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ABSTRACT. This paper is devoted to the study of sensitivity to perturbation of parametrized varia-
tional inclusions involving maximal monotone operators in a Hilbert space. The perturbation of all the
data involved in the problem is taken into account. Using the concept of proto-differentiability of a multi-
function and the notion of semi-differentiability of a single-valued map, we establish the differentiability
of the solution of a parametrized monotone inclusion. We also give an exact formula of the proto-derivative
of the resolvent operator associated to the maximal monotone parameterized variational inclusion. This
shows that the derivative of the solution of the parametrized variational inclusion obeys the same pattern
by being itself a solution of a variational inclusion involving the semi-derivative and the proto-derivative
of the associated maps. An application to the study of the sensitivity analysis of a parametrized primal-
dual composite monotone inclusion is given. Under some sufficient conditions on the data, it is shown
that the primal and the dual solutions are differentiable and their derivatives belong to the derivative of the
associated Kuhn-Tucker set.
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1 Introduction

Generalized equations constitute an important topic in optimization theory and variational analysis.
They consists in finding the zeros of the sum of a single-valued map and a multifunction (or a set-valued
map). Generalized equations are also known in the literature as variational inclusions and contain as a
particular case variational inequalities and complementarity problems. When the multifunction coincides
with the normal cone mapping to a closed convex set, generalized equations reduce to variational inequal-
ities of first kind (which express first-order optimality conditions associated with constrained optimization
problems). For the particular case of the set-valued part being the subdifferential of a lower semicontin-
uous, proper and convex function, it gives rise to variational inequalities of second kind. In both cases,
the involved multifunctions are maximal monotone operators. Generalized equations involving maximal
monotone operators are common beyond the optimization literature. They provide an important tool for
the modelling of many nonlinear phenomena in PDE’s. The literature on this subject is abundant about
different kinds of existence results, regularity of solutions, various extension of inclusions as well as many
numerical aspects for approximating these problems. One of the most important issues in variational anal-
ysis is the study of sensitivity to perturbation of the solution to parametrized inclusions involving maximal
monotone operators. The analysis of the continuity or differentiability properties of the solution map to
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generalized equations under perturbation of the involved data is essential in applied mathematics and engi-
neering, not only for the knowledge of the behavior and the response of a system to perturbations, but also
for the design of efficient algorithms in view of their numerical simulations. For a comprehensive reference
on sensitivity analysis for continuous optimization problems we refer to the book by Bonnans and Shapiro
[5]. In 1980, S.M. Robinson [22] studied parameterized variational inequalities. He proved a powerful
implicit function theorem that states, under suitable second-order sufficient conditions, that the solution
mapping of the standard nonlinear programming problem has a Lipschitz continuous single-valued lo-
calization around a reference point (see Theorem 2G.9 and Chapter 3 in [9] for an update statement).
Dontchev and Hager in [7] extended Robinson’s implicit function theorem and obtained a characterization
of the pseudo-Lipschitz properties of the solution map associated to a perturbed generalized equation. In
2006, Dontchev and Rockafellar [8] revisited Robinson’s theorem from the perspective of the recent tools
developed in variational analysis. With the objective of studying the single-valuedness, the Lipschitz con-
tinuity and the differentiability properties of the solution map to a perturbed general variational inclusion
around a reference point, Dontchev and Rockafellar gave several extensions of Robinson’s theorem (see
[9] Chapters 2, 3 and 4 for more details). To deal with the generalized differentiation of multifunctions,
there exist in the literature of variational analysis many tools such as: “Bouligand” differentiability [22],
the graphical derivative, the limiting coderivative [15, 28] etc. The proto-differentiability of multifunc-
tions introduced by Rockafellar [25] proves to be an efficient tool for the study of sensitivity analysis of
generalized equations. It is obtained from the Painlevé-Kuratowski set limits of the graphs of first-order
difference quotient of the involved multifunctions. Going further into second-order analysis, R.T. Rock-
afellar [26] proved the equivalence between the proto-differentiability of the subdifferential of a lower
semicontinuous proper and convex function and the twice epi-differentiability of this function (obtained
from the Painlevé-Kuratowski set limits of the epigraph of second-order difference quotient). The proto-
differentiability of the associated Moreau’s proximity operator is also obtained (see also [28, Chapter 13]).
A large class of proto-differentiable maps has been given in the works by Rockafellar [25, 26, 27, 28] and
Poliquin-Rockafellar [19, 20].

In the whole paperH is a real Hilbert space endowed with the scalar product 〈·, ·〉 and the correspond-
ing norm ‖ ·‖. The focus is on the study of the sensitivity analysis, with respect to the parameter t ∈ [0, δ),
with δ > 0, of the Variational Inclusion given by

VI
(
A(t, ·), B(t, ·), ξ(t)

){ find x(t) ∈ H such that
ξ(t) ∈ A(t, x(t)) +B(t, x(t)),

where

(i) A : [0, δ)×H → H is a single-valued map supposed to be:
• uniformly Lipschitz continuous, i.e.

∃k ≥ 0, ∀t ∈ [0, δ), ∀x1, x2 ∈ H, ‖A(t, x2)−A(t, x1)‖ ≤ k‖x2 − x1‖,

• and uniformly strongly monotone, i.e.

∃α > 0, ∀t ∈ [0, δ), ∀x1, x2 ∈ H, 〈A(t, x2)−A(t, x1), x2 − x1〉 ≥ α‖x2 − x1‖2.

