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Abstract

Algorithms for problem decomposition and splitting in optimization and the solving of varia-
tional inequalities have largely depended on assumptions of convexity or monotonicity. Here, a way
of “eliciting” convexity or monotonicity is developed which can get around that limitation. It sup-
ports a procedure called the progressive decoupling algorithm, which is derived from the proximal
point algorithm through passing to a partial inverse, localizing and rescaling. In the optimiza-
tion setting, elicitability of convexity corresponds to a new and very general kind of second-order
sufficient condition for a local minimum. Applications are thereby opened up to problem decom-
position and splitting even in nonconvex optimization, moreover with augmented Lagrangians for
subproblems assisting in the implementation.
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1 Introduction

Many techniques have been devised for decomposition or splitting in the solution of variational in-
equalities and related problems of optimization, but mostly in circumstances of global monotonicity
or convexity. Here a procedure called the progressive decoupling algorithm will be developed that can
transcend such limitations by eliciting convexity or monotonicity, whether globally or locally, in situ-
ations where its availability may not be evident. In optimization the availability emerges when near
enough to a local minimum that satisfies a new, general kind of second-order sufficiency condition.
That echoes the convergence of Newton-type iterations in smooth optimization once they are in some
neighborhood of a point where strong conditions for a local minimum hold. However the method in
this paper can embrace nonsmoothness and work with problem formulations far more general than
nonlinear programming. It can take advantage of augmented Lagrangians despite their reputation
for often interfering with decomposition technology, and in so doing it can utilize their convexifying
capabilities in the “elicitation.”

The progressive decoupling algorithm emulates the pattern of the progressive hedging algorithm
[28] for solving stochastic programming problems, and more recently stochastic variational inequalities
[26], which promotes iterative decomposition into subproblems focused on individual scenarios. For
problems outside of the stochastic setting (where “hedging” is no longer an appropriate term), the
progressive decoupling algorithm adopts the platform of Spingarn’s method of partial inverses [31, 32].
Like that, it relies ultimately on properties of the proximal point algorithm [22]. But it diverges from
Spingarn’s method in “localizing,” “eliciting,” and in the treatment of computational parameters.

The localization ideas come from contributions of Pennanen [16] to the local execution of the
proximal point algorithm, although the implementation of those ideas in optimization mode requires
further results such as were obtained recently in our paper [25]. The elicitation scheme we develop is
completely new. Pennanen in [16] likewise pursued hidden monotonicity of a sort, but his approach
was different and not oriented to decoupling linkages.2

The novel role of localization and elicitation in the progressive decoupling algorithm has been
stressed so far, but new things come out of the procedure even when global monotonicity or convexity
is on hand. Results in that context, with specializations to problem decomposition and splitting, were
recently laid out in a conference paper [24] with a simplified derivation. Those results will be covered
now in a broader framerowk with additional parameters to work with.

LetH be a Hilbert space with inner product ⟨x, y⟩ and consider a (generally) set-valued mapping T :
H →→ H. Let S be a (closed) subspace of H and let S⊥ be its orthogonal complement. Fundamentally,
we will be concerned in this paper with solving the linkage problem for S and T , by which we mean

find x̄ ∈ S and ȳ ∈ S⊥ such that ȳ ∈ T (x̄). (1.1)

The idea is that the condition x̄ ∈ S, with S being a subspace specifying linear relationships, represents
a “linkage” constraint with respect to which ȳ ∈ S⊥ can act as a kind of multiplier element.

An important case case to keep in mind is

T (x) = F (x) +NC(x) for C ⊂ H nonempty closed convex, F : C → H continuous, (1.2)

where NC : H →→ H is the normal cone mapping associated with C,

v ∈ NC(x) ⇐⇒ x ∈ C and ⟨v, x′ − x⟩ ≤ 0 ∀x′ ∈ C. (1.3)

2Still, some combination of the two approaches may well turn out to be valuable.
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The linkage problem (1.1) then has a close connection with the variational inequality

−F (x̄) ∈ NC∩S(x̄) (1.4)

through the fact that y ∈ NS(x) ⇐⇒ x ∈ S, y ∈ S⊥ ⇐⇒ x ∈ NS⊥(y), and on the other hand,
NC∩S(x) ⊃ NC(x) + NS(x). We call (1.4) a linkage variational inequality in coupled form and call
(1.1) as specialized to (1.2) the associated linkage variational inequality in decoupled form, when viewed
as a condition on x̄ for some ȳ ∈ [F +NC ](x̄). This variational inequality version of the present topic
was taken up in the conference paper [24] with examples of what decoupling could offer in practical
advantages. We’ll come back to such examples later in a wider context in Sections 4 and 5.

When T = ∂φ for a lower semicontinuous (lsc) function φ : H → (−∞,∞], not necessarily convex,3

we speak of the optimization case of (1.1). It goes hand in hand with the problem

minimize φ(x) subject to x ∈ S, or equivalently, minimize φ+ δS over H, (1.5)

where δS denotes the indicator of S (the function having 0 as its value on S but ∞ outside of S).
The fundamental first-order necessary condition for local optimality of x̄ in (1.5) is 0 ∈ ∂(φ+ δS)(x̄),
but ∂(φ+ δS)(x̄) ⊂ ∂φ(x̄) + ∂δS(x̄) under various constraint qualifications [29, 10.9], and solving 0 ∈
∂φ(x̄)+∂δS(x̄) is the same as (1.1) for T = ∂φ, inasmuch as ∂δS(x̄) = NS(x̄). Thus, (1.1) for T = ∂φ
constitutes a first-order necessary condition for local optimality in (1.5) in widespread circumstances.
Moreover it stands for global optimality when φ is convex. Other instances of (1.1) connected with
optimization come up in primal-dual first-order optimality conditions involving Lagrange multipliers
and in characterizations of game-like equilibrium in multi-agent optimization.

The optimization case of the linkage problem covers vastly more territory than might at first be
apparent. Because every element of H can be expressed uniquely as x+u for some x ∈ S and u ∈ S⊥,
(1.5) can be posed equivalently as

minimize f(x, u) = φ(x+ u) in (x, u) ∈ S × S⊥ subject to u = 0. (1.6)

This connects it with the general theory of Lagrangians and duality in [19, 21, 29] in which a problem
in a variable x is embedded in a family of problems parameterized by a “perturbation” variable u. In
fact, (1.6) is fully able to support that format, inasmuch as any problem of minimizing f(x, u) on a
product Hilbert space H = H1 ×H2 subject to u = 0 can be written this way with S = H1 ×{0} and
S⊥ = {0} ×H2. The rule for subgradients in (1.6) is

(v, y) ∈ ∂f(x, u) ⇐⇒ v + y ∈ ∂φ(x+ u), where ((x, u), (v, y)) ∈ S × S⊥, (1.7)

so the linkage problem (1.1) for T = ∂φ corresponds in (1.6) to solving the first-order optimality
condition (0, ȳ) ∈ ∂f(x̄, 0). Karush-Kuhn-Tucker relations and very much more can be cast in this
pattern through the particular choice of f or φ.

A linkage subspace S within a Hilbert space H can arise in many ways, as the preceding discussion
ought to make clear. However, particular applications may dictate particular choices. For our approach
here, an especially motivating example of S is the nonanticipativity subspace in multistage stochastic
programming and stochastic variational inequalities, which dictates that decisions can only depend
on information already known, not on information yet to be revealed in the future [28, 30]. Kirchoff’s
laws for flows in a network might also be a source of linkage, as could be the relationships between the

3The finite-dimensional theory of subgradients of nonconvex functions is furnished in [29], and an infinite-dimensional
version is in [15].
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quantities in different time periods in a problem with deterministic dynamics. In other situations S
may be introduced for technical reasons. That will be seen in the applications to splitting which we’ll
develop in Section 4 along with block-separability-based problem decomposition, thereby extending
similar but more limited applications of such kind which were made in [24] and [32].

For the workability of the general linkage problem (1.1) as a model for which solution methods can
be designed, we suppose that the projection mappings

P = PS : H → S and P⊥ = PS⊥ : H → S⊥

are relatively convenient to execute. Convenience for one entails convenience for the other, since
P + P⊥ = I. The representation of each element of H as the sum of its projections on S and S⊥

was central to Spingarn’s “partial inverse” developments in [31], where the importance and versatility
of problem (1.1) were first emphasized. But he required maximal monotonicity of T in the sense
pioneered by Minty [14], whereas a major aim here is to get away from having to insist on that.

Some background on monotonicity will anyway help in what is coming. Recall that a mapping
T : H →→ H is monotone (globally) if

⟨y′ − y, x′ − x⟩ ≥ 0 when y ∈ T (x), y′ ∈ T (x′). (1.8)

It is maximal monotone if furthermore the graph of T , namely

gphT = { (x, y) ∈ H ×H | y ∈ T (x)},

can’t be extended by adjoining another pair (x, y) without violating (1.8), or in other words if there is
no monotone mapping T ′ with gphT ′ ⊃ gphT and gphT ′ ̸= gphT . There is also strong monotonicity,
which replaces the 0 in (1.8) by σ||x′−x||2 for some σ > 0, and similarly the maximal version of that.
Strong monotonicity at level σ is equivalent to the monotonicity of T − σI. For localized versions of
these concepts we can take a cue from Pennanen [16] and speak of T being monotone or maximal
monotone in some subset of H ×H if these properties hold relative to that subset.

The subgradient mappings ∂φ associated with lower semicontinuous proper convex functions φ
on H provide prime examples of maximal monotone T [20], as do the continuous linear mappings
A : H → H whose symmetric part is positive semidefinite. It’s crucial to appreciate, though, that
localized maximal monotonicity of a subgradient mapping ∂φ doesn’t refer to just to localization in
the effective domain of φ (although it could), for the reason that the localization is articulated in
H ×H, not simply H. More about this will come shortly.

In the case of T = F + NC for a closed convex set C ⊂ and a continuous mapping F : C → H,
maximal monotonicity follows from F being monotone relative to C, i.e.,

⟨F (x′)− F (x), x′ − x⟩ ≥ 0 for x, x′ ∈ C. (1.9)

Likewise for strong monotonicity. When (1.9) holds on U ∩ C for some open convex subset U of H,
then F +NC is maximal monotone in U ×H. The optimization case of T = F +NC corresponds to
having F = ∇f for a continuously differentiable function f on C. Then T = ∂φ for φ = f + δC .

With these facts at our disposal, we can proceed towards the statement of the algorithm featured
in this paper. An observation about the role of the subspace S⊥ in the linkage problem (1.1) will
guide us in passing beyond surface manifestations of monotonicity:

the pairs (x̄, ȳ) that solve (1.1) remain the same
when T is replaced by T + eP⊥ for some e ≥ 0,

(1.10)

which holds because having x̄ ∈ S corresponds to P⊥(x̄) = 0. We have the freedom to select the value
of the elicitation parameter e in order to enhance properties of T for algorithmic purposes.
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Definition 1: elicitation, global and local. Maximal monotonicity will be said to be elicitable
globally at a level e ≥ 0 if the mapping T + eP⊥ : H →→ H is maximal monotone. It will be said to be
elicitable locally at a level e ≥ 0 with respect to a pair (x̄, ȳ) solving (1.1) if T + eP⊥, which likewise
has (x̄, ȳ) in its graph, is maximal monotone in a neighborhood of (x̄, ȳ). The elicitability of strong
maximal monotonicity, whether global or local, is defined in parallel to this.

