cheby-
shev sets is one indication, but another is a lack of a supporting theory of “proximal subgradients,”
which are inherently tied to prox mappings, as will soon be our theme. For convex functions, subgra-
dients are naturally always proximal, and in finite dimensions the subgradients of nonconvex functions
can be anyway still be characterized as limits of proximal subgradients. In infinite dimensions such a
characterization is unavailable, and the development of subgradients takes a different track [9].

2 Basic properties and their relationships

Several properties associated with mappings T : IRn →→ IRn will play a big role in what follows. The
notation →→ indicates that T may be set-valued in general, with single-valuedness as a special case;
gphT designates the graph of T within IRn × IRn, and the domain and range of T are the sets domT
and rgeT obtained by projecting gphT in its separate arguments.

The first property to recall is the monotonicity of T relative to a set W ⊂ IRn × IRn, namely

〈x1 − x2, y1 − y2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈W ∩ gphT. (2.1)

The monotonicity is maximal relative to W if there is no mapping T ′ with W ∩ gphT ′ ⊃W ∩ gphT ,
but W ∩ gphT ′ 6= W ∩ gphT , such that T ′ is monotone relative to W . These are simply referred to as
monotonicity and maximal monotonicity when W is all of IRn × IRn. Similarly, strong monotonicity
and maximal monotonicity with modulus µ > 0 correspond to replacing 〈x1−x2, y1− y2〉 ≥ 0 in (2.1)
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by 〈x1 − x2, y1 − y2〉 ≥ µ|x1 − x2|2. For history and more details on these concepts, which date from
the 1960s, see [21, Chapter 12].

Another property is the nonexpansivity of a mapping T : IRn →→ IRn relative to a set B ⊂ IRn,
which means

T is single-valued on B with |T (z1)− T (z2)| ≤ |z1 − z2|. (2.2)

It is firmly nonexpansive relative to B if it satisfies the stronger condition there that

|T (z1)− T (z2)|2 + |(I − T )(z1)− (I − T )(z2)|2 ≤ |z1 − z2|2. (2.3)

Again, the “relative” falls away when B is all of IRn. Browder [2] may have been the first one to
focus on the latter property, although he called it “firmly contractive”; the terminology soon changed,
however; see [3]. The recent book [1] of Bauschke and Combettes offers a comprehensive treatment of
monotonicity and firm nonexpansiveness in an infinite-dimensional framework of convex analysis and
fixed-point iterations.

The great importance of the perhaps obscure-looking condition in (2.3) is the fact [4] that

a mapping T is firmly nonexpansive from IRn into itself ⇐⇒
T = (I +A)−1 for a maximal monotone mapping A : IRn →→ IRn,

(2.4)

For our purposes a local version of this will also be useful, and we articulate it as follows.

Proposition 1 (localized firm nonexpansiveness). A mapping T is firmly nonexpansive relative to a
set B ⊂ domT if and only if T = (I + A)−1 for a mapping A : IRn →→ IRn that is maximal monotone
relative to the set W = { (x, y) |x+ y ∈ B}.

Proof. There is no loss of generality in truncating the graph of T so as to have B = domT =
{ z |T (z) 6= ∅}. The heart of the matter then is the fact that, for a pair of mappings A : IRn →→ IRn

and T : IRn →→ IRn related by

T = (I +A)−1, or equivalently A = T−1 − I,

the monotonicity of A corresponds to T having the property that

|x1 − x2|2 + |(z1 − x1)− (z2 − x2)|2 ≤ |z1 − z2|2 for (z1, x1), (z2, x2) ∈ gphT. (2.5)

This is a relationship, already known to underly (2.4), which can be combined with the observation
that (2.5) implies single-valuedness: if (z, x1), (z, x2) ∈ gphT , then x1 = x2. Thus (2.5) is the same
as T being firmly nonexpansive relative to domT and indicates moreover that

gphA = { (T (z), z − T (z)) | z ∈ domT}. (2.6)