(ii) B : [0, δ) ×H ⇒ H is a parametrized maximal monotone operator, i.e. for all t ∈ [0, δ), B(t, ·) is
a maximal monotone operator.

(iii) ξ : [0, δ)→ H, t 7→ ξ(t) is a given right hand-term.

In the whole paper, the parameter t is a general parameter, not necessarily the time as the notation
may suggest. Since we are interested in the right-differentiability properties at t = 0, we just need to
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have all maps defined on a neighborhood to the right of the origin, i.e. an interval [0, δ). We note that
both operators A and B are perturbed in VI

(
A(t, ·), B(t, ·), ξ(t)

)
, which requires special adjustments in

the definitions of the semi-differentiability and proto-differentiability of the perturbed maps A(t, ·) and
B(t, ·) (see Definitions 2.1 and 2.5 for more details). As we focus on the differentiability properties of the
solution t 7→ x(t) with respect to data perturbations, we suppose that the perturbation parameter t lives in
a one-dimensional space [0, δ) ⊂ R+.
By assumptions (i) and (ii), the inclusion VI

(
A(t, ·), B(t, ·), ξ(t)

)
admits for all t ∈ [0, δ) a unique solu-

tion x(t) ∈ H given under the following resolvent equation

x(t) = [A(t, ·) +B(t, ·)]−1(ξ(t)) := JA(t,·), B(t,·)(ξ(t)). (1.1)

The main objective of this paper is to derive sufficient conditions on the data A, B and ξ ensuring
the right-differentiability at t = 0 of the solution x : [0, δ) → H and to provide an explicit formula for
its right-derivative x′(0). We show exactly that the right-derivative of x at 0 is a solution of a variational
inclusion involving the semi- and proto-derivatives of the operators A and B. More precisely, we prove
that x′(0) is a solution of the following variational inclusion

ξ′(0) ∈ DsA
(
x(0)

)(
x′(0)

)
+DpB

(
x(0)|x∗(0)

)(
x′(0)

)
, (1.2)

with x∗(0) = ξ(0)−A(0, x(0)) ∈ B(0, x(0)), DsA
(
x(0)

)
the semi-derivative of A at x(0) and

DpB
(
x(0)|x∗(0)

)
the proto-derivative of B at x(0) relative to x∗(0) (see Theorem 3.1 for more details).

As an application of the main result, we investigate the sensitivity analysis of a primal-dual composite
variational inclusion involving parametrized maximal monotone and linear operators. Using Attouch-
Théra duality theory [4], we associate to a composite monotone variational inclusion a dual problem. We
recast the primal-dual inclusion as a problem of the form VI

(
A(t, ·), B(t, ·), ξ(t)

)
and apply the main

result to prove that the primal and the dual perturbed solutions are right-differentiable at t = 0 and their
right-derivatives belong to the derivative of the associated Kuhn-Tucker set (see Theorem 4.1 for more
details).

Our aim in this paper is the first-order sensitivity analysis in the same spirit as the paper by Levy
and Rockafellar [11] with a special focus on the set-valued part being a parametrized maximal monotone
operator. For second-order analysis and its link with the twice epi-differentiability we refer the reader to
[1, 6, 16, 19, 20, 24, 26, 27].

The paper is organized as follows. Section 2 is devoted to the main notations and definitions used
throughout the paper. We recall some tools from the monotone operator theory, the variational conver-
gence associated with sets and graph of operators as well as the semi- and proto-derivatives associated to
single-valued and set-valued maps. In Section 3, we state and prove the main result (Theorem 3.1). In Sec-
tion 4, as an application, we investigate the sensitivity analysis of a parameterized primal-dual composite
monotone inclusion. We conclude this paper with some additional comments in Section 5.

2 Background on operator theory and variational convergence

Let us introduce first some notations and recall some backgrounds from variational analysis concerning
the operator theory and the variational convergence. We say that a single-valued map A : H → H is
k-Lipschitz and α-strongly monotone if

‖A(x)−A(y)‖ ≤ k‖x− y‖ and 〈A(x)−A(y), x− y〉 ≥ α‖x− y‖2,

for all x, y ∈ H and for some k > 0 and α > 0, respectively.
In what follows, we denote by Lk,α(H) the set of single-valued operators A : H → H which are k-
Lipschitz continuous and α-strongly monotone.
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Remark 2.1 Let A : H → H be a given single-valued map.

(i) We note that if A is strongly monotone with modulus α > 0, then the (monotone) inverse of A is
Lipschitz continuous with constant 1

α .

(ii) A is α-strongly monotone if and only if (A− αId) is monotone.

(iii) The operator A is said to be β-cocoercive, with β > 0, if

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2, ∀x, y ∈ H,

which means that A−1 is β-strongly monotone.
It is easy to check that a β-cocoercive operator is 1

β -Lipschitz continuous.

(iv) If A ∈ Lk,α(H), then A is α
k2

-cocoercive.

For a set-valued map B : H ⇒ H, the domain of B is given by Dom(B) := {x ∈ H | B(x) 6= ∅} and
its graph is defined by gph (B) := {(x, y) ∈ H × H | y ∈ B(x)}. We denote by B−1 : H ⇒ H the
set-valued map defined by

B−1(y) := {x ∈ H | y ∈ B(x)},

for all y ∈ H.
The range of B is defined by

Rge(B) =
⋃
x∈H

B(x).