Elicitation at level e = 0 is important in this definition as a means of covering monotone cases of
the linkage problem within the results that we’ll obtain. Although we looked at the globally monotone
case in [24] for T having the special form in (1.2), we didn’t treat the locally monotone case there at
all. Both cases are now going to be encompassed for general T .

Of course if monotonicity is elicitable at a level e it is elicitable at all higher levels e as well.4

This way of identifying “hidden monotonicity” is entirely different from the tactic of Pennanen in
[16], which amounts instead to adding some multiple of I to T−1. Maybe his device can somehow be
combined with ours to gain further traction, but that won’t be studied in this paper.

In the optimization case with T = ∂φ, elicitability of monotonicity aspects of T translates to
elicitability of convexity aspects of φ through the observation that

T = ∂φ ←→ T + eP⊥ = ∂[φ+ e
2d

2
S ] where

dS(x) = [ distance of x from S ] = ||P⊥(x)||. (1.11)

Global elicitability of monotonicity corresponds then to global elicitation of convexity in the sense
of φ + e

2d
2
S being convex.5 Local convexity of φ + e

2d
2
S on a neighborhood of a solution x̄ similarly

elicits monotonicity locally with respect to (x̄, ȳ) for ȳ ∈ ∂φ(x̄), but that criterion is only sufficient,
not necessary. A necessary and sufficient criterion for local elicitation must take into account the
localization around ȳ as well as the localization around x̄. We’ll come back to this in Section 3 with
the insight that such local elicitation amounts to a kind of sufficient condition for local optimality in
the associated problem of minimizing φ over the subspace S. It relates to a property called variational
convexity which we investigated recently in [25]. However, a simple example may help by providing a
glimpse of that forthcoming picture of local optimality.

Example: elicitation in smooth optimization. Let H be finite-dimensional and T = ∇φ for a
C2 function φ, so the linkage problem comes down to finding x̄ ∈ S such that ∇φ(x̄) ⊥ S (with ∇φ(x̄)
thus being the ȳ ∈ S⊥). This means x̄ satisfies the first-order necessary condition for minimizing
φ over S. The associated second-order sufficient condition for a local minimum at x̄ is the positive
definiteness of the Hessian ∇2φ(x̄) relative to S. That’s actually equivalent to the existence of e ≥ 0
such that the Hessian of φ+ e

2d
2
S is positive definite on H, which corresponds to φ+ e

2d
2
S being strongly

convex around x̄ and thus to the local elicitation of strong monotonicity of T = ∇φ around (x̄, ȳ).

This situation will be handled in a much broader way in Section 3 without demanding smoothness
of φ; see the corollary to Theorem 6 and beyond. For now, we move on to describing our solution
method that’s able to make use of elicitation of monotonicity or convexity when needed.

Progressive Decoupling Algorithm. With respect to an elicitation level e ≥ 0 (global or local)
and a proximal parameter r > e, proceed as follows. In iteration ν, having xν ∈ S and yν ∈ S⊥,
determine x̂ν ∈ H as a solution to the generalized equation

0 ∈ T ν(x̂ν), where T ν(x) = T (x)− yν + r[x− xν ]. (1.12)

4The sum of a maximal monotone mapping and a continuous monotone mapping is again maximal monotone.
5A subgradient mapping is maximal monotone if and only if the function is convex lower semicontinuous and proper

(i.e., ̸≡ ∞ and never = −∞). See [17] for the finite-dimensional case and [2, Theorem 5.6] for the infinite-dimensional
case; also [29, Theorem 12.17].
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From x̂ν then get xν+1 ∈ S and yν+1 ∈ S⊥ by

xν+1 = P (x̂ν), yν+1 = yν − (r − e)P⊥(x̂ν) = yν − (r − e)[x̂ν − xν+1]. (1.13)

The virtue of this procedure is that it addresses problem (1.1) through iterations solving only the
generalized equations in (1.12), which omit the linkage subspace S.

Theorem 1: convergence.
(a) Suppose the linkage problem (1.1) is solvable, and that e ≥ 0 gives a level at which maximal

monotonicity is elicited globally. Then the iterations (1.12)–(1.13) for any r > e, starting from any
x0 ∈ S and y0 ∈ S⊥, will generate a sequence of pairs (xν , yν) that converges (in the weak topology
of H) to a pair (x̄, ȳ) solving (1.1). Moreover, this will happen with the intermediate vectors x̂ν being
uniquely determined as solutions to the generalized equations (1.12) and with

||(xν+1, yν+1)− (x̄, ȳ)||r,e ≤ ||(xν , yν)− (x̄, ȳ)||r,e for all ν,
where ||(x, y)||2r,e = ||x||2 + 1

r(r−e) ||y||
2 for x ∈ S, y ∈ S⊥.

(1.14)

(b) If maximal monotonicity is just elicited locally at level e ≥ 0 relative to a solution pair (x̃, ỹ)
in (1.1), the same convergence will hold if the iterations start with x0 + y0 close enough to x̃ + ỹ,6

and localization is attended to in getting the intermediate vectors x̂ν . Specifically, there will be a
neighborhood W of x̃+ ỹ such that, when xν + yν ∈ W , a unique solution x̂ν to (1.12) will lie in W ,
and the xν+1 and yν+1 coming from it by the update rule in (1.13) will then have xν+1 + yν+1 ∈W .

(c) If the locally elicited monotonicity is strong with modulus σ > 0, then x̄ = x̃, because
locally there is only one possible x-component to a solution to the linkage problem. Furthermore, the
convergence will ultimately follow the pattern that

||xν+1 − x̄|| ≤ ||(xν+1, yν+1)− (x̄, yν)||r,e ≤
r

r + σ
||(xν , yν)− (x̄, ȳ)||r,e. (1.15)

The validity of these convergence claims will be confirmed in Section 2 as a consequence of the way
we derive the progressive decoupling algorithm from the proximal point algorithm. It will thereby be
apparent in the case of global elicitation in (a) that if the problem doesn’t have a solution the sequence
generated by the iterations must diverge (since the proximal point algorithm has this feature). Most
of our attention however will be on local convergence under assumptions about a local solution.

Drawing on results about convergence of the proximal point algorithm when iterations aren’t
carried out exactly, it would be possible to extend convergence of the progressive decoupling algorithm
to a version in which the subproblems in (1.12) aren’t solved exactly. However we forgo the exercise
of filling in such details here because they would tend to clutter the simple picture of the procedure.
Progressive decoupling may work better in some situations than in others, depending on problem
structure, and exploring that is a higher priority at this stage, in our view, than pursuing convergence
refinements.

For the same reason we hold back also from trying to include numerical results in this paper.
There are too many different things to experiment with. Anyway, the progressive decoupling algorithm
extends the progressive hedging algorithm [28] in stochastic optimization, which already has a long
history of numerical experience; cf. [33] and its references, and more recently [26, 27]. Furthermore,
in the case where monotonicity doesn’t need to be elicited, i.e., where e = 0 works, the procedure is
kin to many of analogous character in convex optimization. For more on that, see [24].

6the limit (x̄, ȳ) may be different from (x̃, ỹ).
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An issue with progressive hedging in the past, which will carry over also to implementations of
progressive decoupling, is selecting the right size for the proximal parameter r. Performance may
deteriorate if it is either too high or too low. Little guidance in theory is available for coping with
that, although heuristics have been explored numerically; again see [33] and [26], for instance.7 A
new feature here, not present in progressive hedging but which now could be added to that, is extra
flexibility coming from the elicitation parameter e. Even when no elicitation of monotonicity is needed
(or of convexity in connection with optimization), so that e = 0 would do, there might be an advantage
in taking e > 0. Clues about that can be detected in (1.14), which indicates how the choice of r and
e may affect the convergence of the sequences of primal elements xν and dual elements yν relative to
each other. The choices of r and e allow the coefficient 1/r(r− e) to range all the way between 0 and
∞. Clearly a low level of this coeffient would favor convergence of xν to x̄ over convergence of yν to
ȳ, while a high level would do the opposite. When the parameters are coupled with respect to the
choice of e > 0 by

r =

√[
e

2

]2
+ 1 +

e

2
, so that r − e =

√[
e

2

]2
+ 1− e

2
, (1.16)

then r(r − e) = 1 and the convergence properties in the theorem hold with respect to the norm
||(x, y)||r,e in (1.14) simply being ||x + y|| for x ∈ S and y ∈ S⊥. Then neither sequence is favored
over the other.

Although the x̄ part of a solution (x̄, ȳ) is unique in the strong elicitation part of the Theorem 1,
the ȳ part need not be. The implications of the property in (1.15) that’s associated with this aren’t
fully clear, but the indication seems to be that once yν is very near or maybe even equal to ȳ, a hint
of linear convergence emerges in xν .

In the optimization case T = ∂φ, the generalized equations (1.12) to be solved in the algorithm’s
iterations specialize to

0 ∈ ∂φν(x̂ν), where φν(x) = φ(x)− ⟨yν , x⟩+ r

2
||x− xν ||2. (1.17)

The direct interpretation of the step in (1.12) is that x̂ν is to be determined as a sort of critical point
of the modified function φν . But can that be accomplished by an optimization procedure? More
importantly, does x̂ν in fact give a local minimum of φν? That’s obviously true when φν is convex,
at least locally around x̂ν , as would follow from φ being convex locally, but the general circumstances
of elicitation may be more subtle than that. Nevertheless minimization can indeed be the rule quite
broadly, as will be explained in Theorem 10 in Section 3 in connection with the new sufficient condition
for local optimality that’s tied to local elicitation of monotonicity in a subgradient mapping.

2 Justification of the algorithm and its convergence

The progressive decoupling algorithm will be derived from the proximal point algorithm [22] in a
manner similar to Spingarn’s derivation of his method of partial inverses [31], but localization ideas of
Pennanen in [16] will enter along with a delicate kind of rescaling. The proximal point algorithm aims
at finding x̄ such that 0 ∈ M(x̄) for a maximal monotone mapping M : H →→ H through iterations
taking the form:

get xν+1 from xν by solving 0 ∈Mν(xν+1), where Mν(x) =M(x) + r[x− xν ] (2.1)

7Similar issues have also been confronted in other related methodology, as for instance in [4].
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with r > 0 as parameter. A reminder of its properties will help to set the stage for what comes next.
The attractiveness of the iterations (2.1) when M is maximal monotone is that xν+1 always exists

and is uniquely determined. Although (2.1) just asks for xν+1 to be an element of (I + r−1M)−1(xν),
maximal monotonicity (globally) ensures that the potentially multivalued mapping (I + r−1M)−1 is
single-valued and even nonexpansive, i.e. globally Lipschitz continuous with Lipschitz constant 1:

||(I + r−1M)−1(x′)− (I + r−1M)−1(x)|| ≤ ||x′ − x|| for all x, x′. (2.2)

The set of fixed points of (I+r−1M)−1 is the solution setM−1(0), so a consequence of (2.2), specialized
to x′ = xν , is that

||xν+1 − x|| ≤ ||xν − x|| for all x ∈M−1(0). (2.3)

As shown in [22], the generated sequence of vectors xν is bounded if and only if M−1(0) ̸= ∅, and
it then must converge (in the weak topology of H) to a particular x̄ ∈ M−1(0). Furthermore, if the
mapping M−1 itself happens to be single-valued and Lipschitz continuous on a neighborhood of 0, the
convergence is sure to be at a linear rate; this linear convergence criterion was refined by Luque [12].