Only the automatic maximality of A in this situation with respect to the set W remains to be
verified. Any monotone mapping can be extended be maximal monotone. Let A be such an extension
of A. Then, by (2.4), the mapping T = (I + A)−1, the graph of which extends gphT , is firmly
nonexpansive on all of IRn. The analog of (2.6) then holds for gphA in terms of T , but then the
restriction of T to domT must agree with T . Since A could have been any maximal extension of A,
this confirms that no outside pair (x, y) with x+ y ∈ domT could have been added to gphA without
upsetting the monotonicity. In other words, A is maximal monotone relative to the indicated set W .
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Some of the mappings for which these properties will be of interest are subgradient mappings
associated with lsc functions f that might be nonconvex. Their definitions will be recalled next,
following [21]. At a point x ∈ dom f , a vector y is a regular subgradient, denoted by y ∈ ∂̂f(x), if

f(x′) ≥ f(x) + 〈y, x′ − x〉+ o(|x′ − x|). (2.7)

It is a general subgradient, denoted by y ∈ ∂f(x), if

∃ yν ∈ ∂̂f(xν) such that yν → y, xν → x, f(xν)→ f(x). (2.8)

Under convexity the error term in (2.7) is superfluous, and ∂f(x) = ∂̂f(x).
Furthermore when f is convex, the subgradient mapping ∂f is maximal monotone. An easy

argument for this, using the prox mappings for both f and its conjugate f∗, was given by Moreau
in [12]. The converse fact, that if the mapping ∂f as defined above is maximal monotone, then f
is convex, was proved much later by Poliquin [14]. Similarly, maximal strong monotonicity of ∂f is
equivalent to strong convexity of f . More recently the question of local monotonicity of ∂f came up
in the following way in our paper [18]. What does the following property,

∃ ε > 0 and an open convex neighborhood U × V of (x̄, ȳ) ∈ gph ∂f such that
∂f is maximal monotone relative to W = { (x, y) ∈ U × V | f(x) < f(x̄) + ε}, (2.9)

say about the nature of f itself? The answer depended on a concept called the variational convexity
of f with respect to (x̄, ȳ), which means in terms of some ε, U , V and W as in (2.9) that

∃ convex lsc function h such that W ∩ gph ∂h = W ∩ gph ∂f
with h ≤ f on U and h(x) = f(x) when (x, y) ∈W ∩ gph ∂f .

(2.10)

We showed in [18] that the variational convexity property in (2.10) is always sufficient for the local
monotonicity in (2.9) (although with a possibly smaller choice of ε, U and V ). Moreover it is necessary
as long as ȳ ∈ ∂̂f(x̄) instead of just ȳ ∈ ∂f(x̄). (Whether that extra assumption of regularity is truly
needed is an open question.)

Our work on coordinating these facts with properties of prox mappings, global and local, will be
greatly aided by an appeal to a subclass of regular subgradients, called proximal subgradients. A
vector y is a proximal subgradient of f at x, denoted by y ∈ ∂pf(x), if

∃λ > 0, δ > 0, such that f(x′) ≥ f(x) + 〈y, x′ − x〉 − 1

2λ
|x′ − x|2 when |x′ − x| < δ. (2.11)

A valuable feature of proximal subgradients is their ability to replace regular subgradients in the
definition of general subgradients:

the formula in (2.8) still describes ∂f(x) if the
subgradients yν are restricted to being proximal.

(2.12)

See [21, Section 8I] for this and other background on proximal subgradients.
Due to our prox-boundedness assumption (1.7) on f , the local inequality in (2.11) can always

be extended to a global inequality on IRn by taking λ smaller. Thus, in terms of the mappings
∂pλf : IRn →→ IRn defined for λ > 0 by

∂pλf(x) =
{
y
∣∣∣ ∀x′, f(x′) ≥ f(x) + 〈y, x′ − x〉 − 1

2λ
|x′ − x|2

}
, (2.13)
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we therefore have
gph ∂pf =

⋃
0<λ<λ0

gph ∂pλf for any λ0 > 0. (2.14)

The close connection between proximal subgradients and prox mappings can be seen by writing
the inequality in (2.13) as a condition about x minimizing something:

f(x) = min
x′

{
f(x′)− 〈y, x′ − x〉+

1

2λ
|x′ − x|2

}
. (2.15)

A bit of algebra on quadratic terms, with z intervening as x+ λy, reveals that

y ∈ ∂pλf(x) ⇐⇒ x ∈ proxλf (z) for z = x+ λy, (2.16)

which yields
∂pλf = λ−1[prox−1λf −I], or equivalently, proxλf = [I + λ∂pλf ]−1. (2.17)