The set-valued map B : H ⇒ H is called monotone if and only if 〈x∗ − y∗, x − y〉 ≥ 0, ∀(x, x∗) ∈
gph (B), ∀(y, y∗) ∈ gph (B).
The set-valued map B is maximal monotone if and only if it is monotone and its graph is maximal in the
sense of inclusion, i.e., gph (B) is not properly contained in the graph of any other monotone operator.
For a given set-valued map B : H⇒ H, the resolvent of B is given by

JB = (Id +B)−1, (2.1)

where Id stands for the identity operator onH.
It is well known that if B : H ⇒ H is maximal monotone, then its resolvent JB is a single-valued and
nonexpansive mapping, i.e.

‖JB(x)− JB(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H.

We could replace the identity operator in (2.1) by any single-valued operator A ∈ Lk,α(H) to define the
extended A-resolvent of B given by

JA,B = (A+B)−1. (2.2)

We note that if B : H ⇒ H is maximal monotone and A ∈ Lk,α(H), then JA,B is single-valued and
1
α -Lipschitz, i.e.

‖JA,B(x)− JA,B(y)‖ ≤ 1

α
‖x− y‖, ∀x, y ∈ H. (2.3)

When A = Id, the resolvent JId,B defined in (2.2) coincides with JB .

In the following definition, we introduce the notion of semi-differentiability of a single-valued map.
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Definition 2.1 (Semi-differentiability) Let A : [0, δ) × H → H be a parameterized single-valued map
and let x ∈ H. If the limit

DsA(x)(ω) := lim
τ→0
ω′→ω

A(τ, x+ τω′)−A(0, x)

τ

exists in H for all ω ∈ H, we say that A is semi-differentiable at x. In that case, DsA(x) : H → H is a
single-valued map called the semi-derivative of A at x.

If the single-valued mapA is t-independent, Definition 2.1 recovers the classical notion of semi-differentia-
bility originally introduced in [18]. We refer also to [9] (Chapter 2 for alternative characterizations and
calculus rules for the semi-differentiability).

In what follows, we denote by Uk,α(H) the set of all parameterized single-valued maps A : [0, δ) ×
H → H such that A is uniformly k-Lipschitz continuous and uniformly α-strongly monotone (with respect
to its second argument).

Remark 2.2 If A ∈ Uk,α(H) is semi-differentiable at x ∈ H, then DsA(x) ∈ Uk,α(H).

Let (Cτ )τ>0 be a parameterized family of subsets of H. The outer and the inner limits of (Cτ )τ>0

when τ → 0 are defined respectively by

lim supCτ := {x ∈ H | ∃(tν)ν → 0, ∃(xν)ν → x, ∀ν ∈ N, xν ∈ Ctν},
lim inf Cτ := {x ∈ H | ∀(tν)ν → 0, ∃(xν)ν → x, ∃N ∈ N, ∀ν ≥ N, xν ∈ Ctν}

In the whole paper, note that all limits (inner and outer limits) are taken with respect to τ → 0 and for
the strong topology. For the ease of notations, when no confusion is possible, the notation τ → 0 will be
removed.
Note that the following inclusion holds true in general:

lim inf Cτ ⊂ lim supCτ .

The Painlevé-Kuratowski convergence is defined by this inclusion being an equality. The next definition
is in this sense.

Definition 2.2 (Painlevé-Kuratowski convergence) A parameterized family (Cτ )τ>0 of subsets of H is
said to be convergent in the sense of Painlevé-Kuratowski if

lim supCτ ⊂ lim inf Cτ .

In that case, we denote by limCτ := lim inf Cτ = lim supCτ .

Definition 2.3 (Graph convergence) A parameterized family (Bτ )τ>0 of set-valued maps on H graph
converges to the set-valued map B : H⇒ H as τ → 0 if

lim sup gph (Bτ ) = lim inf gph (Bτ ) = gph (B),

i.e. (gph (Bτ ))τ>0 converges in the sense of Painlevé-Kuratowski to gph (B).
We write gph-limBτ = B.
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Let B : H ⇒ H be a given set-valued map. Rockafellar introduced in [25] the notion of proto-
differentiability ofB at a point x ∈ Dom(B) relative to a point x∗ ∈ B(x) by using the graph convergence
of the following first-order difference quotient

∆τB(x|x∗)(ω) :=
B(x+ τω)− x∗

τ
, (2.4)

with τ > 0 and ω ∈ H.

Definition 2.4 (Proto-differentiability) The set-valued mapB : H⇒ H is proto-differentiable at x ∈ H
relative to x∗ ∈ B(x) if (∆τB(x|x∗))τ>0 defined in (2.4) graph converges. The proto-derivative of B at
x relative to x∗ is the set-valued map whose graph is the limit set, and is denoted by

DpB(x|x∗) := gph-lim ∆τB(x|x∗).

B is said to be proto-differentiable at x ∈ Dom(B) if for every x∗ ∈ B(x), B is proto-differentiable at x
relative to x∗.

As noticed by Rockafellar in [25] (see also [6]), there is a link between the proto-differentiability and the
contingent cone. In fact, we have

gph
(
∆τB(x|x∗)

)
=

gph (B)− (x, x∗)

τ
.