Also explained in [22] are conditions for convergence when the subproblems in (2.1) are solved
“inexactly.” That topic has advanced further through the work of Eckstein and Bertsekas [5] and
others; see Pennanen [16] for comprehensive references, also to conditions under which convergence
can be guaranteed locally even for nonmonotone M in some circumstances. However, those advances
in [5, 16] seem incompatible with the special implementation we’ll need to make of the proximal point
algorithm to achieve “decoupling.”

A result of Pennanen in [16] on local convergence in presence of locally maximal monotonicity will,
on the other hand, be essential to us in connection with our elicitation scheme. Here we provide an
improved statement of it with a simpler proof.

Theorem 2: localization. Suppose there exists x̃ ∈M−1(0) such that the mapping M : H →→ H is
maximal monotone in a neighborhood of (x̃, 0). Then there is a neighborhood W of x̃ such that in the
iterations (2.1) of the proximal point algorithm, as long as xν ∈ W , there exists a unique xν+1 ∈ W
satisfying 0 ∈ Mν(xν+1). The sequence generated this way in W converges to some x̄ ∈ M−1(0) just
as if M were maximal monotone globally.8

Proof. Let M0 be a localization of M obtained by restricting the graph of M to a neighborhood
of (x̃, 0), and let M0 be a maximal monotone extension of M0 (which is always known to exist; see
[29, 12.6]). The proximal point algorithm can be executed for M0 and, from any starting point, will

converge to some point of M
−1
0 (0) with its iterations satisfying

||xν+1 − x|| ≤ ||xν − x|| for all x ∈M−1
0 (0).

Therefore, if the procedure is initiated in some closed ball of radius δ around x̃ it must forever stay
in that ball and reach a limit x̄ also in that ball. According to (2.1) for M0, the iterates involve
pairs (xν+1, r(xν − xν+1)) ∈ gphM0 which converge to (x̄, 0). By choosing the δ-ball around x̃ small
enough, we can thus ensure that all these pairs lie in the neighborhood of (x̃, 0) to which we localized in
obtaining M0. In that neighborhood, however, there’s no distinction betwen M0 and M0, or between
M0 and the original M . All that matters is that we stick to the unique iterates that would have come
from M0, and that can be done by not straying out of a neighborhood of x̃ that’s small enough to
start with.

8The reason why convergence might be to x̄ ̸= x̃ is evident from the case where M is maximal monotone globally and
the solution set M−1(0) is more than a singleton.

8



A shortcoming of this localization result, of course, is that it doesn’t provide any criterion for
knowing whether a small enough neighborhood of a particular, but unknown, solution has been reached
and how to be sure of staying within it. This will need to be studied more, but we won’t do that
here. Conditions for executing the localized version of the proximal point algorithm without losing
convergence have been worked out in [10].

Next we make note of a rescaling device which adds flexibility to the proximal point algorithm and
will be essential in our decoupling scheme.

Theorem 3: rescaling. Let J be a (continuous) linear mapping from H onto H. Replace the rule
for proximal point iterations in (2.1) by

0 ∈Mν
J (x

ν+1), where Mν
J (x) =M(x) + rJ∗J [x− xν ]. (2.4)

Then all the same convergence properties hold except that the norm ||x|| is supplanted in the distance
estimates by the norm ||x||J = ||Jx||.

Proof. Because J maps H one-to-one onto H, its inverse J−1 exists as a continuous linear mapping
from H onto H. With respect to the change of variables z = Jx the rule in (2.4) can be written as
0 ∈ M(J−1zν+1) + rJ∗J [J−1zν+1 − J−1zν ], or in other words 0 ∈ J∗−1M(J−1zν+1) + r[zν+1 − zν ].
These iterations correspond to executing the proximal point algorithm on the composed mapping
M ′ = J∗−1TJ−1, which inherits maximal monotonicity from M (globally or locally). They get zν+1

from zν by applying (I + r−1M ′)−1, and the convergence properties are thereby tied to distances
||z′ − z||, which translate back under the change of variables to distances ||Jx′ − Jx|| = ||x′ − x||J .
This means that convergence is governed quantitatively by the norm || · ||J as claimed.

We are ready now to demonstrate that the progressive decoupling algorithm can be obtained by
applying the proximal point algorithm, with a change of variables, to the partial inverse with respect
to S (in Spingarn’s sense [31]) of the mapping T + eP⊥ for an elicitation level e ≥ 0. Crucial to this
is the fact that every element of H can be written in one and only one way as the sum of an element
of S and an element of S⊥, namely its projections on those two subspaces:

x = P (x) + P⊥(x) with ⟨P (x), P⊥(x)⟩ = 0.

Theorem 4: algorithm derivation. Let M : H →→ H be the mapping obtained from T + eP⊥ by

v + u ∈M(x+ y) ⇐⇒ v + y ∈ (T + eP⊥)(x+ u) when x, v ∈ S, u, y ∈ S⊥, (2.5)

so that solving the linkage problem (1.1) is equivalent to finding an element of M−1(0), since

for x̄ ∈ S, ȳ ∈ S⊥: 0 ∈M(x̄+ ȳ) ⇐⇒ ȳ ∈ T (x̄). (2.6)

Let J for r > e be the continuous linear mapping from H onto H such that

for x ∈ S, y ∈ S⊥: J takes x+ y to x+ [r(r − e)]−1/2y. (2.7)

The iterations (1.12)–(1.13) of the progressive decoupling algorithm correspond then to applying the
proximal point algorithm to M as modified by J in the manner of (2.4).

Proof. Here J∗ = J , so J∗J is simply the mapping which, in line with (2.7), takes x + y to
x + r−1(r − e)−1y. The iterations in (2.4), when expressed compatibly with (2.5) in terms of the
elements of H being represented by their projections on S and S⊥, follow the pattern that

0 ∈M(xν+1 + yν+1) + r[xν+1 − xν ] + (r − e)−1[yν+1 − yν ].
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In terms of letting

uν+1 = −(r − e)−1[yν+1 − yν ] ∈ S⊥, hence yν+1 = yν − (r − e)uν+1 ∈ S⊥, (2.8)

we can rewrite this as −r[xν+1 − xν ] + uν+1 ∈M(xν+1 + yν+1). Translating through (2.5) we get

−r[xν+1 − xν ] + yν+1 ∈ (T + eP⊥)(xν+1 + uν+1), (2.9)

where P⊥(xν+1 + uν+1) = uν+1, or in other words

0 ∈ T (xν+1 + uν+1) + r[xν+1 − xν ] + euν+1 − yν+1.

In appealing to (2.8) to identify euν+1 − yν+1 with −yν + ruν+1, we can put this in the form

0 ∈ T (xν+1 + yν+1)− yν + r[xν+1 − xν + uν+1]. (2.10)

Now let x̂ν denote xν+1 + uν+1, so that P (x̂ν) = xν+1 and P⊥(x̂ν) = uν+1. Then through (2.8) we
have the update step (1.13), while (2.10) becomes the subproblem step (1.12). Thus, the proximal
point iterations in the pattern described reduce to those of the progressive decoupling algorithm, as
we needed to confirm.

This derivation provides the background for verifying the facts about the convergence of the pro-
gressive decoupling algorithm that were presented in Section 1.

Proof of Theorem 1 on convergence. The elicited global maximal monotonicity of T + eP⊥

carries over in the partial inverse operation (2.5) to that of the mapping M to which the proximal
point algorithm is applied — with the rescaling modification in Theorem 3 for the J in (2.7) — to
get the progressive decoupling algorithm. The convergence properties of the proximal point algorithm
translate that way, in terms of the norm in Theorem 3, to the convergence properties claimed here.
When the elicited maximal monotonicity is only local, the same properties hold locally on the basis
of the Theorem 2. The additional facts claimed in part (c) of the theorem must still be confirmed.
Let (x̄, ȳ) and (x̃, ỹ) solve the linkage problem (1.1), which case also (x̄, ȳ) ∈ gph[T + eP⊥] and
(x̃, ỹ) ∈ gph[T + eP⊥] for any e ≥ 0. Suppose that T + eP⊥ is maximal monotone strongly with
modulus σ > 0 in a neighborhood of (x̃, ỹ), and that (x̄, ȳ) lies in that same neighborhood. The strong
monotonicity implies that

⟨ȳ − ỹ, x̄− x̃⟩ ≥ σ|x̄− x̃||2,

but the left side of this inequality is 0 because x̄− x̃ ∈ S while ȳ− ỹ ∈ S⊥. This necessitates x̄− x̃ = 0.
Next, to get the local convergence properties in (1.15), we appeal to (2.9) along with ȳ ∈ T (x̄)

and the strong monotonicity in the neighborhood of (x̃, ỹ) = (x̄, ỹ) in which the limit (x̄, ȳ) must lie,
to get

⟨−r[xν+1 − xν ] + yν+1 − ȳ, xν+1 + uν+1 − x̄⟩ ≥ σ||xν+1 + uν+1 − x̄||2.

Because the x elements lie in S while the y elements and uν+1 lie in S⊥, and because of the expression
for yν+1 in (2.8), this is the same as

r⟨(xν − x̄)− (xν+1 − x̄), xν+1 − x̄⟩+ ⟨yν − ȳ − (r − e)uν+1, uν+1⟩ ≥ σ||xν+1 − x̄||2 + σ||uν+1||2,

which can be rewritten as

r⟨xν − x̄, xν+1 − x̄⟩+ ⟨yν − ȳ, uν+1⟩ ≥ (r + σ)||xν+1 − x̄||2 + (r − e+ σ)||uν+1||2.
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Since (r − e + σ)/(r + σ) ≥ (r − e)/r for σ > 0, we can process this further in terms of letting
θ =

√
(r − e)/r (and appealing to the orthogonality between the x elements and the y and u elements)

as
(r + σ)||(xν+1 − x̄) + θuν+1||2 ≤ r⟨(xν − x̄) + r−1θ−1(yν − ȳ), (xν+1 − x̄) + θuν+1⟩
≤ r||(xν − x̄) + r−1θ−1(yν − ȳ)||·||xν+1 − x̄) + θuν+1||,

from which it follows that

||(xν+1 − x̄) + θuν+1|| ≤ r

r + σ
||(xν − x̄) + r−1θ−1(yν − ȳ)||. (2.11)

Here we can use (2.8) to turn θuν+1 into θ(r − e)−1(yν − yν−1). Then from the observation that
θ)(r− e)−1 = 1/

√
r(r − e) and on the other hand r−1θ−1 = 1/

√
r(r − e), we can translate (2.11) into

||(xν+1 − x̄)−
√
r(r − e)

−1
(yν+1 − yν)|| ≤ r

r + σ
||(xν − x̄) +

√
r(r − e)

−1
(yν − ȳ)||.

But this is the same as (1.15) according to the definition of the norm || · ||r,e, with the initial inequality
in (1.15) holding because of the orthogonality between the x and y elements.

Remark on parameters. Theorem 3 has been used here only in a simple way. It could be
exploited further to rescale different components of the vectors in different ways, and that might be
helpful in particular applications.

3 Elicitability and its meaning in optimization

For the globally monotone case of the linkage problem (1.1), where T is maximal monotone and the
elicitation parameter e can be taken to be 0, the results of the preceding section provide support for the
progressive decoupling algorithm which goes beyond the basic variational inequality case T = F +NC

in (1.2) which we treated in [24]. On the optimization side, the corresponding advance is that the
minimization of a general lsc convex function φ has now been covered instead of just φ of the form
f + δC for a differentiable convex function f . Moreover e > 0 can be brought in for its effects on
convergence in these circumstances even if not really needed to elicit monotonicity or convexity.

