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Abstract

It is well known that the subgradient mapping associated with a lower semicontinuous function
is maximal monotone if and only if the function is convex, but what characterization can be
given for the case in which a subgradient mapping is only maximal monotone locally instead of
globally? That question is answered here in terms of a condition more subtle than local convexity.
Applications are made to the tilt stability of a local minimum and to the local execution of the
proximal point algorithm in optimization.
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1 Introduction

For a lower semicontinuous (lsc) function f : IRn → (−∞,∞], f 6≡ ∞, a regular (or “Fréchet”)
subgradient at a point x ∈ dom f in the terminology of the book [16] is a vector v such that

f(x′) ≥ f(x) + v·(x′ − x) + o(|x′ − x|), notation: v ∈ ∂̂f(x), (1.1)

while a general (or “limiting”) subgradient at x is a vector v for which

∃vν ∈ ∂̂f(xν) such that vν → v, xν → x, f(xν)→ f(x), notation: v ∈ ∂f(x). (1.2)

The set-valued subgradient mapping ∂f : x→ ∂f(x) is the vehicle for many properties of importance
in variational analysis. One of those properties is monotonicity in the sense of Minty, according to
which a set-valued mapping T : IRn →→ IRn is monotone if

(v′ − v)·(x′ − x) ≥ 0 for all (x, v), (x′, v′) ∈ gphT, (1.3)

and maximally monotone if, in addition,

6 ∃ monotone T ′ : IRn →→ IRn with gphT ′ ⊃ gphT but gphT ′ 6= gphT. (1.4)

For the case of T = ∂f , it was observed very early by Moreau [9] that maximal monotonicity holds
when f is convex. Much later, Poliquin [11] established the converse in terms of subgradients beyond
convex analysis, namely that maximal monotonicity of ∂f requires the convexity of f . In terms
of subgradients, of course, this is characterized by ∂f coinciding with ∂̂f and being given by the
subgradient inequality of convex analysis, which is (1.1) without the o(|x′ − x|) term.

All this carries over also to strong monotonicity with modulus σ > 0 is defined as in (1.3) but with
the condition (v′ − v)·(x′ − x) ≥ 0 being strengthened to (v′ − v)·(x′ − x) ≥ σ||x′ − x||2. Maximal
strong monotonicity again refers to the graphical condition in (1.4) with strong monotonicity replacing
monotonicity. This is equivalent to T−µI being monotone or maximal monotone. Strong monotonicity
of ∂f with modulus σ corresponds to strong convexity of f with the same modulus, cf. [16, page 565],
which is equivalent to f(x) − σ

2 ||x||
2 being convex, or the subgradients v ∈ ∂f(x) satisfying the

strengthened inequality

f(x′) ≥ f(x) + v·(x′ − x) +
σ

2
||x′ − x||2. (1.5)

However, monotonicity can also be articulated just locally for a mapping T around a pair (x̄, v̄)
in gphT , namely with respect to the existence of a neighborhood of (x̄, v̄) such that (1.3) holds when
the pairs (x, v), (x′, v′) are restricted to that neighborhood, and likewise with maximality. This idea
was pursued by Pennanen [10] in extensions of the proximal point algorithm of [14]. Local strong
monotonicity of T can be defined similarly with (v′ − v)·(x′ − x) ≥ σ||x′ − x||2.

What are the consequences of such local monotonicity in the case of a subgradient mapping T = ∂f?
Up to now they haven’t been pinned down, and that’s the challenge we intend to make progress on
here. The issue is of basic theoretical interest in variational analysis but also comes up in trying to
understand the extent to which Pennanen’s localized extensions of the proximal point algorithm can
be executed by minimization steps when applied to T = ∂f .

Local convexity in the sense of f being convex relative to some neighborhood X of x̄ would of
course imply the maximal monotonicity of ∂f with respect to X × IRn, but such local convexity can’t
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be the characterization of local maximal monotonicity of ∂f in general. This is clear from simple
one-dimensional examples like

f(x) = max{1− ex, 1− e−x}, ∂f(x) =


{−ex} when x < 0,
[−1, 1] when x = 0,
{e−x} when x > 0.

(1.6)

which is concave on (−∞, 0) and on (0,∞) but has 0 ∈ ∂f(0) and a neighborhood of (0, 0) where
gph ∂f is reduced to a vertical segment. That segment exhibits maximal strong monotonicity for
arbitrarily high σ.

We have been speaking in simple terms about taking T = ∂f and then localizing by intersecting
gphT with a neighborhood of one of its elements (x̄, v̄), but we really need to proceed more delicately
in dealing with subgradients because of the role of function values in the definition of ∂f(x) in (1.2).
This is illustrated by another elementary one-dimensional example:

f(x) = 0 when x = 0 but f(x) = 1 when x 6= 0, for which
gph ∂f is the union of the horizontal and vertical axes of IR2,

(1.7)

and in particular 0 ∈ ∂f(0). Even though f has its global mininum attained uniquely at 0, there’s no
local monotonicity of ∂f around (0, 0). However, this trouble is artificial in a picture of minimization.
For that, we shouldn’t be taking all of gph ∂f into account in localizing arount (0, 0) but only the
portion where f(x) < f(0) + ε for some ε > 0. With this restriction the set of pairs (x, v) reduces
to just the vertical axis of IR2, which is the graph of a globally maximal monotone mapping. These
considerations suggest the following definition.

Definition 1 (f -local monotonicity of a subgradient mapping). For lsc f : IRn → (−∞,∞] the
mapping ∂f : IRn →→ IRn will be called f -locally monotone around (x̄, v̄) if there is a neighborhood
X × V of (x̄, v̄) such that

[Xε × V ] ∩ gph ∂f is monotone in X × V (1.8)

for some ε > 0, where
Xε = {x ∈ X | f(x) < f(x̄) + ε}. (1.9)

The same pattern defines f -local maximal monotonicity, f -local strong monotonicity, and f -local
maximal strong monotonicity.