We define the Bouligand tangent (contingent) and the adjacent tangent cones of gph (B) at (x, x∗) respec-
tively by

Tgph (B)(x, x
∗) = lim sup

gph (B)− (x, x∗)

τ
and T̃gph (B)(x, x

∗) = lim inf
gph (B)− (x, x∗)

τ
(2.5)

The proto-differentiability of B at x relative to x∗ is equivalent to the derivability of gph (B) at (x, x∗)
which means that the two cones, defined in (2.5), coincide and the graph of the proto-derivativeDpB(x|x∗)
is the common cone. For more details we refer to [25].
One of the important properties of the proto-derivative DpB(x|x∗) : H ⇒ H is that its graph is closed
and satisfies

0 ∈ DpB(x|x∗)(0) and DpB(x|x∗)(λω) = λDpB(x|x∗)(ω), for every ω ∈ H and λ > 0. (2.6)

In order to take into account the perturbation in the set-valued part of the variational inclusion
VI
(
A(t, ·), B(t, ·), ξ(t)

)
, the notion of proto-differentiability introduced in Definition 2.4, could be ex-

tended easily to the case where the set-valued map B depends on the parameter t ∈ [0, δ).
Let B : [0, δ)×H ⇒ H be a parameterized set-valued map. For all τ > 0, x ∈ H and x∗ ∈ B(0, x), the
difference quotient in (2.4) is replaced by the following

∆τB(x|x∗)(ω) :=
B(τ, x+ τω)− x∗

τ
. (2.7)

Definition 2.5 (Proto-differentiability: the t-dependent case) Let B : [0, δ) × H ⇒ H be a param-
eterized set-valued map. We say that B is proto-differentiable at x ∈ H relative to x∗ ∈ B(0, x) if
(∆τB(x|x∗))τ>0 graph converges. In that case, we denote by

DpB(x|x∗) := gph-lim ∆τB(x|x∗)

the set-valued map DpB(x|x∗) : H⇒ H is called the proto-derivative of B at x relative to x∗.
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Remark 2.3 LetB : [0, δ)×H⇒ H be a parameterized set-valued map, x ∈ H and x∗ ∈ B(0, x). Then,
B is proto-differentiable at x relative to x∗ if and only if B−1 is proto-differentiable at x∗ relative to x. In
that case, it holds that

Dp(B
−1)(x∗|x) := (DpB(x|x∗))−1.

Remark 2.4 Let us point out that contrary to the t-independent case, the proto-derivative DpB(x|x∗)
defined in Definition 2.5 for the t-dependent case may not satisfy the properties (2.6) in general. The
following example is in this sense.

Example 2.1 Let us consider the following set-valued map B : [0, δ)× R ⇒ R, (t, x) 7→ B(t, x) defined
by

B(t, x) =


−1 if x < t
[−1, 1] if x = t
1 if x > t

For x = 0 and x∗ = 0 ∈ B(0, 0), we have

∆τB(0|0)(ω) =


−1
τ if ω < 1[−1
τ ,

1
τ

]
if ω = 1

1
τ if ω > 1.

Hence,

DpB(0|0)(ω) =

{
∅ if ω 6= 1
R if ω = 1

We note that in this case 0 6∈ DpB(0|0)(0).

Remark 2.5 If a parameterized single-valued map A : [0, δ) ×H → H is semi-differentiable at x ∈ H,
then A is proto-differentiable at x for A(0, x) with DpA(x|A(0, x)) = DsA(x).

One can easily prove the following result. In the t-independent case, we recover [28, p.331-333].

Proposition 2.1 Let A : [0, δ) × H → H and B : [0, δ) × H ⇒ H be two parameterized single-valued
and set-valued maps, respectively. Let x ∈ H and x∗ ∈ A(0, x) + B(0, x). If A is semi-differentiable at
x, then A+B is proto-differentiable at x relative to x∗ if and only if B is proto-differentiable at x relative
to x∗ −A(0, x). In that case it holds that

Dp(A+B)(x|x∗) = DsA(x) +DpB(x|x∗ −A(0, x)).

Lemma 2.1 Suppose that B : [0, δ)×H⇒ H is a parametrized maximal monotone operator. Let τ > 0,
x ∈ H and x∗ ∈ B(0, x). Then the following operator defined by

∆τB(x|x∗) : H ⇒ H

ω 7→ ∆τB(x|x∗)(ω) :=
B(τ, x+ τω)− x∗

τ

is also maximal monotone.

Proof. Let (ω1, ω
∗
1), (ω2, ω

∗
2) ∈ gph (∆τB(x|x∗)). We have

ω∗i ∈ ∆τB(x|x∗)(ωi)⇐⇒ x∗ + τω∗i ∈ B(τ, x+ τωi), i = 1, 2.
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The monotonicity of ∆τB(x|x∗) is a direct consequence of the monotonicity of B(τ, ·).
Let (ζ, ζ∗) ∈ H ×H such that

〈ω∗ − ζ∗, ω − ζ〉 ≥ 0, ∀(ω, ω∗) ∈ gph (∆τB(x|x∗)).

Hence, 〈
(x∗ + τω∗)− (x∗ + τζ∗), (x+ τω)− (x+ τζ)

〉
≥ 0, ∀(ω, ω∗) ∈ gph (∆τB(x|x∗)).

Since B(τ, ·) is maximal monotone, we deduce that x∗ + τζ∗ ∈ B(τ, x + τζ), i.e. ζ∗ ∈ ∆τB(x|x∗)(ζ).
Therefore, ∆τB(x|x∗) is maximal monotone.