The locally monotone case, where T is only asked to be maximal monotone with respect to a
neighborhood of a solution pair (x̄, ȳ), is new here for the progressive decoupling algorithm and is
likewise fully covered at this stage of our developments in the present paper. However, what that
means on the optimization side, when T = ∂φ, can’t be appreciated without clarifying how local
monotonicity of ∂φ around a pair (x̄, ȳ) in its graph relates to convexity properties of φ.

Here, of course, we are keenly interested also in the nonmonotone case of T , for which e > 0 is
inescapable, and the potential applicability of that to nonconvex φ. It will be important therefore to
gain an understanding of circumstances in which monotonicity can be elicited successfully and how
that connects with optimization, where elicitation is tied to the pattern in (1.1) of replacing φ by
φ+ e

2d
2
S . We begin on a relatively elementary track with the following observation in the variational

inequality setting,

Theorem 5: elicitation via linearity. Let T = A+NC for a nonempty closed convex set C ⊂ H
and a (continuous) linear mapping A : H → H for which9

there exists α > 0 such that ⟨x,Ax⟩ ≥ α||x||2 for all x ∈ S, (3.1)

9In finite dimensions, just having ⟨x,Ax⟩ > 0 for all nonzero x ∈ S will guarantee this, of course.
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and let
β = 1

2 ||P [A+A∗]P⊥||, γ = ||P⊥AP⊥||. (3.2)

Then maximal strong monotonicity is elicited globally at level e if

e > e0 = α−1β2 + γ. (3.3)

Proof. It suffices to demonstrate that the continuous linear mapping Ae = A + eP⊥ is monotone
relative to C when e is sufficiently high, since then Ae+NC is maximal monotone. In fact we will get
the monotonicity of Ae on all of H.

Due to its linearity, the monotonicity of Ae corresponds to having ⟨x,Aex⟩ ≥ 0 for all x ∈ H.
With the values in (3.1) and (3.2) at our disposal we calculate that

⟨x,Aex⟩ = ⟨x,Ax⟩+ e⟨x, P⊥(x)⟩ = ⟨ [P (x) + P⊥(x)], A[P (x) + P⊥(x)] ⟩+ e⟨P⊥(x), P⊥(x)⟩
= ⟨P (x), AP (x)⟩+ ⟨P (x), [A+A∗]P⊥(x)⟩+ ⟨P⊥(x), AP⊥(x)⟩+ e||P⊥(x)||2
≥ α||P (x)||2 − 2β||P (x)||||P⊥(x)||+ (e− γ)||P⊥(x)||2

through (3.1) and (3.2) when x ∈ C. Will it be true in terms of ξ = ||P (x)|| and η = ||P⊥(x)|| that
αξ2 − 2βξη + (e − γ)η2 > 0 for all (ξ, η) ̸= (0, 0) when e is higher than the indicated e0? This is the
same as asking when the symmetric 2 × 2 matrix with diagonal entries α and e − γ and off-diagonal
entries −β is positive definite when e > e0. The trace-determinant test for positive semidefiniteness
is whether α+ e− γ > 0 and α(e− γ)− β2 > 0. Since α > 0, the second inequality can be written as
(3.3). This implies the first inequality, written as e > γ − α. Thus, the threshold in (2.14) guarantees
the claimed maximal monotonicity.

Corollary. Suppose in (3.1) and (3.2) that A is symmetric. Then for f(x) = 1
2⟨x,Ax⟩ the function

φ = f + δC has the property that φ+ e
2d

2
S is strongly convex on H at all levels of e satisfying (3.3).

Proof. This corresponds of course to taking A in the theorem to be the Hessian of f .

The corollary refers to the optimization case of the linkage problem (1.1) that corresponds to
minimizing φ = f + δC over the subspace S, or in other words, minimizing f(x) subject to x ∈ C ∩S.

Theorem 6: elicitation via derivatives. Suppose that T = F +NC for a nonempty closed convex
subset C ⊂ H and a continuously (Fréchet) differentiable mapping F : C → H with Jacobians ∇F (x)
(as linear mappings from H to H).

(a) (global elicitation) Assume10

there exists α(x) > 0 such that ⟨x′,∇F (x)x′⟩ ≥ α(x)||x′||2 for all x′ ∈ S when x ∈ C, (3.4)

and let β(x) and γ(x) be defined as in (3.2) with respect to ∇F (x) as A. Let

e0 = sup
x∈C∩S

{
α(x)−1β2(x) + γ(x)

}
. (3.5)

If e0 <∞, then maximal strong monotonicity is elicited globally at all levels e > e0.
(b) (local elicitation) Let x̃ and ỹ solve the linkage problem (1.1) for T = F + NC and suppose

that the condition in (3.4) is satisfied by ∇F (x̃) as A. Then maximal strong monotonicity is elicited
locally for all e sufficiently high with respect to x̃ and ỹ.

Proof. For (a) this follows directly from Theorem 5. For (b) more argument is needed. The condition
assumed at x̃ carries over to a neighborhood of x̃ by the continuous dependence of ∇F (x) on x. The

10In finite dimensions this is implied for bounded C by having ⟨x′,∇F (x)x′⟩ > 0 for all nonzero x′ ∈ S when x ∈ C.
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argument of Theorem 5 applies not only to ∇F (x̃) as A but also to all those linear mappings ∇F (x)
for x in that neighborhood. For each such x a threshold sufficient for monotonicity is available as in
(3.3) in terms of values α(x) > 0, β(x) and γ(x), which depend continuously on x. The continuity
provides an upper bound e0 to α(x)−1β(x)2 + γ(x) in some neighborhood U of x̃. Then, as long as
e > e0, all the linear mappings ∇F (x) + eP⊥ for x ∈ U ∩ C will be monotone.

Without loss of generality it can be supposed that U is convex and closed. Fix e ≥ e0 and let
Fe = F + eP⊥, so that ∇Fe(x) = ∇F (x) + eP⊥ and is monotone for all u ∈ U ∩ C. This implies, as
follows, that F itself is monotone on U∩C. In taking x0 and x1 in U∩C and letting xτ = (1−τ)x0+τx1,
the claimed monotonicity corresponds in terms of the function θ(τ) = ⟨x1 − x0, F (xτ ) − F (x0)⟩ to
having θ(1) ≥ 0. Here θ(0) = 0, so we can be sure of having θ(1) ≥ 0 if θ′(τ) ≥ 0 for τ ∈ (0, 1). Since
θ′(τ) = ⟨x1 − x0,∇F (xτ )(x1 − x0)⟩, this is a consequence of ∇F (xτ ) being monotone.

The strong monotonicity of Fe = F +eP⊥ on U ∩C in combination with its continuity ensures that
Fe + NU∩C is maximal monotone strongly from H to H. This mapping is then maximal monotone
relative to V ×H with V = intU , where its graph reduces to that of F .

Corollary. Let f : H → IR be twice continuously differentiable with gradients ∇f(x) and Hessians
∇2f(x) (as linear mappings from H to H). Then, in terms of F = ∇f and φ = f + δC , part (a) of
Theorem 6 furnishes a criterion for φ+ e

2d
2
S to be strongly convex globally on H, and hence for strong

monotonicity of T = ∂φ to be elicited globally. Part (b) furnishes one for φ + e
2d

2
S to be strongly

convex around a solution x̃, in which case the strong monotonicity of T = ∂φ is elicited locally.

The corollary again refers to the optimization case of (1.1) associated with minimizing φ = f + δC
over S, which is the same as minimizing f(x) subject to x ∈ C∩S, but this time f isn’t just quadratic.
The local version of the corollary with C dropped off (i.e., taken to be all of H) covers, in particular,
the example of elicitation presented in Section 1 just ahead of the progressive decoupling algorithm.

This is not the end of the story, because we have not yet really come to grips with monotonicity
being elicited locally with respect to a pair (x̃, ỹ) in the graph of T , whether of form F +NC or not,
when a neighborhood of ỹ has to come into play alongside of a neighborhood of x̃. For that, our focus
is going to be on the optimization case, where even the meaning of local elicitation at level e = 0
hasn’t yet been clarified. A concept we introduced recently in [25] will have a central role.

Definition 2: variational convexity. The lsc function φ : H → (−∞,∞] is variationally convex
at x̄ for ȳ ∈ ∂φ(x̄) if for some open convex neighborhood U ×V of (x̄, ȳ) there is a convex lsc function
ψ ≤ φ on U such that, for some ε > 0 and the set Uε = {x ∈ U |φ(x) ≤ φ(x̄) + ε},

[Uε × V ] ∩ gph ∂φ = [U × V ] ∩ gph ∂ψ and φ(x) = ψ(x) at the elements (x, y) of this set. (3.6)

It is variationally strongly convex at x̄ for ȳ if ψ is strongly convex.

These properties are best understood when ȳ = 0 (which we can revert to by passing from φ(x)
to φ(x)−⟨ȳ, x⟩), since we are looking then at the first-order necessary condition for a local minimum:
0 ∈ ∂φ(x̄). Variational convexity in that case has 0 ∈ ∂ψ(x̄) for a convex function ψ ≤ φ with
ψ(x̄) = φ(x̄). This implies that ψ is minimized locally by x̄, and the same then for φ. Thus, in
adding variational convexity to having 0 ∈ ∂φ(x̄), we get a second-order sufficient condition for a
local minimum of φ at x̄, even though φ might not itself be convex on a neighborhood of x̄, and even
domφ could be nonconvex. But variational convexity says more than that, because it also concerns
nearby pairs (x, y) in gph ∂φ.

Variational convexity obviously entails prox-regularity and subdifferential continuity (since those
hold for lsc convex functions). It has been investigated from several angles in [25], including connections
with tilt stability. More on that will be said later.

13



Before getting any further with this concept, the definition of ∂φ for potentially nonconvex φ needs
to be reviewed. In the terminology of [29],11 y is a regular subgradient of φ at x if

φ(x′) ≥ φ(x) + ⟨y, x′ − x⟩+ o(||x′ − x||), notation: y ∈ ∂̂φ(x). (3.7)

It is a (general) subgradient of φ at x if

∃yν ∈ ∂̂φ(xν) with yν → y [weakly] , xν → x, φ(xν)→ φ(x), notation: y ∈ ∂φ(x). (3.8)

When φ is convex, this two-step definition arrives at the usual subgradients of convex analysis which
satisfy the inequality in (3.7) without the error term o(||x′ − x||). Beyond that, however, the limits
in (3.8) can be essential, including the limit in function values, because the convergence of (xν , yν) to
(x, y) in gph ∂̂φ need not always entail φ(xν)→ φ(x). This is reflected in the definition of variational
convexity by putting Uε in place of U at the beginning of (3.6).

An illuminating example of subgradients and variational convexity without actual convexity is
offered by the function function φ : IR→ IR defined by

φ(x) = max{1− ex, 1− e−x} with φ(0) = 0 = minφ and

(x, y) ∈ gph ∂φ = gph ∂̂φ ⇐⇒


x > 0, y = e−x,
x = 0, y ∈ [−1, 1],
x < 0, y = −ex.