The distinction between asserting monotonicity in X×V instead of just in Xε×V comes out only
when maximality is demanded, of course. Maximality with respect to X ×V opens up more potential
conflicts than with respect to Xε×V . Anyway, the latter might not even be a neighborhood of (x̄, v̄),
as seen in example (1.7), where Xε×V for small ε would be contained in the vertical axis of IR2. The
distinction falls away, obviously, if f is subdifferentially continuous at x̄ in the sense that

(xν , vν) ∈ gph ∂f, (xν , vν)→ (x̄, v̄) =⇒ f(xν)→ f(x̄). (1.10)

That property, introduced in [12], has appeared widely in circumstances of second-order variational
analysis, but we wish to avoid imposing it here.

The concept we feature in our effort to capture the impact of f -local monotonicity of subgradient
mappings is the following, where the notation in (1.9) for an f -truncated neighborhood of x̄ will again
be used — and subsequently many times as well.
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Definition 2 (variational convexity). The lsc function f will be called variationally convex at x̄ for
v̄ ∈ ∂f(x̄) if for some open convex neighborhood X × V of (x̄, v̄) there is a convex lsc function f̂ ≤ f
on X such that, for some ε > 0,

[Xε × V ] ∩ gph ∂f = [X × V ] ∩ gph ∂f̂ and f(x) = f̂(x) at the common elements (x, v). (1.11)

It will be called variationally strongly convex at x̄ for v̄ with modulus σ > 0 if this holds with f̂
strongly convex on X with that modulus.

Variational convexity is new in its general form, but the strong version was utilized, without a
name, in [13] together with the subdifferential continuity in (1.10) (which obviated putting Xε in
place of X). More will be said about that later in this introduction.

Observe that variational convexity reduces to local convexity over X when V = IRn, but not
necessarily otherwise. In example (1.6), for instance, condition (1.11) holds at x̄ = 0 for v̄ = 0 with
f̂(x) = λ|x| and any λ ∈ (0, 1), the neighborhoods X and V being intervals adjusted for the size of λ.
The same thing works also in example (1.7).

The following theorems present our main results about local monotonicity of subgradient mappings.
The proofs will presented in Section 2. In these results we are obliged to assume, for a technical reason
having to do with the argument to be given, that v̄ ∈ ∂̂f(x̄) instead of just v̄ ∈ ∂f(x̄). However, we
have no counterexample showing why the results might not apply to the more general situation.

Certainly there’s no difference between v̄ ∈ ∂f(x̄) and v̄ ∈ ∂̂f(x̄) if ∂f(x̄) = ∂̂f(x̄), which is very
common in applications and holds in particular when f is subdifferentially regular at x̄ [16, 7.26].
Subdifferential regularity can conveniently be confirmed by various rules of subgradient calculus in
[16] in the presence of constraint qualifications applicable to the specific structure of f .

Theorem 1 (characterization of f -local monotonicity). The following are equivalent for the lsc func-
tion f when v̄ ∈ ∂̂f(x̄):

(a) ∂f is monotone f -locally around (x̄, v̄),
(a′) ∂f is maximal monotone f -locally around (x̄, v̄),
(b) f is variationally convex at x̄ for v̄,
(c) there is a convex neighborhood X × V of (x̄, v̄) along with ε > 0 such that

(x, v) ∈ [Xε × V ] ∩ gph ∂f =⇒ f(x′) ≥ f(x) + v·(x′ − x) for all x′ ∈ X. (1.12)

Theorem 2 (characterization of f -local strong monotonicity). The following are equivalent for the
lsc function f when v̄ ∈ ∂̂f(x̄):

(a) ∂f is strongly monotone f -locally around (x̄, v̄) with modulus σ > 0,
(a′) ∂f is maximal strongly monotone f -locally around (x̄, v̄) with modulus σ > 0,
(b) f is variationally strongly convex at x̄ for v̄ with modulus σ > 0,
(c) there is a convex neighborhood X × V of (x̄, v̄) along with ε > 0 such that

(x, v) ∈ [Xε × V ] ∩ gph ∂f =⇒ f(x′) ≥ f(x) + v·(x′ − x) +
σ

2
||x′ − x||2 for all x′ ∈ X. (1.13)

These results in the case of v̄ = 0 reveal a deep connection between f having a local minimum at
x̄ and a number of other valuable properties. Having 0 ∈ ∂f(x̄) is a first-order necessary condition for
such a local minimum, but the generally stronger property of having 0 ∈ ∂̂f(x̄) is actually necessary as
well. These coincide when f is convex and then are sufficient for global optimality. In the absence of
global convexity, which can be seen as a global second-order property, some kind of local second-order
property of f can be contemplated as furnishing, in tandem with 0 ∈ ∂f(x̄) or 0 ∈ ∂̂f(x̄), a sufficient
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condition for f to have a local minimum at x̄. In fact variational convexity of f at x̄ for v̄ = 0 is just
such a condition. It identifies the first-order necessary conditions on f with 0 ∈ ∂f̂(x̄) for a convex
function f̂ ≤ f on X that agrees with f at x̄, thus entailing a global minimum of f̂ at x̄ which ensures
a local minimum of f at x̄.

An interesting aspect is that this approach to a second-order sufficient condition for local optimality
doesn’t demand an appeal to the theory of generalized second-derivatives of nonsmooth functions, such
as has been laid out in [16, Chapter 13]. Instead it promotes, through equivalence also with (a) of
Theorem 1 under the necessary condition 0 ∈ ∂̂f(x̄), the analogy that local monotonicity of ∂f around
(x̄, 0) is the natural replacement for the global monotonicity of ∂f in assuring local optimality.