Remark 2.6 If the spaceH is of finite dimensions, then it is well-known that the class of maximal mono-
tone operators is closed with respect to the Painlevé-Kuratowski set convergence. This means that if
B : [0, δ) × H ⇒ H is a parametrized maximal monotone operator and proto-differentiable at x ∈ H
relative to x∗ ∈ B(0, x) with dim(H) < +∞, then by Lemma 2.1 ∆τB(x|x∗) is maximal monotone and
hence its graph-limit DpB(x|x∗) is also a maximal monotone operator.
The question of the preservation of the maximal monotonicity property under the graph-convergence limit
in an infinite dimensional space remains open. It would be interesting to give a sufficient condition en-
suring that the graph limit (in the sense of Painlevé-Kuratowski) of a sequence of maximal monotone
operators is still maximal monotone.

The following proposition characterizes the graph convergence of maximal monotone operators in terms
of the pointwise convergence of their resolvents (for a proof see [2]).

Proposition 2.2 Let B : [0, δ)×H ⇒ H be a parametrized maximal monotone operator which is proto-
differentiable at x ∈ H relative to x∗ ∈ B(0, x) such that DpB(x|x∗) is also maximal monotone. The
following equivalences hold:

(i) gph-lim ∆τB(x|x∗) = DpB(x|x∗);

(ii) ∀λ > 0 and ∀ω ∈ H, Jλ∆τB(x|x∗)(ω)→ JλDpB(x|x∗)(ω) (pointwise);

(iii) for some λ0 > 0 and ∀ω ∈ H, Jλ0∆τB(x|x∗)(ω)→ Jλ0DpB(x|x∗)(ω) (pointwise).

3 Sensitivity analysis of variational inclusions involving maximal mono-
tone operators

Let M : [0, δ) × H ⇒ H be a parameterized set-valued map. For the ease of notations, we denote by
M−1 : [0, δ)×H⇒ H, (t, x) 7→M−1(t, x) the parameterized set-valued map defined by

M−1(t, x) := (M(t, ·))−1(x), for all (t, x) ∈ [0, δ)×H.

Let A : [0, δ) × H → H and B : [0, δ) × H ⇒ H two given t-dependent single-valued and set-valued
maps, respectively. For the simplicity of notations we set

JA,B : [0, δ)×H ⇒ H
(t, x) 7→ JA,B(t, x) := JA(t,·),B(t,·)(x).

Using the notations introduced above, we note that JA,B = (A + B)−1. From Remarks 2.3, 2.5 and
Proposition 2.1, one can easily conclude the following lemma.
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Lemma 3.1 Let A : [0, δ) × H → H, B : [0, δ) × H ⇒ H and x ∈ H. Suppose that A is semi-
differentiable at v := JA,B(0, x). Then, JA,B is proto-differentiable at x relative to v if and only if B is
proto-differentiable at v relative to v0 := x−A(0, v) ∈ B(0, v). In that case, it holds that

DpJA,B(x|v) =
(
DsA(v) +DpB(v|v0)

)−1
= JDsA(v),DpB(v|v0).

Now we return to the initial motivation of the present paper, that is, the sensitivity analysis, with respect
to the parameter t ∈ [0, δ), of the general nonlinear variational inclusion given by

VI
(
A(t, ·), B(t, ·), ξ(t)

){ find x(t) ∈ H such that
ξ(t) ∈ A(t, x(t)) +B(t, x(t)),

where A : [0, δ) × H → H is such that A ∈ Uk,α(H), B : [0, δ) × H ⇒ H is a parametrized maximal
monotone operator and ξ : [0, δ) → H is a given function. The above variational inclusion admits for all
t ∈ [0, δ) a unique solution x(t) ∈ H given by

x(t) = JA(t,·),B(t,·)(ξ(t)) = JA,B(t, ξ(t)). (3.1)

In order to state the next theorem, we recall the notion of right-differentiability (or one-sided differen-
tiability) of a function w : [0, δ)→ H, at t = 0.

Definition 3.1 For a given function w : [0, δ) → H, t 7→ w(t), the right derivative of w at t = 0 is the
limit

w′+(0) := lim
t↓0

w(t)− w(0)

t
,

when this limit exists. For the ease of notation, we use w′(0) instead of w′+(0).

The following theorem provides sufficient conditions on A, B and ξ under which x : [0, δ) → H is
right-differentiable at t = 0 and provides an explicit formula for x′(0).

Theorem 3.1 Let A : [0, δ) × H → H such that A ∈ Uk,α(H), B : [0, δ) × H ⇒ H a parametrized
maximal monotone operator and let ξ : [0, δ) → H be a function. Consider the function x : [0, δ) → H
unique solution of VI

(
A(t, ·), B(t, ·), ξ(t)

)
given in (3.1). If the following assertions are satisfied:

(i) ξ is right-differentiable at t = 0;

(ii) A is semi-differentiable at x(0);

(iii) B is proto-differentiable at x(0) relative to x∗(0) := ξ(0)−A(0, x(0)) ∈ B(0, x(0)) and its proto-
derivative DpB(x(0)|x∗(0)) is maximal monotone;

then x : [0, δ)→ H is right-differentiable at t = 0 and its right-derivative is given by

x′(0) = JDsA(x(0)), DpB(x(0)|x∗(0))(ξ
′(0)),

which means that x′(0) is the unique solution of the following variational inclusion

ξ′(0) ∈ DsA(x(0))(x′(0)) +DpB(x(0)|x∗(0))(x′(0)).