Proposition 2 (prox monotonicity and parameterization). The mappings proxλf : IRn → IRn are
monotone and related to each other graphically in the parameter λ > 0 by

λ2 < λ1 =⇒ proxλ2f ⊃ [(1− λ)I + λ prox−1λ1f ]−1 for λ = λ2/λ1 ∈ (0, 1), (2.18)

where in fact

x ∈ proxλ1f (z1) =⇒ proxλ2f (z2) = {x} for z2 = (1− λ)x+ λz1. (2.19)

Proof. The monotonicity has already been recorded in [21, 12.19], but we confirm it here with a
simple argument. Suppose xi ∈ proxλf (zi) for i = 1, 2. Then

λf(x1) + 1
2 |x1 − z1|2 ≤ λf(x2) + 1

2 |x2 − z1|2 and λf(x2) + 1
2 |x2 − z2|2 ≤ λf(x1) + 1

2 |x1 − z2|2,

from which it follows on adding the inequalities together that

0 ≤ 1
2 |x2 − z1|2 −

1
2 |x1 − z1|2 + 1

2 |x1 − z2|2 −
1
2 |x2 − z2|2 = 〈x1 − x2, z1 − z2〉,

hence monotonicity. Next observe from the definition in (2.13) that having λ2 < λ1 implies ∂pλ2f ⊃
∂pλ1f in the graphical sense. Then from (2.18) we have λ−12 [prox−1λ2f −I] ⊃ λ−11 [prox−1λ1f −I], which can

be written with λ = λ2/λ1 as prox−1λ2f ⊃ λ[prox−1λ1f −I] + I. On inverting both sides, we get (2.18).

To verify the refinement in (2.19), we appeal to the interpretation of y ∈ ∂pλf(x) as meaning that
x gives the minimum in (2.15). If that holds for λ1 and z1, then x is the unique minimizer of the
expression on the right side of (2.15) for all smaller values λ2. Passing that through (2.16) we get

x ∈ proxλ1f (z1) for z1 = x+ λ1y =⇒ {x} = proxλ2f (z2) for z2 = x+ λ2y.

In this situation λ−11 [z1 − x] = y = λ−12 [z2 − x], so that z2 = x+ λ[z1 − x] for λ = λ2/λ1.
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3 Main results

We move on now to the issues raised in the introduction about the degree to which convexity properties
of f are essential to the firm nonexpansiveness of proxf or the local firm nonexpansiveness of the

localized versions proxBf .

Theorem 1 (global characterization). The convexity of f is not only sufficient for proxf to be a
firmly nonexpansive mapping, but also necessary.

Proof. The sufficiency has long been known through the fact that the convexity of f entails the
maximal monotonicity of ∂f and, through the optimality condition associated with the argmin in
(1.1), makes prox f = (I + ∂f)−1.

In the other direction, under the assumption that proxf is firmly nonexpansive, we know from the
theory of firmly expansive mappings, as reviewed at the beginning of Section 2, that proxf = (I+A)−1

for a maximal monotone mapping A. Then (1− λ)I + λ prox−1f is the mapping λA, likewise maximal
monotone. The same then for its inverse, which as the case of (2.18) with λ1 = 1 and λ2 = λ
has its graph inside that of proxλf . Since proxλf is itself monotone according to Proposition 2, the

maximality prevents the graphical inclusion from being strict. Thus, proxλf = (1 − λ)I + λprox−1f
and in consequence λ−1[prox−1λf −I] = prox−1f −I = A for all λ ∈ (0, 1).

This tells us through (2.17) that the mappings ∂pλf likewise all coincide with the maximal monotone
mapping A, and the same then for ∂pf by (2.14). Hence ∂pf is maximal monotone. The limit process
in the expression of ∂f in (2.8), which can be restricted to proximal subgradients yν as noted in (2.12),
preserves monotonicity, so it follows now that ∂f is maximal monotone (and the limit process wasn’t
actually neeeded). Then, according to Poliquin [14], f must be convex.