The implications of Theorem 1(c) when v̄ = 0 extend to more than just having a local minimum
at x̄. They also concern pairs (x, v) ∈ gph ∂f near to (x̄, 0) with f(x) < f(x̄) + ε, saying that

f(x′)− v·x′ ≥ f(x)− v·x for x′ ∈ X. (1.14)

This relation can also be expressed as

x ∈ argmin
x′∈X

{ f(x′)− v·(x′ − x̄)} (1.15)

in which the subtraction from f of the affine term (which is set up to vanish at x̄) is a so-called tilt
perturbation of f with respect to it having a local minimum at x̄. From the equivalence of conditions
(c) and (b) in Theorem 1 it’s evident that this kind of perturbed local minimization of f coincides
with the same thing for the convex function f̂ :

argmin
x′∈X

{ f(x′)− v·(x′ − x̄)} = argmin
x′∈X

{ f̂(x′)− v·(x′ − x̄)} (1.16)

for v in the range of the truncated mapping that has [Xε × V ] ∩ gph ∂f as its graph. The argmin is
therefore a convex set (under the convexity of X) and behaves in the manner of convex minimization,
indeed, through Theorem 1(a′), with the dependence of the argmin on v being maximal monotone.2

Tilt perturbations of a local minimum of f at x̄ are even more important in appreciating the
content of Theorem 2, which touches on the following concept, already much studied.

Definition 3 (tilt stability) [13]. The lsc function f has a tilt-stable local minimum at x̄ if there are
neighborhoods X of x̄ and V of v̄ = 0 such that the mapping M defined by

M(v) = argmin
x′∈X

{ f(x′)− v·(x′ − x̄)} for v ∈ V (1.17)

is single-valued and Lipschitz continuous with M(0) = x̄.

Theorem 3 (criteria for tilt stability). The properties in Theorem 2 guarantee, in the case of v̄ = 0,
that f has a tilt-stable local minimum at x̄ with σ−1 as the Lipschitz modulus for the mapping M ,
which is locally maximal monotone as well.

In summary, just as variational convexity at x̄ for v̄ = 0 constitutes what we can call the variational
second-order sufficient condition for a local minimum of f at x̄, associated with the properties in
Theorem 1, variational strong convexity at x̄ for v̄ = 0 furnishes the corresponding variational strong
second-order sufficient condition associated with the properties in Theorems 2 and 3.

2In fact it is maximal cyclically monotone, since such monotonicity characterises the subgradient mappings of lsc
convex functions [16, 12.25].
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Theorem 3 doesn’t claim that tilt stability is actually equivalent to the properties in Theorem 2,
but just that it is implied by them. The original results about tilt stability in [13] identified it with
properties (a′) and (b) of Theorem 2, but they required f not only to be subdifferentially continuous,
but also to be prox-regular at x̄ for v̄ = 0. Prox-regularity, introduced in [12], is equivalent to local
hypomonotonicity , namely a property defined like strong maximal monotonicity but with σ < 0 instead
of > 0; it is thus weaker than local maximal monotonicity of ∂f and thus is entailed by the conditions
in Theorem 1. See [16, 13F] for a discussion of both subdifferential continuity and prox-regularity,
which later proved important also in going beyond tilt stability to full stability, where tilt perturbations
are augmented by perturbations built into f through the introduction of other parameters [5, 6, 7].

Connections between tilt stability and the quadratic growth condition in Theorem 2(c) have also
attracted much interest, as in seen in [2, 3, 8], although not with the generality of our function
f . The central theme of such work, some of it infinite-dimensional or avoiding the assumption of
subdifferential continuity, was determining whether a localization of gph ∂f had, as its inverse, a
single-valued Lipschitz continuous mapping — a property called strong metric regularity.

That topic has more recently been addressed also in the 2017 book of Ioffe [4, Section 9.4.3] in
terms of a condition resembling (c) of Theorem 2, but with a key difference. He refers to x̄ as a stable
strong local minimizer of f if (in our notation) there exist neighborhoods X of x̄ and V of v̄ = 0 along
with σ > 0 such that

∀v ∈ V, ∃xv ∈ X such that f(x′) ≥ f(x) + v·(x′ − xv) +
σ

2
||x′ − xv||2 for all x′ ∈ X. (1.18)

Without assuming any more than the lower semicontinuity of f , he shows that this property is equiva-
lent to the tilt stability of f at x̄. Although (1.18) entails having v ∈ ∂f(x), there is no way of knowing
from it whether every pair (x, v) ∈ [Xε × V ] ∩ ∂f is of the form (xv, v). Thus, (1.18) may be weaker
in general than (c) of Theorem 2. Ioffe’s equivalence therefore doesn’t allow us to conclude that tilt
stability is actually equivalent to the properties in Theorem 2, even though that has been known to
be true since [13] under the additional assumption of subdifferential continuity plus prox-regularity.

Also inadequately understood at present, and for that reason absent from this paper, are equiva-
lences with conditions on the second-order subdifferential ∂2f(x̄), which were in [13] and have since
been utilized in other work on stability.

Anyway, none of this previous research has focused on characterizing local monotonicity or local
strong monotonicity of ∂f at the present level of generality, although we wish our assumption that
v̄ ∈ ∂̂f(x̄) might be weakened to v̄ ∈ ∂f(x̄). Nor has anyone up to now related such monotonicity to
the local implementation of the proximal point algorithm, which we will undertake in Section 3.