(3.9)

This continuous function is strongly concave to the left of the origin and also to the right of the origin
but nonetheless is variationally convex at 0 for 0 ∈ ∂φ(0), as seen by taking ψ(x) = τ |x| for any
τ ∈ [0, 1). If we modify it to

φ(x) = 1− e−x for x ≥ 0 but φ(x) = 1 for x < 0, with

(x, y) ∈ gph ∂φ = gph ∂̂φ ⇐⇒


x > 0, y = e−x,
x = 0, y ∈ (−∞, 1],
x < 0, y = 0,

(3.10)

we get φ discontinuous but lsc at x = 0. But x = 0 still gives the global minimum and exhibits
variational convexity with respect to the subgradient y = 0 there. We also have a local minimum with
subgradient y = 0 at every x < 0, and variational convexity, even local convexity, of φ prevails there as
well. However, this is different from the global minimum at the origin and needs to be kept apart from
that. The way to keep it apart is to focus on the pairs (x, y) ∈ gph ∂φ for which φ(x) ≤ φ(0) + ε = ε
for small enough ε, here ε ∈ (0, 1). Then there are no subgradients included for x < 0.

The incentive behind variational convexity is the following result which binds it to subgradient
monotonicity.

Theorem 7: subgradient monotonicity. For lsc φ : H → (−∞,∞] and (x̄, ȳ) ∈ gph ∂φ, if φ is
variationally convex at x̄ for ȳ, then there is an open convex neighborhood U × V of (x̄, ȳ) along with
some ε > 0 such that the mapping T : H →→ H defined by

gphT = { (x, y) ∈ gph ∂φ |φ(x) < φ(x̄) + ε} (3.11)

11The terminology in [15], where infinite-dimensions are covered, is different: regular subgradients are “Fréchet”
subgradients, while general subgradients are “limiting” subgradients.
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is maximal monotone in U × V . Moreover this implication is an equivalence when H is finite-
dimensional and ȳ is a regular subgradient of φ at x̄, i.e., ȳ ∈ ∂̂φ(x̄). The same facts apply also
to the relationship between variational strong convexity and local maximal strong monotonicity.

Proof. The implication from variational convexity to local maximal monotonicity is easy, because
(3.6) allows gph ∂φ to be replaced in (3.11) by gph ∂ψ, with ∂ψ being maximal monotone locally by
virtue of the convexity of ψ. The much deeper fact concerning equivalence12 was established by a long
and intricate argument in [25].

Other properties besides local subgradient monotonicity were likewise revealed in [25] to be closely
related to variational convexity, for instance, having an open convex neighborhood U ×V of (x̄, ȳ) and
ε > 0 such that, for the set Uε = {x ∈ U | f(x) ≤ f(x̄) + ε},

(x, y) ∈ [Uε × V ] ∩ gph ∂φ =⇒ φ(x′) ≥ φ(x) + ⟨y, x′ − x⟩ for all x′ ∈ U. (3.12)

Again, it’s obvious this is implied by variational convexity from its definition. Similarly, variational
strong convexity always brings with it the property that, for some σ > 0,

(x, y) ∈ [Uε × V ] ∩ gph ∂φ =⇒ φ(x′) ≥ φ(x) + ⟨y, x′ − x⟩+ σ

2
||x′ − x||2 for all x′ ∈ U. (3.13)

Once more too, we have equivalences when H is finite-dimensional and ȳ ∈ ∂̂φ(x̄).
Note that in a context of φ having a local minimum at x̄, not just the condition 0 ∈ ∂φ(x̄) but even

0 ∈ ∂̂φ(x̄) is necessary. To that extent the need for ȳ to be a regular subgradient in the equivalence
parts of Theorem 7 isn’t much of a handicap.

Anyway, our optimization topic is not minimizing φ over H but minimizing it over the subspace
S ⊂ H. For that we have the following insight, which will tie into the setting of elicitation that
revolves around φ+ e

2d
2
S and its subgradient mapping ∂φ+ eP⊥. Recall in this that P⊥ vanishes on

S, so having ȳ ∈ ∂φ(x̄) is the same as having ȳ ∈ [∂φ+ eP⊥](x̄) when x̄ ∈ S.

Theorem 8: sufficiency in local minimization. Consider lsc φ : H → (−∞,∞] and vectors x̄ ∈ S
and ȳ ∈ S⊥ solving the linkage problem (1.1) for ∂φ in its role as a first-order optimality condition
for the minimization of φ over S. If

∃ e ≥ 0 such that φ+
e

2
d2S is variationally convex at x̄ for ȳ, (3.14)

then φ has a local minimum over S at x̄, not just a critical point. If the variational convexity is
strong, then the local minimum is strong in the sense of the existence of σ > 0 such that φ(x) ≥
φ(x̄) + σ

2 ||x− x̄||
2 for all x ∈ S in some neighborhood of x̄.

Proof. If φ + e
2d

2
S is variationally convex at x̄ ∈ S for its subgradient ȳ at x̄, then the function

φ(x) = φ(x) + e
2d

2
S(x) − ⟨ȳ, x − x̄⟩ is variationally convex at x̄ relative to its subgradient 0 ∈ ∂φ(x̄).

This implies, as we have seen, that φ has a local minimum at x̄ over H. But φ(x) = φ(x) when x ∈ S
and ȳ ∈ S⊥, so this yields a local minimum of φ at x̄ relative to S. The assertion for variational strong
convexity uses the quadratic bounds in (3.13) that are associated with that property.

The results in Theorem 8 suggest a new approach to thinking about second-order optimality, one
which isn’t dependent on an exotic definition of second derivatives of lsc functions.

12It’s an open question whether the restriction to finite-dimensional H and a regular subgradient ȳ is truly essential.

15



Definition 3: variational second-order optimality conditions. The property in (3.14) will be
called the variational second-order sufficient condition for φ to have a local minimum at x̄ relative to
S when ȳ ∈ ∂φ(x̄). The version of (3.14) with variational strong convexity will accordingly be called
the variational strong second-order sufficient condition.

To appreciate the really broad scope of this idea, let’s look at it in the framework of the reformulated
minimization problem in (1.6) with subgradients characterized in (1.7). In that notation, the first-order
optimality condition is

(0, ȳ) ∈ ∂f(x̄, 0) (3.15)

with ȳ being a Lagrange multiplier for the constraint u = 0; recall that u is interpreted as a pertur-
bation. The function φe = φ+ e

2d
2
S translates then to

fe(x, u) = f(x, u) +
e

2
||u||2, likewise having (0, ȳ) ∈ ∂fe(x̄, 0). (3.16)

The corresponding statement of the variational second-order sufficient condition in Definiton 3 is

∃ ε ≥ 0 such that fe is variationally convex at (x̄, 0) for (0, ȳ). (3.17)

Theorem 8 tells us that this guarantees having a local minimum in the very general problem of
minimizing an expression f(x, u) subject to u = 0.

Another telling example concerns the case where H is finite-dimensional and φ is prox-regular at x̄
for ȳ, which is a very common property; see [29, Chapter 13F].13 The variational strong second-order
sufficient condition is equivalent then to the function φ(x) + e

2d
2
S(x)− ⟨ȳ, x⟩ having a tilt-stable local

minimum at x̄, as seen from the main characterization in [18].
Theorem 8 and Definition 3 bring us to the main conclusion we have been working toward about

local elicitation in the optimization case.

Theorem 9: elicitability from second-order sufficiency. Suppose that x̄ ∈ S and ȳ ∈ S⊥ with
ȳ ∈ ∂φ(x̄) in the optimization case of the linkage problem. If the variational second-order sufficient
condition for a local minimum at x̄ is satisfied, then monotonicity is elicitable at that level e in the
sense of the mapping T + eP⊥ being maximal monotone locally in the manner of T in (3.11). When
H is finite-dimensional and ȳ ∈ ∂̂φ(x̄), the converse holds as well.

In the case of the variational strong second-order sufficient condition, the same relationships hold
with the local elicitability of monotonicity being strong.

Proof. This is now immediate from the facts that have been laid out.

Theorem 9 conveys the picture that the progressive decoupling algorithm is naturally suited to
applications of the linkage problem (1.1) in the optimization case when one is not merely looking to
solve a first-order optimality condition but hoping really to converge to a local minimum. It could
equally well be translated to the optimization format in (1.6) which we reviewed in connection with
second-order sufficiency just before its statement.

There is still one piece of unfinished business: establishing that the procedure in this setting can
be executed with local minimization on the forefront as well.

It has already been noted at the end of Section 1 that the main step of the algorithm in (1.12)
reduces in the optimization case to (1.17), where the first-order condition for a local minimum of a
modified objective function φν is to be solved. This is to be carried out in a local sense as specified in

13For instance, this holds when φ is the composition of some lsc convex function with a C2 mapping for which a mild
constraint qualification holds at x̄. Many expressions can be made to fit that.
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Theorem 1 in terms of a neighborhood W of some solution pair (x̃, ỹ) that is not necessarily the one
to which the sequence will converge. With the information we have developed about how subgradients
connect to local optimality, we can shed more light on this matter.

Theorem 10: implementation in minimizing mode. Let (x̃, ỹ) solve the linkage problem in
the optimization case and be such that the variational second-order sufficient condition for a local
minimum of φ at x̃ is satisfied with respect to ỹ. Then if the iterations of the progressive decoupling
algorithm with proximal parameter r > 0 are started from a pair (x0, y0) close enough to (x̃, ỹ), there
will be open convex neighborhoods U of x̃ and V of ỹ such that

locally solving 0 ∈ ∂φν(x̂ν) for φν(x) = φ(x)− ⟨yν , x⟩+ r

2
||x− xν ||2 (3.18)

can be impliemented by determining x̂ν as the unique minimizer of φν on U .

Proof. The claims would be valid beyond question if φ were convex, but here all we have from our
hypothesis is the variational convexity of φe = φ+ e

2d
2
S at x̃ for some e ≥ 0 with respect to ỹ ∈ ∂φe(x̃).

According to Theorem 9 that furnishes the maximal monotonicity with respect to some open convex
neighborhood U × V of (x̃, ỹ) and some ε > 0 of the mapping T defined by

gphT = { (x, y) ∈ gph ∂φ |φ(x) < φ(x̃) + ε}. (3.19)

We know then from Theorem 1 that the iterations of the algorithm, when initiated in a small enough
neighborhood W of (x̃, ỹ) within U × V can be kept to that neighborhood, where they moreover will
uniquely generate a sequence of pairs (xν , yν) converging to a some solution pair (x̄, ȳ). Since

r

2
||x− xν ||2 = r

2
||P (x)− xν ||2 + r − e

2
||P⊥(x)||2 + e

2
||P⊥(x)||2

as long as xν ∈ S, those iterations as portrayed in (3.18) can be viewed as locally solving

0 ∈ ∂φν
e(x̂

ν) for φν
e(x) = φe(x)− ⟨ȳ, x⟩+

r

2
||P (x)− xν ||2 + r − e

2
||P⊥(x)||2. (3.20)

From the variational convexity property of φe that we invoked to get the maximal monotonicity in
U ×V of T in the form of (3.19), we also have the existence of a convex lsc function ψ ≤ φe such that
(3.6) holds for φe in place of φ. But this tells us that (3.20) is equivalent to locally solving

0 ∈ ∂ψν(x̂ν) for ψν(x) = ψ(x)− ⟨ȳ, x⟩+ r

2
||P (x)− xν ||2 + r − e

2
||P⊥(x)||2, (3.21)

inasmuch as the relation in (3.6) holds then for ψν and φν
e in place of ψ and φe. Moreover the solution

corresponds to the unique minimum of the strongly convex function ψν , and also the unique minimum
of ψν

e , on U .

