
MINIMIZING BUFFERED PROBABILITY OF

EXCEEDANCE BY PROGRESSIVE HEDGING

R. Tyrrell Rockafellar1 Stan Uryasev 2

Abstract

Stochastic programming problems have for a long time been posed in terms of minimizing the
expected value of a random variable influenced by decision variables, but alternative objectives can
also be considered, such as minimizing a measure of risk. Here something different is introduced:
minimizing the buffered probability of exceedance for a specified loss threshold. The buffered
version of the traditional concept of probability of exceedance has recently been developed with
many attractive properties that are conducive to successful optimization, in contrast to the usual
concept, which is often posed simply as the probability of failure. The main contribution here is to
demonstrate that in minimizing buffered probability of exceedance the underlying convexities in a
stochastic programming problem can be maintained and the progressive hedging algorithm can be
employed to compute a solution.

Keywords: convex stochastic programming problems, probability of failure, probability
of exceedance, buffered probability of failure, buffered probability of exceedance, quantiles,
superquantiles, conditional value-at-risk, progressive hedging algorithm.

Version of 29 November 2019

1University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350;
E-mail: rtr@uw.edu, URL: http://sites.math.washington.edu/~rtr/mypage.html

2University of Florida, Department of Systems and Industrial Engineering, Gainesville, FL 32611;
E-mail: uryasev@ufl.edu, URL: http://www.ise.ufl.edu/uryasev

1

http://sites.math.washington.edu/~rtr/mypage.html
http://www.ise.ufl.edu/uryasev

1 Introduction

Since its inception in the 1970s, most of the work and applications in stochastic programming, whether
one-stage, two-stage or multistage, have centered on the minimization of an expected cost of some
type. In recent years the alternative of minimizing a measure of risk has aroused interest, but there is
another idea to explore as well. Many practical problems in stochastic modeling center on “probability
of failure” because of stipulations in contracts or regulations. Failure can be modeled in terms of some
random variable X representing “hazard”, “loss” or “cost” by tying it to the instances of X coming
out > 0. The probability of failure is then the probability of such an instance, which is 1− FX(0) for
the cumulative distribution function FX of X. Could the minimizing of probability of failure be an
attractive goal in some situations? A difficulty is its often poor mathematical behavior as a function of
the decision variables on which X may depend, especially when FX might only be a step function with
vital discontinuities, as well as an inability to take advantage of underlying convexities in a problem’s
formulation.

In the face of such shortcomings, a better behaved, yet more conservative, substitute for probability
of failure has been developed, called buffered probability of failure [12, 13, 14, 15, 16, 17], which
supports an approach to risk and reliability in engineering that can address the scope of a “failure”
together with its likelihood. It does this by looking at the conditional-value-at-risk CVaRα(X) of X
at various probability levels α [23, 24]. Recall that CVaRα(X) is the expected value in the α-tail
distribution of X (in the sense clarified in [24] to allow for discontinuities in FX). In its dependence
on α, it rises continuously and monotonically from EX at α = 0 to the essential supremum supX
at α = 1. As long as EX < 0 < supX, there is a unique probability level α ∈ (0, 1) such that
CVaRα(X) = 0, and 1− α is by definition then the buffered probability of failure associated with X.
The buffered probability of failure is taken to be 0 if supX ≤ 0 and 1 if 0 ≤ EX.

Here we imbed failure in the broader setting of “exceedance” with a parameter τ replacing 0, which
facilitates thinking in many situations. For instance, X might stand for the ultimate cost of a project
that has to be brought to completion in uncertain circumstances, and various dollar cost thresholds τ
might be of concern with respect to potential cost overruns. The τ -probability of exceedance POEτ (X)
is the probability that X > τ ; equivalently it’s the probability of failure of X − τ . Likewise, the τ -
buffered probability of exceedance bPOEτ (X) is the buffered probability of failure of X − τ , so that

if EX < τ < supX, then bPOEτ (X) = 1− α for the α ∈ (0, 1) giving CVaRα(X) = τ ,
while if τ ≥ supX, then bPOEτ (X) = 0, but if τ ≤ EX, then instead bPOEτ (X) = 1.

(1.1)

The systematic investigation of buffered probability of exceedance (bPOE) in contrast to traditional
probability of exceedance (POE) was launched in [31, 5, 4].

From (1.1) it’s evident that the function τ 7→ 1−bPOEτ (X) is essentially the inverse of the function
α 7→ CVaRα(X). This parallels the fact that the function τ 7→ 1−POEτ (X) is essentially the inverse
of the quantile function α 7→ qα(X), since qα(X) = min { τ |FX(τ) ≥ α} (with “essentially” referring
to adjustments needed when FX isn’t continuous or persistently increasing). Alternative terminology
enhances this parallelism. In finance, the quantile qα(X) is the value-at-risk VaRα(X). On the other
hand, starting in [12], the conditional-value-at-risk CVaRα(X) has been dubbed the α-superquantile
of X and denoted by qα(X) in order to liberate engineering applications from language tied to finance.
For a rigorous account of these “generalized inverse” relationships and their connections with convex
analysis, see [20].