The corresponding result in the case of general f for the localized mappings proxBf provides less

than an equivalence until extra assumptions in terms of proxBλf for λ ∈ (0, 1) are supplied. But it

is definitive nonetheless. Since proxBf is primarily of interest in the setting of the proximal point
algorithm in finding a local minimizer of f , or at least a local critical point x̄ in the sense that
0 ∈ ∂f(x̄), we focus on that case.

Theorem 2 (local characterization in general). If f is variationally convex at (x̄, 0) ∈ gph ∂f as
described in (2.10) with a convex function h and a set W = { (x, y) ∈ U × V | f(x) ≤ f(x̄) + ε}, then
0 ∈ ∂̂f(x̄) and there is an open ball B ⊂ U centered at x̄ on which proxBf is firmly nonexpansive.

Moreover the same holds then for all the mappings proxBλf with λ ∈ (0, 1).

Conversely, if 0 ∈ ∂̂f(x̄) and there is an open ball B centered at x̄ on which proxBf and all the

mappings proxBλf for λ ∈ (0, 1) are firmly nonexpansive, then f is must be variationallly convex at
(x̄, 0) (with respect to some choice of elements in the definition).

However, having just proxBf itself be firmly nonexpansive around x̄ is not enough, in general, to
necessitate that variational convexity.

Proof. Suppose f is variationally convex at (x̄, 0) ∈ gph ∂f and let h, U , V and ε be as in the
description (2.10) of that property. Then 0 ∈ ∂h(x̄), hence x̄ ∈ argminh by convexity, in which case
x̄ must minimize f on U and in particular have 0 ∈ ∂̂f(x̄).

Note next that for any open ball B ⊂ U centered at x̄, having x ∈ proxBf (z) for z ∈ B entails the
first-order optimality condition that z − x ∈ ∂f(x). By taking B small enough, we can ensure in this
that (x, z − x) ∈ U × V . Furthermore, through the fact that

x ∈ proxBf (z) for z ∈ B =⇒ f(x) + 1
2 |x− z|2 ≤ f(x̄) + 1

2 |x̄− z|2,
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we can guarantee, by taking B to be a smaller ball at x̄ if necessary, that f(x) ≤ f(x̄) + ε, so
that (x, z − x) ∈ W . Then, in drawing on the property (2.10) of variational convexity, we also have
z−x ∈ ∂h(x), moreover with h(x) = f(x). Since z−x ∈ ∂h(x) is the necessary and sufficient condition
for having x ∈ proxh(z), we can conclude that proxBf reduces on B to proxh. Because h is convex
with 0 ∈ ∂h(x̄), that mapping is single-valued and firmly nonexpansive globally with proxh(x̄) = x̄
and takes B into itself. Hence proxBf itself is single-valued and firmly nonexpansive relative to B.

For any λ ∈ (0, 1), the function λf inherits variational convexity from f for the same U × V with
respect to λε and λh in place of ε and h. Then, by the same argument, proxλf is firmly nonexpansive
relative to the same B.

Suppose now, for the establishing converse, that B is an open ball centered at x̄ relative to which
proxBλf is firmly nonexpansive for all λ ∈ (0, 1]. That property involves no points x 6∈ B, so we can
simplify matters by redefining f(x) to be ∞ outside the closure of B. The redefined function will still
be lsc, and the global mappings proxλf for λ ∈ (0, 1] will be nonempty-valued with range in clB. For

z ∈ B, having x ∈ proxBλf (z) is equivalent to having x ∈ B with

λf(x′) + 1
2 |x′ − z|2 ≥ λf(x) + 1

2 |x− z|2 for all x′ ∈ B.

Then through lower semicontinuity the same inequality must hold on clB and hence on all of IRn,
because dom f ⊂ clB, so that x ∈ proxλf (z). This shows that

gph[proxBλf ] = [B ×B] ∩ gph[proxλf ]. (3.1)

Having Tλ = proxBλf be firmly nonexpansive on B is equivalent by Proposition 1 to having the mapping

Aλ = T−1λ − I be maximal monotone relative to W = { (x, y) |x + y ∈ B}. Then λ−1Aλ is maximal
monotone relative to { (x, y) |x+ λy ∈ B}, which entails maximal monotonicity with respect to

WB
λ = { (x, y) |x ∈ B, x+ λy ∈ B}, (3.2)

inasmuch as x ∈ B holds automatically for x ∈ domAλ. On the other hand, because of (3.1), we have

y ∈ λ−1Aλ(x) ⇐⇒ x ∈ Tλ(x+ λy) ⇐⇒ x ∈ proxλf (x+ λy) with (x, x+ λy) ∈ B ×B,

and therefore
gph[λ−1Aλ] = WB

λ ∩
(
λ−1[prox−1λf −I]

)
.