It shouldn’t be forgotten though that the local minimization in this implementation doesn’t involve
minimizing a function φν that’s necessarily convex, even locally. On the other hand, situations in the
corollaries to Theorems 5 and 6 do provide local or even global convexity in the minimization.

Along the lines of proximal terms being employed in the minimization of nonconvex functions, it’s
interesting to note that an elicitation-like technique is present in a bundle method developed in [8],
which includes rules for updating the proximal parameter.

Finally, it must be mentioned that our efforts here aren’t the first to explore approaches to problem
decomposition in nonconvex optimization which, in Lagrangian terms, resemble multiplier methods
and rely on second-order optimality conditions. Those features can already be found in a 1979 article
of Bertsekas [3] in the classical framework of smooth nonlinear programming. However, his method is
very different and doesn’t involve augmented Lagrangians.
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4 Applications to problem decomposition and splitting

The special aim of the progressive decoupling algorithm is to determine a solution to the linkage
problem (1.1) by solving a sequence of advantageously modified problems in which the linkages are
relaxed by a dual representation which progressively captures them more accurately. The decoupling
of linkages not only leads to simpler computations, but also opens the way to problem decomposition
based on block separability.

Linkage problems with decomposable structure. Suppose that H = H1 × · · · ×Hq for Hilbert
spaces Hj and that

T (x) = T (x1, . . . , xq) = (T1(x1), . . . , Tq(xq)) for mappings Tj : Hj →→ Hj . (4.1)

Problem (1.1) then seeks to

find (x̄1, . . . , x̄q) ∈ S and (ȳ1, . . . , ȳq) ∈ S⊥ such that ȳj ∈ Tj(x̄j) for j = 1, . . . , q. (4.2)

The challenge for “problem decomposition” is coming up with a way of solving (4.2) through
subproblems in the separate indices j. The progressive decoupling algorithm can do that.

Progressive decoupling in decomposition mode. With respect to an elicitation level e ≥ 0
(global or local) and a proximal parameter r > e, proceed as follows. In iteration ν, having xν =
(xν1 , . . . , x

ν
q ) ∈ S and yν = (yν1 , . . . , y

ν
q ) ∈ S⊥, determine x̂νj ∈ Hj for j = 1, . . . , q, by solving

0 ∈ T ν
j (x̂

ν
j ), where T ν

j (xj) = Tj(xj)− yνj + r[xj − xνj ]. (4.3)

From x̂ν = (x̂ν1 , . . . , x̂
ν
q ) then get xν+1 ∈ S and yν+1 ∈ S⊥ by

xν+1 = P (x̂ν), yν+1
j = yνj − (r − e)[x̂νj − xν+1

j ]. (4.4)

This specialization of the decoupling procedure in Section 1 comes simply from the fact that the
block-separable structure reduces the condition 0 ∈ T ν(x̂ν) in (1.12) to the separate conditions in (4.3)
on the components of x̂νj . All the results about convergence and elicitation then apply. The conditions
in (4.3) will only be solved locally, when the elicitation of monotonicity is only local.

In [24] we described such a method of problem decomposition like this but only for T globally
monotone, which corresponds here to global elicitation of monotonicity at level e = 0. Furthermore,
only the variational inequality case T = F +NC in (1.2) was considered in that work. Everything else
is new here, and that holds also in the connections with optimization, which we explain next.

Optimization version of problem decomposition. The optimization case of the linkage
problem with T = ∂φ exhibits the decomposable structure in (4.1) when

φ(x) = φ(x1, . . . , xq) = φ1(x1) + · · ·+ φq(xq) for lsc functions φj : Hj → (−∞,∞], (4.5)

which leads to Tj = ∂φj . The step in (4.3) then takes the form of solving, for j = 1, . . . , q,

x̂νj = [local] argmin
xj∈Hj

φν
j (xj), where φν

j (xj) = φj(xj)− ⟨yνj , xj⟩+
r

2
||xj − xνj ||2, (4.6)

at least in various circumstances described in Section 3. Beyond actual convexity of the functions φj ,
included here as the case of elicitation at level e = 0, this holds for φ as in the corollaries to Theorems
5 and 6 and more generally for local elicitation as covered by Theorem 9.
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Multistage stochastic programming offers an example of the separability in (4.5) in which each j
marks a different “scenario.” The modified problem for j in (4.6) is solved as if that scenario is the one
that surely will be followed; it’s a calculation with “hindsight.” Progressive decoupling in this situation
reduces to the progressive hedging in [28]. In the broader formulation of (4.3) as adapted to variational
inequalities, it corresponds to the progressive hedging approach in [26] for solving stochastic variational
inequalities. However, all that, until now, has been articulated only in the presence of global convexity
or monotonicity. Developments coming in Section 5 which suggest Lagrangian formats for explicitly
dealing with constraints, in particular, could further aid in this direction.

Another major illustration of decoupling comes from taking the spaces Hj in the block-separable
structure to all be the same and making an “artificial” choice of the linkage space S.

Linkage problems with splitting structure. Suppose that H = H0 × · · · ×H0 for q copies of a
Hilbert space H0 and that

T (x) = T (x1, . . . , xq) = (T1(x1), . . . , Tq(xq)) for mappings Tj : H0 →→ H0. (4.7)

Choose the subspace S with orthogonal complement S⊥ to be

S = {x = (x1, . . . , xq) | ∃w withx1 = · · · = xq = w},
S⊥ = { y = (y1, . . . , yq) | y1 + · · ·+ yq = 0}. (4.8)

Problem (4.1) then seeks in effect to

find w̄ ∈ H0 such that 0 ∈ T1(w̄) + · · ·+ Tq(w̄). (4.9)

The decomposition iterations in (4.3)–(4.4) reduce then to the following procedure.

Progressive decoupling in splitting mode. With respect to an elicitation level e ≥ 0 (global
or local) and a proximal parameter r > e, proceed as follows. In iteration ν, having wν ∈ H0 and
yν1 , . . . , y

ν
q ∈ H0 with yν1 + · · ·+ yνq = 0, determine x̂νj ∈ H0 for j = 1, . . . , q, by solving

0 ∈ T ν
j (x̂

ν
j ), where T ν

j (xj) = Tj(xj)− yνj + r[xj − wν ]. (4.10)

Then update by

wν+1 =
1

q

∑q

j=1
x̂νj , yν+1

j = yνj − (r − e)[x̂νj − wν+1]. (4.11)

Here wν gives the common value of the components of xν = (xν1 , . . . , x
ν
q ) in iteration ν. The

projection of x̂ν = (x̂ν1 , . . . , x̂
ν
q ) to get xν+1 in the subspace S in (4.8) corresponds then to the first

formula in (4.11).
A splitting method like this was also considered by Spingarn [31] for his method of partial inverses,

but only in the case of each Tj being maximal monotone (hence the same for T ). Our splitting
algorithm reduces in that setting to his with e = 0 when r = 1, but it differs in allowing, even in his
circumstances, general r > e ≥ 0. A similar method of splitting, likewise only under the assumption
of maximal monotonicity but allowing general r, has been offered by Mahey et al. in [13]. It has
a different update rule than (4.11) and only handles two components (q = 2), at least in its given
formulation.

More about methology in this monotonicity framework and its relationships to the work of Spingarn
is explained in the recent survey [11]. It’s all closely related also to the Douglas-Rachford splitting
method for monotone mappings as put forward originally by Eckstein and Bertsekas in [6]. Other
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contributions are to be found in [1, 5] and still more in related formats of convex optimization such
as [7]. However, here we have the potential of splitting without insisting on convexity.

Optimization version of splitting. When Tj = ∂φj the problem really being targeted for
solution, in (4.9), is to

find w̄ ∈ H0 such that 0 ∈ ∂φ1(w̄) + · · ·+ ∂φq(w̄), (4.12)

which is a surrogate for

minimize φ1(w) + · · ·+ φq(w) over w ∈ H0. (4.13)

This is elaborated in a seemingly roundabout way by (4.7)–(4.8)–(4.9) into

find ȳj ∈ ∂φj(x̄j) such that x̄1 = · · · = x̄q and ȳ1 + · · ·+ ȳq = 0, (4.14)

which itself is a surrogate for

minimize φ1(x1) + · · ·+ φq(xq) subject to the linkage constraint x1 = · · · = xq. (4.15)

The iterations of the algorithm in minimization mode, when supported by convexity or the conditions
in the corollaries to Theorems 5 and 6 or in Theorem 9, have

x̂νj = [local] argminxj
φν
j (xj), where φν

j (xj) = φj(xj)− ⟨yνj , xj⟩+
r

2
||xj − wν ||2, (4.16)

in which wν is the current candidate for solving (4.12).
There are new aspects to this method even when the functions φj are convex, including just

local convexity around a solution. But perhaps the most interesting question to answer is how local
elicitation of maximal monotonicity of T = ∂φ, which has never before been contemplated in splitting,
may truly be helpful.

It’s crucial to appreciate that in posing the minimization in (4.13) in the seemingly redundant
manner of (4.15) there is a beneficial change in the associated optimality conditions. The linkage
constraint in (4.15) brings in Lagrange multipliers that didn’t exist in (4.13). The second-order
aspects of optimality change as well. In (4.13) they only concern the variable w ∈ H0, but in (4.15) we
can, for instance, invoke the variational second-order sufficient condition for a local minimum relative
to the associated linkage subspace S in the product space H. That may elicit variational convexity or
something stronger.

A good way to get insights into this is to put the problem in the perturbation framework of (1.6),
which was taken up again ahead of Theorem 9 on the context of second-order sufficiency. The elements
of our space H can uniquely be represented in the form

(w + u1, . . . , w + uq) with perturbation vectors uj satisfying u1 + · · ·+ uq = 0. (4.17)

The problem of interest is to

minimize φ1(w + u1) + · · ·+ φq(w + uq) subject to (u1, . . . , uq) = (0, . . . , 0), (4.18)

but other choices (u1, . . . , uq) ̸= (0, . . . , 0) offer perturbed versions of that problem in which the
functions φj undergo shifts in one direction or another. The vector (ȳ1, . . . , ȳq) paired with w̄ assesses
the effect of such shifts on the minimum value. It’s in that context that the variational second-order
sufficient condition for optimality enters and enriches the scene.
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Example: splitting in smooth optimization. Suppose the functions φj are of class C2, so
that the first-order optimality condition for minimizing φ = φ1 + · · ·+ φq over H0 is

0 = ∇φ(w̄) = ∇φ1(w̄) + · · ·+∇φq(w̄). (4.19)

Solving that is the task in (4.12) which is re-expressed in (4.15) in terms of vectors ȳj = ∇φj(x̄j)
with x̄1 = · · · = x̄q. To apply splitting methodology to (4.19) in its existing forms, which require
monotonicity, the functions φj would need to be convex, thereby entailing for Hessian matrices that

∇2φj(w) for j = 1, . . . , q would have to be positive semidefinite for all w.

In stark contrast, our new approach is able to operate in this situation simply on the basis of the
classical second-order sufficient condition for a local minimum at w̄, namely the

positive definiteness of ∇2φ(w̄) = ∇2φ1(w̄) + · · ·+∇2φq(w̄),

because that locally elicits strong monotonicity.
This echoes the example of local elicitation from smoothness that was offered in Section 1 and

validated with various extensions in Section 3.