2 The proofs of Theorems 1, 2 and 3.

Let’s start by confirming Theorem 3 on the basis of Theorem 2. Condition (c) of Theorem 2 implies
the weaker condition (c) of Theorem 1, which we have seen to mean (1.14) holding for (x, v) ∈ gph ∂f
in the neighborhood X × V of (x̄, v̄), which we can take to be open, when f(x) < f(x̄) + ε. In the
notation of (1.16), this says that (x, v) ∈ [Xε × V ] ∩ gph ∂f implies x ∈ M(v). On the other hand,
with X open it’s clear that x ∈M(v) implies v ∈ ∂f(x). Furthermore, because x′ = x̄ is a candidate
in the minimization in (1.17), x = M(v) entails f(x) − v·(x − x̄) ≤ f(x̄) and consequently through
the convergence of M(v) to x̄ as v → 0 that f(x) < f(x̄) + ε for v near enough to 0. Hence, with a
possible adjustment to a smaller open neighborhood V if necessary, we have

(x, v) ∈ [Xε × V ] ∩ gph ∂f ⇐⇒ (v, x) ∈ [V ×Xε] ∩ gphM,
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so that these two localizations are the inverses of each other. In (a) of Theorem 2, the truncated
mapping with its graph on the left is maximal strongly monotone with modulus σ > 0. That is known
to mean that its inverse is a monotone mapping that is Lipschitz continuous with modulus σ−1.

Next we portray Theorem 2 as hardly more than a corollary of Theorem 1. We simply need to
apply Theorem 1 to the function

fσ(x) = f(x)− σ

2
||x− x̄||2 with ∂fσ(x) = ∂f(x)− σ(x− x̄), fσ(x̄) = f(x̄), ∂fσ(x̄) = ∂f(x̄).

Conditions (b) and (c) of Theorem 2 for f can be identified in this way with conditions (b) and (c)
for fσ. The same holds for conditions (a) and (a′) of the two theorems through the following fact, as
invoked for the mapping T with gphT = gph ∂f − (x̄, v̄), which has (0, 0) in its graph: T is σ-strongly
monotone in the neighborhood W of (0, 0) if and only if Tσ = T −σI is monotone in the neighborhood
L(W ) of (0, 0), where L is the linear transformation that takes (x, v) to (x, v − σx). This linear
transformation changes the graph of T into the graph of Tσ and, because it’s invertible, converts a
neighborhood of (0, 0) into another neighborhood of (0, 0). The strong monotonicity inequality for
pairs in the graph of T thereby turns into the monotonicity inequality for pairs in the graph of Tσ, as
is well known already from global analysis of strong monotonicity.

Turning now to the proof of Theorem 1, we suppose first that (c) holds and aim at getting (b).
Define f̂ by

f̂(x′) = sup { f(x) + v·(x′ − x) | (x, v) ∈ [Xε × V ] ∩ gph ∂f}.

As the supremum of a collection of affine functions of x′, f̂ is lsc convex. On the basis of (c) it’s
clear also that f̂ ≤ f on X and that having (x, v) ∈ [Xε × V ] ∩ gph ∂f is equivalent to having
(x, v) ∈ [X×V ]∩gph ∂f̂ and f̂(x) = f(x). To reach (b), we only have to demonstrate the impossiblity
of having (x, v) ∈ [X×V ]∩gph ∂f but f̂(x) < f(x), at least when (x, v) is near enough to (x̄, v̄), because
the definition of variational convexity will then be satisfied, although perhaps for a neighborhood
X ′ × V ′ of (x̄, v̄) that’s smaller than X × V .

Let C be a compact convex neighborhood of x̄ within X and consider for x ∈ intC and (x, v) ∈
[X × V ] ∩ gph ∂f̂ the function hx,v defined by

hx,v(x
′) = f(x′)− f̂(x)− v·(x′ − x) +

1

2
||x′ − x||2 + δC(x′).

As the sum of the lsc function f + δC and a quadratic function which depends continuously on (x, v)
(through the fact that convexity of f̂ makes f̂(x) depend continuously on (x, v) ∈ gph ∂f̂ , cf. [16,
13.30]), the function hx,v depends epicontinuously on (x, v) as seen from the characterization of this
property in [16, 7.2]. That will have crucial impact shortly in understanding how the nonempty set
argminhx,v ⊂ C behaves with respect to (x, v).

From the inequalities f(x′) ≥ f̂(x′) ≥ f̂(x) + v·(x′ − x) we have hx,v(x
′) > 0 unless x′ = x and

f(x) = f̂(x). Thus,

argminhx,v = {x} and minhx,v = 0 when (x, v) ∈ [Xε × V ] ∩ gph ∂f.

This applies in particular to (x, v) = (x̄, v̄), and the epicontinuous dependence of hx,v on (x, v) therefore
yields by [16, 7.33] that

argminhx,v → {x̄} and minhx,v → 0 as (x, v)→ (x̄, v̄) in gph ∂f̂ .
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Hence by taking (x, v) close enough to (x̄, v̄) we can guarantee that an element x̃ ∈ argminhx,v is
arbitrarily close to x̄ (and within intC) and that hx,v(x̃) is arbitrarily close to 0, which entails f(x̃)
being arbitrarily close to f(x̄) (ensuring x̃ ∈ Xε). Such x̃ in argminhx,v must also satisfy the necessary
condition 0 ∈ ∂hx,v(x̃) = ∂f(x̃)− v+ (x̃− x), so that ṽ ∈ ∂f(x̄) for ṽ = v− (x̃− x). Again, by taking
(x, v) close enough to (x̄, v̄) we can get ṽ arbitrarily close to v̄. In summary, for (x, v) in a neighborhood
of (x̄, v̄) that’s small enough, we will have (x̃, ṽ) ∈ [Xε×V ]∩ gph ∂f and consequently (x̃, ṽ) ∈ gph ∂f̂
and f̂(x̃) = f(x̃). We can finish up now by showing this can’t hold unless x̃ = x. Indeed, having both
(x, v) and (x̃, ṽ) belong to gph ∂f̂ entails through the convexity of f̂ that

0 ≤ (x̃− x)·(ṽ − v) = (x̃− x)·(v − (x̃− x)− v) = −||x̃− x||2,

which requires x̃ = x. This confirms that (c) implies (b).