But λ−1[prox−1λf −I] = ∂pλf , as noted in (2.17), so this tells us on the basis of λ−1Aλ being maximal
monotone relative to Wλ that

∂pλf is maximal monotone relative to WB
λ . (3.3)

Recall now that, when 0 < λ2 < λ1, the graph of ∂pλ2f includes the graph of ∂pλ1f , while noting

that that WB
λ2
⊃WB

λ1
. The maximal monotonicity in (3.3) ensures than that

gph[∂pλ2f ] agrees with gph[∂pλ1f ] in WB
λ1 . (3.4)

Observing that WB
λ increases to all of B × IRn as λ → 0, we see through (2.14) that gph ∂pf must

be maximal monotone relative to B × IRn. (If some pair (x, y) ∈ B ∈ IRn could be still be added to
gph ∂pf without interfering with monotonicity, then the same must be true for every gph ∂pλf . But
for some λ small enough, (x, y) ∈WB

λ , so that would run into conflict with (3.3).)
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Therefore ∂f must be maximal monotone relative to B × IRn and agree there with ∂pf , inasmuch
as the limit process in (2.8) for constructing ∂f from ∂pf in accordance with (2.12) maintains mono-
tonicity. This local monotonicity around (x̄, 0), together with having 0 ∈ ∂̂f(x̄), enables us to invoke
the main result in [18] to confirm that f must be variationally convex for (x̄, 0).

The counterexample laid out below will justify the final claim in the theorem about firm nonex-
pansiveness of just proxf falling short of implying variational convexity.

Example. There is a nonconvex lsc function f : IR2 → (−∞,∞] having (0, 0) ∈ ∂̂f(0, 0) without
variational convexity there, and yet such that proxf is firmly nonexpansive around (0, 0).

Detail. To construct f , we start with the concave function θ(t) = 1 + 2t− t2 on IR and fix a value
τ ∈ (1, 2), noting that θ′(1) = 0 and hence θ has its maximum at 1. We define f on IR2 by

f(x1, x2) =


x21θ(|t|) when x1 6= 0, |t| ≤ τ for t = x2/x

2
1,

0 when (x1, x2) = (0, 0),
∞ otherwise.

(3.5)

It is easy to see that f is lsc on IR2 and even continuous relative to dom f . Moreover it attains its
minimum at (0, 0); that implies (0, 0) ∈ ∂̂f(0, 0).

On the open subset of IR2 where x1 6= 0 and 0 < |x2|/x21 < τ , f is twice continuously differentiable,
but in view of the symmetry in (3.5), it will suffice to examine the partial derivatives when x1 > 0
and 0 < x2/x

2
1 < τ . Utilizing dt/dx1 = −2t/x1 and dt/dx2 = 1/x21, we calculate there that

(df/dx1)(x1, x2) = 2x1θ(t)dt/dx1 + x21θ
′(t) = 2x1[θ(t)− tθ′(t)] = 2x1[2 + t2],

(df/dx2)(x1, x2) = x21θ
′(t)dt/dx2 = θ′(t) = 2− 2t,

(d2f/dx21)(x1, x2) = 2[2 + t2] + 2x1[2tdt/dx1] = 4− 2t2,

(d2f/dx1 dx2)(x1, x2) = −2dt/dx1 = 4tx−11 ,

(d2f/dx22)(x1, x2) = −2dt/dx2 = −2x−21 .

(3.6)

In focusing on τ = 1 we can investigate the behavior of f as the origin is approached along the parabola
where x2 = x21. There f has gradient (2x1, 0) and a hessian matrix that fails to be monotone because
of the negative second derivative in x2 in (3.6). As (x1, x2) → (0, 0) with x2 = x21, the gradient goes
to (0, 0), but the nonmonotone hessians preclude the existence of a set W of the kind in (2.9) for
((0, 0), (0, 0)) in which gph ∂f is monotone. Hence by, [18, Theorem 1], variational convexity must be
lacking at this location.