Proof. Since A is semi-differentiable at x(0) = JA,B(0, ξ(0)) and B is proto-differentiable at x(0)
relative to x∗(0) := ξ(0) − A(0, x(0)) ∈ B(0, x(0)), we deduce from Lemma 3.1 that JA,B is proto-
differentiable at ξ(0) relative to x(0) and its proto-derivative is given by

DpJA,B(ξ(0)|x(0)) = JDsA(x(0)),DpB(x(0)|x∗(0)).
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For the ease of notations we set Ã = DsA(x(0)) and B̃ = DpB(x(0)|x∗(0)), with x∗(0) = ξ(0) −
A(0, x(0)). Hence,

DpJA,B(ξ(0)|x(0))(ω) = J
Ã,B̃

(ω), for every ω ∈ H.

In particular,
DpJA,B(ξ(0)|x(0))(ξ′(0)) = J

Ã,B̃
(ξ′(0)).

Let tν → 0 as ν → +∞. Using the definition of the proto-differentiability, there exists a sequence
(ζν , ζ

∗
ν )ν∈N → (ξ′(0), J

Ã,B̃
(ξ′(0))) as ν → +∞ such that

(ζν , ζ
∗
ν ) ∈ gph

(
∆tνJA,B(ξ(0)|x(0))

)
for ν large enough.

Using (2.7), we get for ν large enough

JA(tν ,·), B(tν ,·)(ξ(0) + tνζν) = x(0) + tνζ
∗
ν . (3.2)

Let us show that x : [0, δ) → H is right-differentiable at t = 0. In fact, using (2.3), (3.1) and (3.2), we
have∥∥∥∥x(tν)− x(0)

tν
− JÃ,B̃(ξ′(0))

∥∥∥∥ =

∥∥∥∥JA,B(tν , ξ(tν))− x(0)

tν
− JÃ,B̃(ξ′(0))

∥∥∥∥
=

∥∥∥∥JA(tν ,·), B(tν ,·)(ξ(tν))− JA(tν ,·), B(tν ,·)(ξ(0) + tνζν)

tν
+ ζ∗ν − JÃ,B̃(ξ′(0))

∥∥∥∥
≤ 1

α

∥∥ξ(tν)− ξ(0)

tν
− ζν

∥∥+ ‖ζ∗ν − JÃ,B̃(ξ′(0))‖.

Since ζν → ξ′(0) and ζ∗ν → J
Ã,B̃

(ξ′(0)), we obtain the right-differentiability of x(·) at t = 0 and

x′(0) = JDsA(x(0)), DpB(x(0)|x∗(0))(ξ
′(0)),

which completes the proof of Theorem 3.1.

Remark 3.1 If the Hilbert space H is of finite dimensions, then the maximal monotonicity of the proto-
derivative DpB(x(0)|x∗(0)) in assumption (iii) of Theorem 3.1 is superfluous (see Remark 2.6).

Remark 3.2 For the caseB(t, ·) = ∂f(t, ·) where f ∈ Γ0(·,H) the set of all parametrized lower semicon-
tinuous, convex and proper extended real-valued functions f : [0, δ)×H → R∪{+∞}, (t, x) 7→ f(t, x),
there exists a link between the proto-differentiability of the subdifferential ∂f(t, ·) and the twice epi-
differentiability of f(t, ·). The link between these two notions is tied to Attouch’s theorem [3] (Theorem
3.66). The notion of twice epi-differentiability was introduced by Rockafellar in [26] and was adapted
to a parametrized lower semicontinuous, convex and proper extended real-valued functions in [1] (see
Definition 3.9). For the t-dependent case f(t, ·), using the notion of convergent supporting hyperplane,
it is shown in Theorem 4.7 [1], that the twice epi-differentiability of f(t, ·) is equivalent to the proto-
differentiability of its subdifferential B(t, ·) = ∂f(t, ·). The notion of convergent supporting hyperplane
to the second-order difference quotient plays an important role and is shown to be equivalent to the proper-
ness of the second epi-derivative of f(t, ·) (see Proposition 4.12 in [1]).
On the other hand, much efforts have been devoted in the literature to identify a large class of proto-
differentiable mappings (see the works of Rockafellar [25, 26, 27], Poliquin-Rockafellar [19, 20, 21],
Levy-Rockafellar [11, 13, 12] and Levy-Poliquin-Thibault [14]). The class of fully amenable functions
constitutes an important class in optimization with a subdifferential which is proto-differentiable. This
class consists of compositions of convex functions with a mapping of class C2 satisfying a basic constraint
qualification. For more details, we refer to [28].
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4 Application to primal-dual composite monotone inclusions

In this section, we investigate the sensitivity analysis of primal-dual composite variational inclusions
involving maximal monotone and linear operators. Let us consider the following primal inclusion

(P)

{
find u(t) ∈ U such that

p(t) ∈ A1(t, u(t)) + S(t, u(t)) + L∗(t)JA2(t,·),T (t,·)

(
q(t) + L(t)u(t)

)
,

and its associated dual inclusion

(D)

{
find v(t) ∈ V such that

q(t) ∈ A2(t, v(t))) + T (t, v(t))− L(t)JA1(t,·),S(t,·)

(
p(t)− L∗(t)v(t)