Linkage problems from simple linear coupling. Let H and T have the decomposable structure
considered earlier in (4.1) but just with q = 2. For corresponding problem in (4.2), choose the
complementary subspaces as follows with respect to a (continuous) linear mapping A : H1 → H2 and
its adjoint A∗ : H2 → H1:

S = {x = (x1, x2) |x2 = Ax1}, S⊥ = { y = (y1, y2) | y1 = −A∗y2}. (4.20)

The linkage problem then takes the form

find x1 ∈ H1 and y2 ∈ H2 such that y2 ∈ T2(Ax1) and −A∗y2 ∈ T1(x1), (4.21)

which is a roundabout way of saying

find x1 ∈ H1 such that 0 ∈ T1(x1) +A∗T2(Ax1). (4.22)

The corresponding specialization of the progressive decoupling algorithm executes (4.3) for j = 1, 2,
and then requires projection on S in (4.4). To what extent will this projection step be numerically
accessible? The answer to that depends on the mapping A. Projecting on S in (4.4) means determining
the point xν+1 = (xν+1

1 , Axν1) of S that’s nearest to x̂ν = (x̂ν1 , x̂
ν
2), or in other words, calculating

xν+1
1 = argminx1∈H1

{ ||x1 − x̂ν1 ||2 + ||Ax1 − x̂ν2 ||2}. That has a closed-form answer:

xν+1
1 = (I +A∗A)−1[x̂ν1 +A∗x̂ν2 ]. (4.23)

Practicability thus comes down to the ease of working with (I + A∗A)−1. An elementary example is
the case of splitting with q = 2, which corresponds to Ax1 = x1, A

∗y2 = −y2, hence A∗A = I.

Optimization version of simple linear coupling. When Tj = φj we are looking to

find x̄1 such that 0 ∈ ∂φ1(x̄1) +A∗∂φ2(Ax̄1), (4.24)
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but the vectors y2 ∈ A∗∂φ2(Ax1) are the subgradients of the function x1 → φ2(Ax1) under typical
constraint qualifications, so (4.24) is a natural surrogate for the problem:

minimize φ1(x1) + φ2(Ax1) with respect to x1 ∈ H1. (4.25)

This kind of optimization problem has a long history in convex analysis as the vehicle for Fenchel
duality when φ1 and φ2 are convex functions. Algorithms for solving it through separate minimization
operations on modifications of φ1 and φ2 have been developed in various quarters and extended to
the monotone case of the problem in (4.22). The 2017 survey of Lenoir and Mahey [11] provides a
valuable guide to that literature.

The procedure obtained here differs in its dependence on the inverse in (4.23), which may interfere
with its viability relative to that existing methodology. But the special feature is that we are not
requiring φ1 and φ2 to be convex. That’s made possible through our scheme of eliciting convexity and
its connection in Section 3 with second-order sufficient conditions for a local minimum.

An example in smooth optimization can once more bring this out. Suppose that φ1 and φ2 are
C2. Then (4.24) reduces to finding x̄1 such that ∇φ(x̄1) = 0 for φ(x1) = φ1(x1) + φ2(Ax1). For the
problem to fit with the technology of the convex case, all the Hessian matrices ∇2φ1(x1) and ∇2φ2(x2)
would have to be positive semidefinite. But to justify local convergence to x̄1 for algorithm developed
here, all that is needed is the positive definiteness of the Hessian ∇2φ(x̄1).

From the perturbation standpoint in understanding this model and its version of local optimality,
an element of (x1, x2) ∈ S, having x2 = Ax1, is shifted to (x1+u1, x2+u2) by an element (u1, u2) ∈ S⊥,
having u1 = −A∗u2. This seems a bit artificial and perhaps indicates a shortcoming in such a treatment
of “linear coupling.” In the next section we’ll employ a different strategy which succeeds better and
even can handle “nonlinear coupling.”

5 Extended decomposition with augmented Lagrangians

From now on we keep to the optimization case of the linkage problem with block-separability but
furnish the objective with more structure. The problem, in its starting formulation, is to

minimize φ(x1, . . . , xq) on a subspace S ⊂ H1 × · · · ×Hq

where φ(x1, . . . , xq) =
∑q

j=1 fj(xj) + g(
∑q

j=1 Fj(xj)),
(5.1)

with Fj being a continuously differentiable mapping from Hj to another Hilbert space H ′, and the
functions fj : Hj → (−∞,∞] and g : H ′ → (−∞,∞] being lsc with g also convex.

For example, g could be the indicator δK of some closed convex set in H ′, and then the g term
in the minimization would enforce the constraint

∑q
j=1 Fj(xj) ∈ K. For K = {0}, this would be the

equation
∑q

j=1 Fj(xj) = 0. However, g could instead be some norm that provides “regularization.”
More generally, H ′ could itself be a productH ′

1×· · ·×H ′
p with g(z1, . . . , zp) being a sum

∑p
k=1 gi(zi)

that imposes different conditions on the different components of Fj(xj) = (Fj1(xj), . . . , Fjp(xj)). On
the other hand, the functions fj could have the form fj(xj) = f0j(xj)+ δXj (xj) with f0j continuously
differentiable and Xj closed. That would enforce the constraint xj ∈ Xj .

The g term in (5.1) introduces an additional way of coupling the variables xj beyond the constraint
(x1, . . . , xq) ∈ S. In fact this might be the only source of coupling because we are now allowing that S
might be all of H1× · · · ×Hq, with S

⊥ reducing then to the origin of H1× · · · ×Hq. An alternative is
a splitting version in which S has the form in (4.8). This would correspond in problem (5.1) to having
the Hj = H0 and xj = w ∈ H0 for all j. For applications to stochastic programming, on the other
hand, S could be the nonanticipativity subspace that’s critical in that subject.
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When the mappings Fj are linear (or affine), we could deal with the extended coupling in (5.1) by
an enlargement of S that mimics the graphical pattern in (4.20). But here we allow nonlinearity of
Fj , and therefore a different approach is needed.

The linkage problem (1.1) for the minimization problem (5.1) centers on the corresponding mapping
∂φ and requires knowing when v̄ ∈ ∂φ(x̄). Here the earlier ȳ has been switched to v̄ in order to reserve
ȳ for use as a “Lagrange multiplier vector” for the coupling associated with the g term. Rules of
subgradient calculus in [29, Chapter 10B], when applied to the formula for φ in (5.1), say that having
v̄ ∈ ∂φ(x̄) implies, under a constraint qualification, that

∃ ȳ ∈ ∂g
(∑q

j=1
Fj(x̄j)

)
such that v̄j −∇Fj(x̄j)

∗ȳ ∈ ∂fj(x̄j) for j = 1, . . . , q, (5.2)

and in some situations there’s an equivalence. However, it will be better to work explicitly instead of
implicitly with such ȳ and avoid the issue of constraint qualifications. This can be accomplished by
taking a perturbational approach to the problem in (5.1), reformulating it as:

minimize φ0(x1, . . . , xq, u) on the subspace S0 ⊂ H1 × · · · ×Hq ×H ′

where φ0(x1, . . . , xq, u) =
∑q

j=1 fj(xj) + g(
∑q

j=1 Fj(xj) + u),

and S0 = { (x1, . . . , xq, u) | (x1, . . . , xq) ∈ S, u = 0},
S⊥
0 = { (v1, . . . , vq, y) | (v1, . . . , vq) ∈ S⊥, y ∈ H ′}.

(5.3)

The linkage problem in subgradient form is then to

find (x̄1, . . . , x̄q) ∈ S, (v̄1, . . . , v̄q) ∈ S⊥, ȳ ∈ H ′, with (v̄1, . . . , v̄q, ȳ) ∈ ∂φ0(x̄1, . . . , x̄q, 0), (5.4)

which is advantageous because we have now from subgradient calculus [29, Chapter 10B] that

(v1, . . . , vq, y) ∈ ∂φ0(x1, . . . , xq, u) ⇐⇒ vj −∇Fj(xj)
∗y ∈ ∂fj(xj), y ∈ ∂g

(∑q

j=1
Fj(xj)

)
. (5.5)

Moreover the subgradient conditions on the right can be expressed by

(v1, . . . , vq) ∈ ∂xL(x1, . . . , xq, y), u ∈ ∂y[−L](x1, . . . , x1, y), (5.6)

with respect to the associated Lagrangian function

L(x1, . . . , xq, y) = inf
u∈H′
{φ0(x1, . . . , xq, u)− ⟨y, u⟩} =

∑q

j=1
[fj(xj) + ⟨y, Fj(xj)⟩]− g∗(y), (5.7)

where14 g∗ is the convex function conjugate to g, having g∗(y) = supu { ⟨y, u⟩ − g(u)}.
This way of looking at the problem in (5.1) is helpful in clarifying subgradients and placing them

in a Lagrangian format, but it doesn’t go far enough. If we apply the progressive decoupling algorithm
to (5.3) in minimization mode, we find ourselves trying to work with augmented Lagrangian functions

Lr(x1, . . . , xq, y) = inf
u∈H′
{φ0(x1, . . . , xq, u)− ⟨y, u⟩+ r

2 ||u||
2} for r > 0 (5.8)

which lack the block separability with respect to x1, . . . , xq, that’s enjoyed in (5.7) by L. This obliges
us to take a different approach to perturbations in which we rely on the following fact.

14In (5.7), the value of the L is ∞ if it should arise that
∑q

j=1
fj(xj) = ∞ while also g∗(yj) = ∞.
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Lemma 1: expansion. The inequality g(
∑q

j=1 Fj(xj)) ≤ α holds for α ∈ IR if and only if

∃uj with
∑q

j=1
uj = 0 such that q−1

∑q

j=1
g(q[Fj(xj) + uj ]) ≤ α. (5.9)

Proof. Because g is a convex function, it has the property that g(w) ≤ q−1 ∑q
j=1 g(wj) when

q−1 ∑q
j=1wj = w, moreover with the inequality holding as an equation when wj = w for all j. In

particular then, g(
∑q

j=1 Fj(xj)
)
= min { q−1 ∑q

j=1 g(wj) | q−1 ∑q
j=1wj =

∑q
j=1 Fj(xj)}. In changing

variables from wj to uj = q−1wj − Fj(xj), this turns into

g
(∑q

j=1
Fj(xj)

)
= min

{
q−1

∑q

j=1
g(q[Fj(xj) + uj ] )

∣∣∣ ∑q

j=1
uj = 0

}
,

which confirms the claim.

Note in (5.9) that q−1 ∑q
j=1 g(q[Fj(xj) + uj ]) =

∑q
j=1 g(Fj(xj) + uj) when g is positively homoge-

neous, as when g = δK for a cone K, or when g is a norm.
The lemma allows us to reformulate (5.1) as a problem in auxiliary variables uj alongside of the

variables xj :

minimize φ(x1, . . . , xq, u1, . . . , uq) = φ1(x1, u1) + · · ·+ φq(xq, uq) on a subspace S,

where φj(xj , uj) = fj(xj) + q−1g(q[Fj(xj) + uj ] ), S ⊂ H = H1 × · · · ×Hq × [H ′]q,
(5.10)

S = { (x1, . . . , xq, u1, . . . , uq) | (x1, . . . , xq) ∈ S, u1 + · · ·+ uq = 0, for uj ∈ H ′},
S
⊥
= { (v1, . . . , vq, y1, . . . , yq) | (v1, . . . , vq) ∈ S⊥, y1 = · · · = yq = some y ∈ H ′}.