Next we verify the claim about the firm nonexpansiveness of the mapping

proxf (z1, z2) = argmin
x1, x2

{ f(x1, x2) + 1
2 |x1 − z1|2 + 1

2 |x2 − z2|2}. (3.7)

The minimization behind (3.7) can first be carried out with respect to x2, after which the residual
can be minimized with respect to x1. Symmetry allows us to concentrate on x1 > 0 and z2 > 0. The
minimization in x2 for fixed x1 concerns the function

x2 7→ f(x1, x2) + 1
2 |x2 − z2|2 for |x2| ≤ τx21. (3.8)

On the open intervals (0, τx21) and (−τx21, 0) the function (3.8) has second derivative 1−2x−21 , as seen
from the expression for (d2f/dx22)(x1, x2) in (3.6). Thus, as long as

1− 2x−11 < 0, or in other words x21 < 2, (3.9)
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it is concave on the closed intervals [0, τx21] and [−τx21, 0]. The minimum therefore has to be at one
of the boundary points, and we can identify it by comparing them. It’s obvious with z2 > 0 that the
value at −τx21 is higher than at τx21, so only the values at τx21 and 0 are in contention. The issue then
revolves around the sign of the difference, between those values, which we calulate as

[f(x1, τx
2
1) + 1

2 |τx21 − z2|2]− [f(x1, 0) + 1
2 |0− z2|2]

= x21θ(τ)− x21θ(0) + 1
2 |τx21|2 − τx21z2 = x21[θ(τ)− θ(0) + τ2x21 − τz2].

(3.10)

When this is positive, the minumum is attained uniquely at 0, and that is sure to hold in particular if
θ(τ)− θ(0)− τz2 > 0. Since [θ(τ)− θ(0)]/τ = 2− τ > 0, that can be guaranteed by taking z2 < 2− τ .
In summary with an appeal to symmetry,

under (3.9) and |z2| < 2− τ , the minimization in (3.7) comes down

to setting x2 = 0 and then minimizing f(x1, 0) + 1
2 |x1 − z1|2 in x1.

(3.11)

Here f(x1, 0) = 2x21, so the expression being minimized is convex with derivative 4x2 + [x1 − z1] and
vanishes when x1 = z1/5. That x1 satisfies (3.9) when |z1| is small enough. It follows that, for (z1, z2)
in a small enough neighborhood of (0, 0),

proxf (z1, z2) = proxg(z1, z2) for g(x1, x2) =

{
2x21 if x2 = 0,
0 if x2 6= 0.

(3.12)

Because g is convex, its prox mapping is firmly nonexpansive on IR2. The claim that proxf is firmly
nonexpansive on a neighborhood of (0, 0) is thereby confirmed.

Although this example demonstrates the need for more than just the firm nonexpansiveness of
proxf itself in Theorem 2, more can be said under an assumption of prox-regularity. The function f is
prox-regular at x̄ for the subgradient 0 ∈ ∂f(x̄) if the subgradients y ∈ ∂f(x) with (x, y) near enough
to (x̄, 0) are all proximal subgradients as in (2.11) and that holds in a uniform sense [21, 13F]. Under
our prox-boundedness assumption (1.7), this can be expressed conveniently as follows:

f being prox-regular at x̄ for 0 ∈ ∂f(x̄) means that, for some λ ∈ (0, 1],
gph ∂f agrees with gph ∂pλf around (x̄, 0) in a set W of the kind in (2.9).

(3.13)

Prox-regularity is a significant restriction, but many applications are well covered by it. For
instance, a function f = f0 + δC is covered by it at x̄ when f0 is C2, or the max of a finite collection of
C2 functions, and C is specified by a system of finitely many inequality and equation constraints for
which a basic constraint qualification holds at x̄, cf. [21, 13.32].

Theorem 3 (local characterization under prox-regularity). Let f be prox-regular for (x̄, 0) ∈ gph ∂f .
Then the variational convexity of f for (x̄, 0) is not just sufficient but also necessary for the existence
of an open ball B centered at x̄ on which proxBf is firmly nonexpansive.