Next we suppose in Theorem 1 that (b) holds and aim at getting (a′). This is easy. From the
definition of variational convexity we have a function f̂ that’s lsc convex, and its subgradient mapping
∂f̂ is therefore maximal monotone globally, the graphical agreement in (1.11) ensures that ∂f is
maximal monotone in the neighborhood X × V of (x̄, v̄), not just with respect to Xε × V . Trivially,
(a′) in turn implies (a).

Finally, we suppose in Theorem 1 that (a) holds and aim at getting (c). This is the seriously
difficult part for which diverse tools of variational analysis will have to be brought in.

Because all the analysis will be local, we can suppose without loss of generality that dom f is
bounded. In the notation that

IB and IB◦ are the closed and open unit balls in IRn,

we can furthermore assume, through rescaling if necessary, that

∂f is monotone with respect to (x, v) ∈ (x̄+ 3IB◦)× (v̄ + 3IB◦) with f(x) < f(x̄) + ε. (2.2)

A complicating feature of the situation we face is the need to determine a common set X over which
the minimization properties in (c) hold, instead of a separate set for each (x, v) in some neighborhood
of (x̄, v̄) in gph ∂f . Our tactic for that is to introduce with respect to the lsc functions

gx,v(u) = λ−1[f(x+ λu)− f(x)]− v·u for (x, v) ∈ gph ∂f in choosing
λ = min{1, ε/6}, so that ∂gx,v(u) = ∂f(x+ λu)− v and furthermore
f(x+ u) < f(x̄) + ε if gx,v(u) < λ, f(x) < f(x̄) + λ, ||u|| < 2, ||v|| < 2.

(2.3)

In particular these functions all have dom gx,v bounded and

gx,v(0) = 0 and 0 ∈ ∂gx,v(0). (2.4)

From (2.2) and (2.3) we are assured that

∂gx,v is monotone in { (u,w) ∈ 2IB◦ × 2IB◦ | gx,v(u) < λ}
as long as (x, v) ∈ (x̄, v̄) + [IB◦ × IB◦], f(x) < f(x̄) + λ,

(2.5)

and therefore

(x, v) is henceforth restricted to (x̄, v̄) + [IB◦ × IB◦], f(x) < f(x̄) + λ, (2.6)
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We will be occupied with understanding whether (2.6) ensures that gx,v has a local minimum at 0
and whether there is neighborhood in localization that is the same for all (x, v) near enough to (x̄, v̄)
with f(x) < f(x̄) + λ. For this it is be useful to consider the nonincreasing function

γx,v(r) = min
||u||≤r

gx,v(u) ≤ 0, with γx,v(0) = 0, (2.7)

which likewise is lsc because of the level boundedness of gx,v(u)+δrIB(u) with respect to (u, r). Clearly

gx,v has a local minimum at 0 ⇐⇒ γx,v(r) = 0 for some r > 0. (2.8)

Our goal of arriving at (c) will correspond through this to determining the existence of r0 > 0 such
that γx,v(r0) = 0 for all (x, v) near enough to (x̄, v̄) in gph ∂f with f(x) < f(x̄) + λ.

A direct approach to that could be to work with the optimization problem behind (2.7), viewed
as the minimization of gx,v(u) + δrIB(u) in u ∈ IRn with parameter r ≥ 0, as a means of getting a
formula for the subgradients of γx,v. However, there is a pitfall to that because the subgradients of
gx,v + δrIB might not be accessible without an appeal to some constraint qualification. That could lead
to a major restriction on f , which we wish to avoid.

For that reason, instead of working with δrIB(u) we’ll work an expression rθ(r−1||u||) in which θ is
a convex function on IR that is finite and differentiable on (−∞, 3):

θ(t) ≡ 0 on (−∞, 1], θ(t) ≡ ∞ on [3,∞),
θ′(t) = 2(t− 1) on [1, 2], then increases to ∞ on (2, 3),
so that θ(t) = (t− 1)2 on [1, 2], θ′(2) = 2, θ(2) = 1.

(2.9)

Define the lsc convex function h ≥ 0 on IRn × IR by

h(u, r) =


rθ(r−1||u||) for r > 0,
δ{0}(u) for r = 0,

∞ for r < 0,
(2.10)

observing that
domh = {(0, 0)} ∪ { (u, r) | ||u|| < 3r} (2.11)

and that h is differentiable on domh away from (0, 0) with

∇h(u, r) =

{
{(0, 0)} when ||u|| ≤ r, (u, r) 6= (0, 0),(
θ′(r−1||u||) u

||u|| , θ(r
−1||u||)− θ′(r−1||u||)(r−1||u||)

)
when r < ||u|| < 3r.

(2.12)

Consider now the function
bx,v(u, r) = gx,v(u) + h(u, r) (2.13)

and define
βx,v(r) = infu bx,v(u, r), Ux,v(r) = argminu bx,v(u, r), (2.14)

noting that the minimum is attained when r ≥ 0 because b(x, v) is lsc and level-bounded, due to
dom gx,v being bounded, and because u = 0 is always a candidate when r ≥ 0, and bx,v(0, r) = 0.
Indeed, the lower semicontinuity and level-boundedness further ensures that βx,v is lsc [16, 1.17] as
well as nonincreasing on IR, with βx,v(r) =∞ when r < 0 but βx,v(0) = 0. Moreover, since βx,v(r) ≤ 0
when r ≥ 0 we actually get in (2.14), through having bx,v(u, r) ≤ bx,v(u, r̄) when r ≥ r̄, that

βx,v(r) = infu { bx,v(u, r) | bx,y(u, r̄) ≤ 0} ≤ 0,
Ux,v(r) = argminu { bx,v(u, r) | bx,y(u, r̄) ≤ 0} ⊂ {u | gx,v(u) ≤ 0} when r ≥ r̄ ≥ 0. (2.15)
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This will be helpful shortly as a simplification. Another important fact is that

γx,v(r) ≥ βx,v(r) ≥ γx,v(3r) when r ≥ 0, (2.16)

as follows from (2.9). Hence being able to show that βx,v(r) ≡ 0 on an interval [0, 3ρ] for some ρ > 0
would lead to the conclusion that γx,v(r) ≡ 0 on [0, ρ] and thus that gx,v has a minimum at 0 relative
to ρIB. Therefore, instead of analyzing the subgradients of γx,v, as initially considered, we will work
at analyzing those of βx,v.