)
,

where U and V are two real Hilbert spaces, A1 : [0, δ) × U → U , A2 : [0, δ) × V → V are two
single-valued maps, S : [0, δ) × U ⇒ U , T : [0, δ) × V ⇒ V are two set-valued maps. For each
t ∈ [0, δ), L(t) ∈ L(U ,V) (space of bounded linear operators from U to V), p(t) ∈ U and q(t) ∈ V .
Here L∗(t) stands for the adjoint operator associated to L(t) ∈ L(U ,V). We suppose furthermore that
A1 ∈ Uk1,α1(U), A2 ∈ Uk2,α2(V) (with some positive constants ki > 0, αi > 0, i = 1, 2) and that
S : [0, δ)× U ⇒ U and T : [0, δ)× V ⇒ V are two parametrized maximal monotone operators.
The dual inclusion (D) is obtained from (P) by using Attouch-Théra duality theory (see [4] for more
details). We note the symmetry between the two problems (P) and (D) in the following sense:

Primal p A1 S L∗ A2 T L u

Dual q A2 T −L A1 S −L∗ v

The primal and dual variables are u(t) ∈ U and v(t) ∈ V , respectively.
The Kuhn-Tucker set associated to the primal-dual problem (P)− (D) is given by

W =
{(
u(t), v(t)

)
∈ U × V : p(t)− L∗(t)v(t) ∈ A1(t, u(t)) + S(t, u(t)) and

q(t) + L(t)u(t) ∈ A2(t, v(t)) + T (t, v(t))
}
.

To study the sensitivity analysis of the primal-dual problem (P) − (D), we introduce the following
new input and output variables

ξ(t) = (p(t), q(t)) ∈ U × V and x(t) = (u(t), v(t)) ∈ U × V. (4.1)

We setH = U × V and we introduce the following operators

A : [0, δ)×H → H
(t, u, v) 7→ A(t, x) :=

(
A1(t, u), A2(t, v)

)
,

(4.2)

and
B : [0, δ)×H ⇒ H

(t, u, v) 7→ B(t, x) :=
(
S(t, u) + L∗(t)v, T (t, v)− L(t)u

)
,

(4.3)

with x = (u, v) ∈ H. It is clear that solving the primal-dual problem (P)− (D) is equivalent to solve the
following variational inclusion

VI
(
A(t, ·), B(t, ·), ξ(t)

){ find x(t) ∈ H such that
ξ(t) ∈ A(t, x(t)) +B(t, x(t)),

with the input/output variables ξ(·) and x(·) defined in (4.1) and the operators A and B defined in (4.2)-
(4.3).



Sensitivity analysis of monotone inclusions 12

Lemma 4.1 If A1 ∈ Uk1,α1(U) and A2 ∈ Uk2,α2(V) (for some positive constants ki > 0, αi > 0, i =
1, 2), then the operator A defined in (4.2) is in Uk,α(H) with α = min(α1, α2) and k = max(k1, k2).

Proof. The proof is straightforward.

Lemma 4.2 If S : [0, δ) × U ⇒ U and T : [0, δ) × V ⇒ V are two parametrized maximal monotone
operators, then the operator B defined in (4.3) is also a parametrized maximal monotone operator.

Proof. We write B as the sum of a linear continuous antisymmetric operator and a maximal monotone
operator. In fact,

B(t, x) = Λ(t, x) + Γ(t, x),

with Λ(t, x) =
(
L∗(t)v,−L(t)u

)
and Γ(t, x) =

(
S(t, u), T (t, v)

)
.

By assumptions Γ is a parametrized maximal monotone operator. The operator Λ is linear continuous
(with respect to its second argument), hence a parametrized maximal monotone on H with full domain.
By a classical result Λ+Γ is maximal monotone onH (with respect to its second argument), which means
that B is a parametrized maximal monotone operator.

Lemma 4.3 If A1 and A2 are semi-differentiable respectively at u ∈ U and v ∈ V , then the operator A
defined in (4.2) is semi-differentiable at x = (u, v) ∈ H and DsA(x) =

(
DsA1(u), DsA2(v)

)
.

Proof. The proof is straightforward.

Lemma 4.4 Suppose the following

(i) S is proto-differentiable at u ∈ U relative to u∗ ∈ S(0, u);

(ii) T is proto-differentiable at v ∈ V relative to v∗ ∈ T (0, v);

(iii) The linear operators L(·) ∈ L(U ,V) and L∗(·) ∈ L(V,U) are right-differentiable at t = 0;

then the operator B defined in (4.3) is proto-differentiable at x = (u, v) relative to x∗ = (L∗(0)v +
u∗,−L(0)u+ v∗) ∈ B(0, x) and its proto-derivative is given by

DpB(x|x∗)(ω) =
(
L∗
′
(0)v+L∗(0)ω2 +DpS(u|u∗)(ω1), −L′(0)u−L(0)ω1 +DpT (v|v∗)(ω2)

)
, (4.4)

for every ω = (ω1, ω2) ∈ U × V = H.

Proof. As in the proof of Lemma 4.2, we decompose B as

B(t, x) = Λ(t, x) + Γ(t, x),

with Λ(t, x) =
(
L∗(t)v,−L(t)u

)
and Γ(t, x) =

(
S(t, u), T (t, v)

)
.

Assumption (iii) implies that the operator Λ is semi-differentiable and its semi-derivative is given by

DsΛ(x)(ω) =
(
L∗
′
(0)v,−L′(0)u

)
+
(
L∗(0)ω2,−L(0)ω1

)
,

which can be rewritten as
DsΛ(x)(ω) = Λ′(0, x) + Λ(0, ω).
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On the other hand, assumptions (i) and (ii) imply that Γ is proto-differentiable at x relative to x∗ −
(L∗(0)v,−L(0)u) = (u∗, v∗) and its proto-derivative is given by

DpΓ
(
x|x∗ − (L∗(0)v,−L(0)u)

)
(ω) =

(
DpS(u|u∗)(ω1) , DpT (v|v∗)(ω2)

)
,

for every ω = (ω1, ω2) ∈ U × V = H.
Using Proposition 2.1, B is proto-differentiable at x = (u, v) relative to x∗ = (L∗(0)v + u∗,−L(0)u +
v∗) ∈ B(0, x) and its proto-derivative is given by formula (4.4).
We derive the following theorem.