(5.11)

This puts us back in the picture of decomposability at the start of Section 4, but with more variables.
The first-order optimality condition in the subgradient form of the linkage problem now concerns

(v̄1, . . . , v̄q, ȳ1, . . . , ȳq) ∈ ∂φ(x̄1, . . . , x̄q, ū1, . . . , ūq), or (v̄j , ȳj) ∈ ∂φj(x̄j , ūj) for each j, (5.12)

where15

(v̄j , ȳj) ∈ ∂φj(x̄j , ūj) ⇐⇒ v̄j −∇Fj(x̄j)
∗ȳj ∈ ∂fj(x̄j), ȳj ∈ ∂g(q[Fj(x̄j) + ūj ]). (5.13)

It’s worth noting from this calculation, in connection with the second-order variational sufficient
condition and its role in elicitability in Theorem 9, that the subgradient of φ in (5.5) will be a regular
subgradient as long as the subgradients of the functions fj in (5.6) are regular subgradients.16 17

The corresponding version of the algorithm in optimization mode for this problem has steps (4.6)
followed by updates (4.3), but with added variables that require elaboration of details. The projections

P and P
⊥
= I − P from H onto the subspaces S and S

⊥
in (5.11) are now needed, but clearly

P (x1, . . . , xq, u1, . . . , uq) =
(
P (x1, . . . , xq), u1 − 1

q

∑q
j=1uj , . . . , uq − 1

q

∑q
j=1uj

)
. (5.14)

Another issue is the extended form of the minimization step, which in place of (4.6) now has

(x̂νj , û
ν
j ) = [local] argmin {φν

j (xj , uj) |xj ∈ Hj , uj ∈ H ′}, where

φν
j (xj , uj) = φj(xj , uj)− ⟨vνj , xj⟩ − ⟨yν , uj⟩+ r

2 ||xj − x
ν
j ||2 + r

2 ||uj − u
ν
j ||2,

(5.15)

with respect to current elements

(xν1 , . . . , x
ν
q , u

ν
1 , . . . , u

ν
q ) ∈ S, (vν1 , . . . , v

ν
q , y

ν , . . . , yν) ∈ S⊥
. (5.16)

Altogether, then, we get the following algorithm.

15This applies the chain rule in [29, 10.6].
16Again the chain rule in [29, 10.6] provides the support.
17Although we’re concentrating now on optimization, it’s evident that a broader kind of linkage problem with decom-

posable structure could be obtained here by replacing the subgradient mappings ∂fi and ∂g by other mappings.
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Progressing decoupling in extended decomposition. For an elicitation level e ≥ 0 (global or
local) and a proximal parameter value r > e, proceed in iteration ν from having current elements as
in (5.16) to calculating the pairs in (5.15) for j = 1, . . . , q with respect to

φj(xj , uj) = fj(xj) + gq(Fj(xj) + uj), where gq(u) = q−1g(qu). (5.17)

Then, letting ûν = 1
q

∑q
j=1 û

ν
j , update by

(xν+1
1 , . . . , xν+1

q ) = P (x̂ν1 , . . . , x̂
ν
q ), uν+1

j = ûνj − ûν ,
vν+1
j = vνj − (r − e)[x̂νj − x

ν+1
j ], yν+1 = yν − (r − e)ûν . (5.18)

What can be expected of this procedure? It will have the convergence properties in Theorem 1 for
producing a solution to the problem in form (5.3)–(5.4), which will then yield a solution to (5.1), but
those properties depend on the global or local level of elicitation, so that’s the key issue.

Global elicitation at level e = 0 refers to the fully convex case of the problem as stated in (5.10),
namely φ being a convex function, which comes down to the expressions φj(xj , uj) in (5.17) being
convex in (xj , uj). Since gj is convex, that obviously holds when fj is convex and Fj is affine, but it
can also hold in other situations, for example when H ′ = IRn, the components of Fj are convex, and
g is nondecreasing. In the fully convex case, the algorithm in optimization mode is sure to converge
globally from any starting elements (if a solution to the problem exists at all).

For local elicitation at a level e > 0 it’s important to have in mind the connection with local
optimality that was developed in Section 3, culminating in Theorems 9 and 10. The upshot is that
if the algorithm is initiated close enough to elements satisfying, together with the first-order condition
on subgradients, the variational second-order sufficient condition, and e is high enough (as dictated
by that condition), then it will converge to a local minimum and can be implemented with local
minimization generating unique pairs (x̂νj , û

ν
j ) in (5.15). Of course, it’s hard to know when those

conditions are fulfilled, but this can be compared with the situation faced by other algorithms, such as
Newton’s method or procedures in nonlinear programming that call for various second-order optimality
properties to be present.

There’s more to learn in this direction through further analysis that brings augmented Lagrangians
into the picture. Problems of the form

minimize fj(xj) + gq(F
ν
j (xj)) in xj ∈ Hj , with F ν

j = Fj(xj) + uνj , gq(u) = q−1g(qu), (5.19)

will have an interesting role. The Lagrangian function associated with such a problem, in the theory
explained in [29, Chapters 11I, 11K], is

Lν
j (xj , yj) = inf

uj∈H′

{
fj(xj) + gq(F

ν
j (xj) + uj)− ⟨yj , uj⟩

}
= fj(xj) + ⟨yj , F ν

j (xj)⟩ − q−1g∗(yj), (5.20)

where we have used the fact that the convex function conjugate to gq is q−1g∗. The augmented
Lagrangian with parameter r > 0 is

Lν
j,r(xj , yj) = min

uj∈H′

{
fj(xj) + gq(F

ν(xj) + uj)− ⟨yj , uj⟩+
r

2
||uj ||2

}
, (5.21)

which is also known to be obtainable through duality by

Lν
j,r(xj , yj) = max

zj∈H′

{
Lν
j (xj , zj)−

1

2r
||zj − yj ||2

}
. (5.22)
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Although bringing these expressions down to something simpler needn’t be our concern here, it’s
possible in many situations. Especially to note as an example is the case when g is just the indicator
of the origin, so that g∗ ≡ 0. Then (5.10) minimizes fj(xj) subject to F

ν
j (xj) = 0, and the augmented

Lagrangian is Lν
j,r(xj , yj) = Lν

j (xj , yj) +
r
2 ||F

ν
j (xj)||2, as would be anticipated.

The Lagrangian Lν
j (xj , yj) is always concave in yj , and the same is true also of the augmented

Lagrangian Lν
j,r(xj , yj). But the augmented Lagrangian has a further property of significance: it is

continuously differentiable in yj as long as xj ∈ dom fj , with the formula

∇yjL
ν
j,r(xj .yj) = argmin

uj∈H′

{
fj(xj) + gq(F

ν(xj) + uj)− ⟨yj , uj⟩+
r

2
||uj ||2

}
. (5.23)

The way forward now, with the Lagrangians at our disposal, is to look at what happens in (5.15)
when we carry out the minimization in uj and afterward look at the residual minimization in xj . The
minimization with respect to uj , in making use of (5.17), benefits from the following relationship.

Lemma 2: augmentation.

min
uj∈H′

{
fj(xj) + gq(Fj(xj) + uj)− ⟨yν , uj⟩+

r

2
||uj − uνj ||2

}
= Lν

j,r(xj , y
ν)− ⟨yν , uνj ⟩. (5.24)

Proof. In the change of variables u′j = uj − uνj , the expression being minimized turns instead into
fj(xj)+ gq(Fj(xj)+u

ν
j +u

′
j)−⟨yν , u′j +uνj ⟩+ r

2 ||u
′
j ||2, where Fj(xj)+u

ν
j = F ν

j (xj). With the removal
of ⟨yν , uνj ⟩, the minimization is the same as that on the right side of (5.21).

This enables us to restate the decomposition algorithm with steps (5.15), (5.17) and (5.18) in a
different manner.

Progressive decoupling with augmented Lagrangians. With respect to an elicitation level e ≥ 0
(global or local) and a proximal paramter r > e, proceed in iteration ν from having current elements
as in (5.16) to calculating, in terms of F ν

j (xj) = Fj(xj) + uνj for j = 1, . . . , q,

x̂νj = [local] argmin
xj∈Hj

{
Lν
j,r(xj , y

ν)− ⟨vνj , xj⟩+
r

2
||xj − xνj ||2

}
. (5.25)

Then, letting ûν = 1
q

∑q
j=1∇yjL

ν
j,r(x

ν+1
j , yν), update by

(xν+1
1 , . . . , xν+1

q ) = P (x̂ν1 , . . . , x̂
ν
q ), uν+1

j = uνj − ûν ,
vν+1
j = vνj − (r − e)[x̂νj − x

ν+1
j ], yν+1 = yν − (r − e)ûν . (5.26)

Spingarn in [32] had something similar for traditional convex programming. We extended that
in [24] to convex programming with general constraint cones — no elicitation. Schemes that attach
proximal terms to the primal variables in an augmented Lagrangian, as in (5.25), are known as proximal
methods of multipliers and go back to [23].

The extended decomposition procedure featured here will identify a local minimum of the problem
in (5.10)–(5.11) according to the success obtainable in elicitation. In the globally convex case, where
the functions φj in (5.10) are convex, which corresponds to global elicitation of convexity at level e = 0,
there will be global convergence from any starting elements. Local elicitation will work for e high
enough under the associated version of the second-order variational sufficient condition as indicated
in Theorem 9 (with local minimization implemented as explained in Theorem 10). More effort will be
needed to fully understand the details of this in Lagrangian terms. Other recent advances on dealing
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with nonconvexity in decomposition are in the paper of Hong et al. [9], but nonconvex constraints
aren’t admitted there.

Many other problem formats besides (5.1) can be elaborated with perturbations into a format like
(5.10)–(5.11) to which the progressive decoupling algorithm can applied and augmented Lagrangians
will assist in its implementation. Here is another illustration. The problem

minimize
∑q

j=1

[
fj(xj) + gj(Fj(xj))

]
subject to (x1, . . . , xq) ∈ S, (5.27)

having structure as above except that now there are Hilbert spaces H ′
j with C1 mappings Fj : Hj → H ′

j

and convex functions gj : Hj → (−∞,∞], can be elaborated to

minimize φ̃(x1, . . . , xq, u1, . . . , uq) =
∑q

j=1 φ̃j(xj , uj) on

S̃ = { (x1, . . . , xq, u1, . . . , uq) | (x1, . . . , xq) ∈ S, uj = 0, ∀j}
where φj(xj , uj) = fj(xj) + gj(Fj(xj) + uj).

(5.28)

The variables uj in this case give perturbations which lead to multipliers yj and the complement

S̃⊥ = { (v1, . . . , vq, y1, . . . , yq) | (v1, . . . , vq) ∈ S⊥, free yj ∈ IRmj , ∀j }. (5.29)

This time the first-order condition, in terms of elements of S̃ and S̃⊥, is

(v̄1, . . . , v̄q, ȳ1, . . . , ȳq) ∈ ∂φ̃(x̄1, . . . , x̄q, ū1, . . . , ūq), or (v̄j , ȳj) ∈ ∂̃φj(x̄j , ūj) for each j, (5.30)

which calculus rules can clarify by

(v̄j , ȳj) ∈ ∂̃φj(x̄j , ūj) ⇐⇒ v̄j −∇Fj(x̄j)
∗ȳj ∈ ∂fj(x̄j), ȳj ∈ ∂gj(Fj(x̄j) + ūj) (5.31)

and confirm that the subgradient of φ̃ in (5.30) is regular if the subgradients of fj in (5.31) are
regular. On applying the algorithm with steps (4.6) and updates (4.3) in this setting, a decomposition
procedure emerges in a manner very similar to the one above, including a consolidation into augmented
Lagrangian steps.
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