Properties coming from the definition of βx,v in (2.14) as the pointwise minimum over (0,∞) of the
function collection {bx,v(u, ·)}u∈IRn will provide crucial support. To better apply the results available
in such a situation, let’s exploit it in the form (2.15) and express it in maximization mode:

−βx,v(r) = max
(u,α)∈A(r̄)

{ − α− h(u, r)} for r ∈ (0, r̄],

where A(r̄) = { (u, α) |α ≥ gx,v(u), α+ h(u, r̄) ≤ 0}.
(2.17)

The advantage of the switch is that the set A(r̄) is compact and works uniformly for r ∈ (0, r̄].
Since r̄ can be arbitrarily close to 0, that tells us that −βx,v is a lower-C1 function on (0,∞) [16,
10.29]. In consequence, it has left and right derivatives at every r which satisfy the limit relations
familiar for convex functions [16, 10.31]. Specifically, in translating from −βx,v back to βx,v, there
exist nonincreasing left and right derivatives when r > 0,

(βx,v)
′
−(r) ≥ (βx,v)

′
+(r) such that


lim
s↗ r

(βx,v)
′
+(s) = lim

s↗ r
(βx,v)

′
−(s) = (βx,v)

′
−(r),

lim
s↘ r

(βx,v)
′
−(s) = lim

s↘ r
(βx,v)

′
+(s) = (βx,v)

′
+(r),

(2.18)

where having (βx,v)
′
−(r) = (βx,v)

′
+(r) corresponds to having βx,v differentiable at r with this common

value as the derivative β′x,v(r).
Moving on now to determining the elements of the subgradient set ∂βv,x(r), we have at our disposal

an important implication from the first line of (2.18), namely that

∂βx,v(r) =

{
{β′v,x(r)} if (βx,v)

′
−(r) = (βx,v)

′
+(r),

{ (βx,v)
′
−(r), (βx,v)

′
+(r)} if (βx,v)

′
−(r) > (βx,v)

′
+(r).

(2.19)

Let’s next apply to βx,v, as defined by parametric minimization in (2.15), the rule in [16, 10.13]
for subgradients in parametic optimization:

∂βx,v(r) ⊂ { s | ∃u ∈ Ux,v(r) with (0, s) ∈ ∂bx,v(u, r)}. (2.20)

Because h(u, r) is differentiable when r > 0, ||u|| < 3r, we know also that

∂bx,v(u, r) ⊂ (∂gx,v(u), 0) +∇h(u, r) when r > 0, ||u|| < 3r. (2.21)

Hence

∂βx,v(r) ⊂ { s | ∃u ∈ Ux,v(r) with (0, s) ∈ ∂gx,v(u) +∇h(u, r)} when r > 0, ||u|| < 3r, (2.22)

from which we see through (2.12) that

∂βx,v(r) ⊂
⋃

{0} if ∃u ∈ Ux,v(r) with ||u|| ≤ r,
{ θ(r−1||u||)− θ′(r−1||u||)(r−1||u||)} if ∃u ∈ Ux,v(r) with

r < ||u|| < 3r and also − θ′(r−1||u||) u
||u|| ∈ ∂gx,v(u).

(2.23)
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Lemma 1. As long as 0 < r < 1, the second case in (2.23) is impossible unless ||u|| ≥ 2r.

Proof. The second case first of all entails gx,v(u) ≤ 0 according to (2.15). When r < ||u|| < 2r with
0 < r < 1, we then have from (2.5) and (2.6) that the pair (u,−θ′(r−1||u||) u

||u||) ∈ gph ∂gx,v also has

||u|| < 2 and θ′(r−1||u||) < θ′(2) = 2. It thus lies in the range where ∂gx,v is monotone. Since (0, 0) is
also in this range, the monotonicty implies that

0 ≤
(
− θ′(r−1||u||) u

||u||
− 0

)
·(u− 0) = −θ′(r−1||u|||)|u||.

But θ′(r−1||u||) > 0 and ||u|| > 0, so this is contradictory.

Lemma 2. When ||u|| ≥ 2r, the second case of (2.23) has θ(r−1||u||)− θ′(r−1||u||)(r−1||u||) ≤ −3.

Proof. The convex function conjugate to θ on IR has θ∗(s) = st − θ(t) when s = θ′(t), so we
are looking at this for t = r−1||u||. We are claiming that θ∗(s) > 3 when t ∈ [2, 3), as corresponds
to s ∈ [2,∞) according to the formula for θ in (2.9). That formula indicates further that θ∗ is an
increasing function on (0,∞) with θ∗(s) = s+ 1

4s
2 on [0,2]. Hence the value of θ∗(s) for s ∈ [2,∞) is

bounded below by θ∗(2), which is 3.

The combination of Lemma 1 and Lemma 2 reveals that the possibilities for ∂βx,v(r) that are
compatible with (2.23) are extremely limited when 0 < r < 1.

Lemma 3. There must exist rx,y ∈ [0, 1] such that βx,v(r) = 0 when 0 ≤ r < rx,v but βx,v(r) ≤
3(r − rx,v) when rx,v ≤ r < 1, in which case

γx,v(r) = 0 when 0 ≤ r < rx,v but γx,v(r) ≤ r − rx,v when rx,v ≤ r < 1. (2.24)

Moreover rx,v = 0 is impossible in the case of a regular subgradient, v ∈ ∂̂f(x).