Proof. This builds on the proof of Theorem 2, from which we already know the sufficiency. As there,
we take an open ball B centered at x̄ relative to which prox f is firmly nonexpansive and, without
losing generality, modify f so that dom f ⊂ clB, thereby obtaining (3.1) in the case of λ = 1:

gph[proxBf ] = [B ×B] ∩ gph[proxf ]. (3.14)

In denoting this truncated mapping by T , we get from its firm nonexpansiveness via Proposition 1
that T = (! + A)−1 for a mapping A that is maximal monotone with respect to the open set W =
{ (x, y) |x+y ∈ B}, with gphA lying actually in the smaller open set WB = { (x, y) |x ∈ B, x+y ∈ B}.
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Drawing on the assumption of prox-regularity, which in particular makes ∂f(x̄) coincide with
∂̂f(x̄), let λ be as in (3.13). The key to our argument now will be the property in (3.19), which has
the consequence that, for λ ∈ (0, 1),

proxλf is single-valued on the range Rλ of the mapping (1− λ)T + λI. (3.15)

That single-valuedness forces the inclusion in (3.18) in the case of λ1 = 1 and λ2 = λ to hold as an
equation on Rλ:

proxλf = [(1− λ)I + λT−1]−1 = [I + λA]−1 when restricted to Rλ.

Then the mapping λ−1[prox−1λf −I], which is ∂pλf by (2.17), agrees graphically with A in the set
{ (x, y) |x+ y ∈ Rλ}.

We will demonstrate next that Rλ is a neighborhood of (x̄, 0). This will show via (3.13) that ∂f
agrees graphically with A in a small enough neighborhood of (x̄, 0) and thus is maximal monotone
there. That will confirm the variational convexity of f for (x̄, 0) by virtue of [18, Theorem 1].

Let A be a maximal monotone extension of A and let T = (I +A)−1. Then T is firmly expansive
globally and extends T beyond B. Likewise the mapping (1 − λ)T + λI is a global extension of
(1− λ)T + λI that serves in particular as a nonexpansive mapping from IRn into itself with x̄ as fixed
point. At the same time, because T is monotone, the mapping (1 − λ)T + λI is strongly monotone.
That implies its inverse is Lipschitz continuous from IRn into itself. Thus, the mapping (1− λ)T + λI
and its inverse both map IRn continuously onto itself. The image of the open ball B under (1−λ)T+λI
must therefore be an open set. But this is the same as the image of B under (1− λ)T + λI, which by
definition is Rλ.

An earlier result relating variational convexity with prox-regularity appeared in [15], but without
any connection to prox mappings.

References

[1] Bauschke H. H., and Combettes, P. L., Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Second edition, Springer, 2019.

[2] Browder, F. E., “Convergence theorems for sequences of nonlinear operators in Banach
spaces.” Math. Zeitschrift 100 (1967), 201–225.

[3] Bruck, R. E., “Nonexpansive projections on subsets of Banach spaces.” Pacific J. Math. 47
(1973), 341–355.

[4] Bruck, R. E., and Reich, S., “Nonexpansive projections and resolvents of accretive operators
in Banach spaces.” Houston J. Math. 3 (1977), 459–470.

[5] Chen, G., and Teboulle, M., “A proximal-based decomposition method for convex mini-
mization problems.” Mathematical Programming 64 (1994), 81–101.

[6] Eckstein, J., Bertsekas, D. P., “On the Douglas-Rachford splitting method and the proxi-
mal point algorithm for maximal monotone operators.” Mathematical Programming 55 (1992),
293–318.

[7] Fletcher, J., and Moors, W. R., “Chebyshev sets.” J. Australian Math. Soc. 98 (2015),
161–231.

11



[8] Minty, G. J., “Monotone (nonlinear) operators in Hilbert space.” Duke Mathematical J. 29
(1962), 341–346.

[9] Mordukhovich, B. S., Variational Analysis and Generalized Differentiation I: Basic Theory.
Springer-Verlag, 2006.

[10] Moreau, J.-J, “Fonctions convexes duales et points proximaux dans un espace hilbertien.”
Compte Rendus Acad. Sci. 255 (1962), 2897–2899.

[11] Moreau, J.-J, “Propriétés des applications ‘prox’.” Compte Rendus Acad. Sci. 256 (1963),
1069–1071.
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