Theorem 4.1 Let A1 ∈ Uk1,α1(U), A2 ∈ Uk2,α2(V), S : [0, δ) × U ⇒ U and T : [0, δ) × V ⇒ V two
parametrized maximal monotone operators. Let p : [0, δ)→ U and q : [0, δ)→ V be two given functions.
We consider the primal and dual functions u : [0, δ)→ U and v : [0, δ)→ V solutions respectively of (P)
and (D). If the following assumptions are satisfied:

(i) p and q are right-differentiable at t = 0;

(ii) A1 and A2 are semi-differentiable respectively at u(0) and v(0);

(iii) S is proto-differentiable at u(0) ∈ U relative to u∗(0) ∈ S(0, u(0)) withDpS(u(0), u∗(0)) maximal
monotone;

(iv) T is proto-differentiable at v(0) ∈ V relative to v∗(0) ∈ T (0, v(0))with DpT (v(0), v∗(0)) maximal
monotone;

(v) The linear bounded operators L(·) ∈ L(U ,V) and L∗(·) ∈ L(V,U) are right-differentiable at
t = 0;

then the primal and dual functions u : [0, δ) → U and v : [0, δ) → V solutions respectively of (P) and
(D) are right-differentiable at t = 0 with{

p′(0)− L∗′(0)v(0)− L∗′(0)v′(0) ∈ DsA1

(
u(0)

)(
u′(0)

)
+DpS

(
u(0)|u∗(0)

)(
u′(0)

)
q′(0) + L′(0)u(0) + L(0)u′(0) ∈ DsA2

(
v(0)

)(
v′(0)

)
+DpT

(
v(0)|v∗(0)

)(
v′(0)

)
Proof. We recast the primal-dual composite inclusion (P)− (D) to a variational inclusion of the form

VI
(
A(t, ·), B(t, ·), ξ(t)

)
whereH = U×V , ξ, x,A andB are defined in (4.1), (4.2) and (4.3), respectively.

We use Theorem 3.1 and Lemmas 4.1, 4.2, 4.3 and 4.4 to conclude. By Lemma 4.1, the operatorA defined
in (4.2) belongs to Uk,α(H) with α = min(α1, α2) and k = max(k1, k2). Lemma 4.2 entails that the
operator B defined in (4.3) is a parametrized maximal monotone operator on H. Assumption (i) implies
that ξ is right-differentiable at t = 0. Assumption (ii) and Lemma 4.3 imply thatA is semi-differentiable at
x(0) = (u(0, v(0)). Using assumptions (iii)-(iv)-(v) and Lemma 4.4, we obtain the proto-differentiability
of the operator B at x(0) = (u(0), v(0)) relative to x∗(0) = (L∗(0)v(0) + u∗(0),−L(0)u(0) + v∗(0)) ∈
B(0, x(0)) . Theorem 3.1 allows us to conclude.

5 Concluding remarks

Many problems in physics, engineering and economics can be formulated as solving classical nonlinear
equations. When dealing with constraints in convex optimization, a unified model is given by maximal
monotone generalized equations, which consists in finding the zeros of the sum of a single-valued map and
a maximal monotone operator. When the data, involved in the problem, are known only with a certain pre-
cision, an important question is how to get informations on the rates of change of the solutions with respect
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to parameter perturbations. In this paper, we investigated the sensitivity analysis of a maximal monotone
inclusion by using the proto-differentiability of the associated resolvent map. The sensitivity analysis in
this context has to be understood in the sense of differentiable properties of the perturbed solution with
respect to the one dimensional perturbation parameter t ∈ [0, δ). More precisely, we showed in this
note, under suitable assumptions, that the derivative of the solution of VI

(
A(t, ·), B(t, ·), ξ(t)

)
at t = 0

is the unique solution of VI
(
DsA(x(0)), DpB

(
x(0)|x∗(0)

)
, ξ′(0)

)
, with x∗(0) = ξ(0) − A(0, x(0)) ∈

B(0, x(0)), DsA
(
x(0)

)
the semi-derivative of A at x(0) and DpB

(
x(0)|x∗(0)

)
the proto-derivative of B

at x(0) relative to x∗(0). Many issues remain open and require further investigations. This includes for
example replacing the perturbation parameter t ∈ [0, δ) by an abstract multidimensional parameter p ∈ Rn
(in the same lines as [10, 11]) and without requiring the semi- and proto- differentiability of the involved
operators in the product space (p, x) ∈ Rn × H. It would be interesting to carry out the same analysis
by replacing the Painlevé-Kuratowski convergence with the bounded Hausdorff convergence. It is well
known that these two notions of convergence coincide in finite dimensional spaces. In infinite dimensional
spaces, the bounded Hausdorff convergence has the great advantage of being associated with a metrizable
topology (Attouch-Wets topology) which is not the case of the Painlevé-Kuratowski convergence. An
other question of great interest is the investigation of the parabolic twice epi-differentiability, defined by
parabolic difference quotients, and its link with the proto-differentiability for the t-dependent case (see
[28] Chapter 13).
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