Proof. Lemma 1 and Lemma 2 have determined that ∂βx,v(r) can only contain 0 or values ≤ −3
when r ∈ (0, 1). The description of ∂βx,v(r) in (2.19) and the limit relations in (2.18) make clear that
βx,v must be continuously differentiable on (0, 1) except perhaps at one point rx,v where β′x,v(r) = 0
to the left and β′x,v(r) < −3 to the right. Otherwise β′x,v(r) = 0 for all r ∈ (0, 1) or β′x,v(r) < −3
for all r ∈ (0, 1). This supports the claim about the structure of βx,v on [0, 1), and then (2.24)

follows from (2.16). For the second part, if v ∈ ∂̂f(x) we have 0 ∈ ∂̂gx,v(0) from (2.3) and therefore
gx,v(u) ≥ gx,v(0) + o(||u||) by the definition of a regular subgradient in (1.1), where gx,v(0) = 0. Then
likewise γx,v(r) ≥ o(r) by (2.7). This precludes (2.24) from holding with rx,y = 0.

Lemma 3 provides important information about whether gx,v has a local minimum at 0:

gx,v(u) ≥ gx,v(0) = 0 when ||u|| < rx,v, (2.25)

which translates through (2.3) to

x ∈ argmin
{
f(x′)− v·(x′ − x)

∣∣∣ ||x′ − x̄|| < λrx,v
}
. (2.26)

This comes close to our goal of getting condition (c) of Theorem 1, but for that we’ll need to know
more about the behaviour of the threshold rx,v with respect to (x, v).
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Lemma 4. If (xν , vν)→ (x̄, v̄) and f(xν)→ f(x̄) within the confines of (2.6), then rxν ,vν → rx̄,v̄.

Proof. The argument will rely on properties of epiconvergence explained in [16, Chapter 7]. Consider
a sequence of pairs (xν , vν) → (x̄, v̄) in the set (2.6) with f(xν) → f(x̄). We’ll show first that this
implies for the functions bx,v in (2.14), expressible directly in terms of f itself by

bx,v(u, r) = λ−1f(x+ λu)− f(x)]− v·u+ h(u, r), (2.27)

that bxν ,vν epiconverges to bx̄,v̄. A characterization of this in [16, 7.3] is that for all (u, r),

∀ (uν , rν)→ (u, r), lim infν bxν ,vν (uν , rν) ≥ bx̄,v̄(u, r),
∃ (uν , rν)→ (u, r), lim supν bxν ,vν (uν , rν) ≤ bx̄,v̄(u, r).

(2.28)

The first condition in (2.28) is evident from (2.27) and the lower semicontinuity of f and h. The
second in the case of r > 0 holds through the continuity of h when r > 0 by taking rν = r and
uν = u+ x̄− xν . The only other case neeeding to be considered for the second condition in (2.28) is
that of (u, r) = (0, 0), for which one can simply take (uν , rν) = (0, 0) as well.

This epiconvergence of bxν ,vν to bx̄,v̄ implies the epiconvergence of βxν ,vν to βx̄,v̄, because epiβx,v
is the image of epi bx,v under (x, v, u, r, α)→ (x, v, r, α). That follows from [16, 4.27 via 4.24].

Next we appeal to the local Lipschitz continuity of βx,v on (0,∞), which is a consequence of our
having ascertained that −βx,v is lower C1, causes the epiconvergence of βxν ,vν to βx̄,v̄ to entail not only
pointwise but also uniform convergence of βxν ,vν to βx̄,v̄ on all closed, bounded subintervals of (0,∞).
That in turn guarantees for the compact sets

Cδ,ρ(x, v) = { (r, µ) | r ∈ [δ, ρ], µ̄ ≤ µ ≤ βx,v(r)} for [δ, ρ] ⊂ (0, 1), (2.29)

where µ̄ is a lower bound to βx,v on [0,1] for (x, v) satisfying (2.6), that Cδ,ρ(x
ν , vν)→ Cδ,ρ(x̄, v̄). with

respect to set convergence [16, Chapter 4]. Then too, for any continuous function ϕ on IR2,

lim sup
ν→∞

argmax {ϕ(r, µ) | (r, µ) ∈ Cδ,ρ(xν , vν)} ⊂ argmax {ϕ(r, µ) | (r, µ) ∈ Cδ,ρ(x̄, v̄)} (2.30)

by [16, 7.33]. In specializing this to ϕ(r, µ) = r + µ we get from the very particular structure of βx,v
in Lemma 3 that

argmax { r + µ | (r, µ) ∈ Cδ,ρ(x̄, v̄)} = argmax
δ≤r≤ρ

{ r + βx,v(r)} = mδ,ρ(x, v),

where

mδ,ρ(x, v) =


βx,v(δ) if rx,v < δ,
rx.v if δ ≤ rx,v ≤ ρ,
1 if rx,v > ρ.

(2.31)

Therefore, from (2.30),
lim
v→∞

mδ,ρ(x
ν , vν) = mδ,ρ(x̄, v̄). (2.32)

There’s no loss of generality in taking δ < rx̄,v̄, inasmuch as rx̄,v̄ > 0 by Lemma 3 under our assumption

that v̄ ∈ ∂̂f(x̄), in which case mδ,ρ(x̄, v̄) = 0 by (2.31). Then, through the uniform convergence of
βxν ,vν to βx̄,v̄ on [δ, ρ], the combination of (2.32) and definition (2.31) tells us that rxν ,vν → rx̄,v̄ if
rx̄, v̄ ≤ ρ. Since ρ can be arbitrarily near to 1, this confirms the claim of the lemma.
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This brings us nearly to our goal of getting part (c) of Theorem 1 out of part (a). From Lemma 4
and the fact that rx̄,v̄ > 0 by Lemma 3 and the regularity of v̄ as a subgradient of f at x̄, there must
exist r̄ > 0 along with ε̄ > 0, which can be taken ≤ the λ in (2.6), such that

rx,v ≥ r̄ when (x, v) ∈ (x̄, v̄) + 2ε̄[IB◦ × IB◦] and f(x) ≤ f(x̄) + ε̄. (2.33)

Then by taking X̄ × V̄ = (x̄, v̄) + ε̄[IB◦ × IB◦] we get from (X̄ε̄, V̄ ) an f -localization of ∂f for which
the desired property in (c) holds. This ends the proof of Theorem 1.

3 Application to the proximal point algorithm

The proximal point algorithm in its original development in [14] was aimed at solving the following
problem for a maximal monotone mapping T : IRn →→ IRn:

determine x̄ such that 0 ∈ T (x̄), or equivalently, x̄ ∈ T−1(0). (3.1)

It did this through iterations of the form

xk+1 = (I + ckT )−1(xk) with ck > 0, (3.2)

or some appoximation thereof. These were based on the fact that maximal monotonicity of T makes
the mapping (I + ckT )−1 be single-valued and nonexpansive (Lipschitz continuous with modulus 1)
from IRn into IRn, moreover with the (convex) set of solutions to (3.1) as its set of fixed points. That
was relaxed by Eckstein and Bertsekas in [1] to iterations of the form

xk+1 = [(1− λk)I + λk(I + ckT )−1](xk) with λk ∈ (0, 2), (3.3)

in which (3.2) fits as the case where λk = 1.
When T = ∂f for a proper lsc function f : IRn → (−∞,∞], the maximal monotonicity of T

corresponds to the convexity of f , as already recalled at the start of this paper. The iterations in (3.2)
or (3.3) can be executed then through observing that

(I + ck∂f)−1(xk) = {x | 0 ∈ ∂fk(x)} where fk(x) = f(x) +
1

2ck
||x− xk||2. (3.4)

When f is convex, this is the same as

(I + ck∂f)−1(xk) = argmin
x∈IRn

{
f(x) +

1

2ck
||x− xk||2

}
, (3.5)

where the quadratic term ensures that a strongly convex function is being minimized and therefore
that the global minimum is attained at a unique point.

Our concern here is the possible extension of such facts to local monotonicity and local minimiza-
tion. Pennanen in [10] showed that the same properties of convergence of the proximal point algorithm
hold locally for either (3.2) or (3.3), as long as the iterations are initiated near enough to a solution
and the graph of T is maximally monotone locally around there. Specifically, in our notation, his
result [10, Proposition 6] postulates that3

∃ open X × V with 0 ∈ V and X ∩ T−1(0) closed 6= ∅
such that also [X ∩ T−1(0)] + δIB ⊂ X for some δ > 0,
and furthermore T is maximal monotone in X × V .

(3.6)

3In a more recent article than here we have shown that this condition can be weakened; see [15, Theorem 2].

13



Then, supposing inf ck > 0, inf λk ≥ 1 and supλk < 2, if x0 is near enough to X ∩ T−1(0), there will
exist ε > 0 and a particular solution x̄ ∈ X ∩ T−1(0) such that in each iteration there is a unique

xk+1 ∈ [x̄+ εIB] ∩ [(1− λk)I + λk(I + ckT )−1](xk), (3.7)

and the sequence so generated will converge to x̄ in the manner expected from the theory for globally
maximal monotone T .

Here we’re not focused on the details of that convergence but on how the execution step in (3.7)
specializes when T = ∂f . The difficulty is that local maximal monotonicity in X × V , in contrast
to global maximal monotonicity of ∂f , doesn’t ensure convexity of f even locally. This is where our
results in Theorems 1 and 2 can supply insights.

For general f , the implementation of (3.7) might be carried out by the rule in (3.4), of course, but
what would that mean in practice? The presence of λk makes the coordination with the neighborhood
x̄ + εIB murky, so in what follows we’ll restrict attention to λk = 1. Then the iteration step reduces
to taking

xk+1 ∈ [x̄+ εIB] ∩ {x | 0 ∈ ∂fk(x)} where fk(x) = f(x) +
1

2ck
||x− xk||2. (3.8)

This can be interpreted as determining xk as a sort of “stationary point” of fk that’s ε-near to x̄.
Many so-called optimization algorithms are really oriented around finding a solution for first-order
optimality conditions and thus fit into such a picture. But with our new knowledge about variational
convexity, we can get more.

Theorem 4 (proximal point iterations as local minimization). Let the variational second-order suf-
ficient condition for local optimality hold at x̄, i.e., f is variationally convex at x̄ for 0 ∈ ∂f(x̄), and
suppose 0 ∈ ∂̂f(x̄). Then Pennanen’s assumptions (3.6) lead, when xk is near enough to x̄, to this
step taking the form

xk+1 = argmin
x∈x̄+εIB

{
f(x) +

1

2ck
||x− xk||2

}
, (3.9)

with the minimizer being uniquely determined in the interior of the ball x̄+ εIB. Convergence to x̄ is
then moreover convergence to a local minimizer of f instead of just to a stationary point. Under the
strong variational second-order sufficient condition, providing strong variational convexity, x̄ is sure
even to be a tilt-stable local minimizer.

Proof. This is obvious from Theorems 1, 2 and 3.

Of course like most algorithmic prescriptions that only kick in when “close enough” to a solu-
tion, the big question is how to get close enough. In Pennanen’s local version of the proximal point
algorithm, the mystery is how to carry out the local minimization in (3.9) without already having
identified x̄. Presumably, the answer is to invoke a minimization scheme with respect to the successive
functions fk(x) = f(x) + 1

2ck
||x− xk||2 which may at first only produce xk+1 a local stationary point,

but eventually, with luck, will approach a local minimizer and then be attracted to it.
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