With bPOE, it is possible to take into account outcomes close to a threshold, rather than merely
counting outcomes exceeding it, since (generally speaking) bPOE considers tail outcomes that average
to some specific value. For instance, 4% of land-falling hurricanes in the United States have cumulative

2

damage exceeding $50 billion, so POE = 0.04 for the threshold τ=$50 billion. However $50 billion is
estimated to be the average damage from the worst 10% of hurricanes, so bPOE=0.1 for the threshold
τ=$50 billion. Thus, bPOE can be an important supplement to POE, and it would be good to
calculate it routinely alongside of POE, which typically gets all the attention but may be misleading
about the seriousness of risks. POE is behind common terms like 100-year storm or 50-year flood, but
the buffered version is arguably superior in assessments of hazards like in the hurricane example, as
underscored in [1].

In addition to applications of bPOE in the case of τ = 0, which come under the heading of
buffered probability of failure [12, 13, 14, 15, 16, 17], and the valuable import of bPOE for natural
hazards, the concept has put to use in areas such as finance. Portfolio optimization algorithms and
performance functions for cash flow matching have been explored in [30]. Paper [33] established a
connection of bPOE with the monotone Sharpe ratios and related measures of investment performance.
Paper [2] demonstrated how to use bPOE in optimization of PDE-constrained systems with uncertain
coefficients and relevant applications. Applications to machine learning have been looked at in [5, 6].
A deterministic variant of bPOE has been employed to define cardinality of upper average (CUA); this
refers to the number of the largest components of a vector having average value beyond some threshold.
The CUA characteristic was introduced in [8] and applied to network optimization problems. Further
applications of bPOE are in the offing and the range of potential benefits could be enormous. Technical
support has moreover been provided in analytical formulas for bPOE for various distributions in [8].
Statistical estimators of bPOE and their convergence rates have been given in [9]. A comprehensive
study of the properties of bPOE in [4] is available as an introduction and a source of key facts.
Higher-moment buffered probabilities were studied in [3].

With this motivation, our aim in the present paper is to determine the extent to which stochastic
programming problems might successfully be solved if the usual expectational objective, taking the
form of the expected value of an expression of loss under uncertainty, is replaced by a bPOE objective.
More specifically, our focus is on whether the progressive hedging algorithm (PHA) of [28] can be
adapted to such a different objective. A top issue there is whether convexity of the loss expression
with respect to decision variables can be put to work; such convexity is behind the viability of that
method. Also crucial is the “stochastic separability” that’s inherent in expectations with their risk
neutrality but can be lacking in risk-averse problem formulations. For that, at least, a previous effort
in [11] at extending PHA to CVaR-type objectives can suggest guidelines. There it was possible, by
utilizing a CVaR formula from [23, 24], to translate a CVaR-type objective back to an expectational
objective through the introduction of auxiliary variables. Convexity-preserving properties of that
formula opened the way then for PHA.

An analogous formula for bPOE, which came to light in [5], offers a tantalizing prospect of repli-
cating that advance. Unfortunately, in the presence of convexity in the problem’s ingredients, that
formula only manages to achieve quasi-convexity in the expected loss expression that it furnishes. Nev-
ertheless we will be able here to go further and actually attain convexity by employing facts brought
out in [4].

In proceeding toward that goal we must first, in Section 2, review some fundamentals about
stochastic programming and PHA in order to have the right platform for our extension. Afterwards,
in Section 3, we will be able to present and justify the details of our contribution. Because PHA
operates with discrete probability, special attention must be devoted to the peculiarities of bPOE in
such a setting.

A numerical study is offered in Section 4. Although the study is focused on a single-stage model,
a multistage model is taken as the basis for our general explanations and developments, as was the

3

case for the work on CVaR adaptations in [11].
Multistage models can raise issues of time consistency in their justification. Time consistency

wasn’t addressed directly in [11], which only looked at the CVaR associated with a terminal cost, but
an accommodation could easily be made in that by passing to a “nested CVaR” objective and utilizing
the same tricks. Here likewise for bPOE, the centerpiece is a terminal expression instead of some kind
of nested expression. But the situation is different, as can be understood by recalling that bPOE is
allied in spirit with probability of failure, and probabilities aren’t additive. Whether some “nested”
approach to failure probabilities or exceedance probabilities might make sense in some context is
questionable, and anyway needn’t be explored here. Multistage models concern initial decisions with
subsequent opportunities for recourse decisions, and notions of “failure” are naturally associated with
the final result of all those decisions.

2 Background in stochastic programming and progressive hedging

At the computationally oriented level of stochastic programming with convexity that we get into as
the foundation for progressive hedging, the probability framework is elementary. There is a discrete
probability space Ξ consisting of finitely many scenarios ξ with known probabilities π(ξ) > 0, adding
to 1. The random variables X to be encountered will be real-valued functions on Ξ with staircase-type
FX . A time component enters, though, because decisions are to be made in stages k = 1, . . . , N that
capture the evolution of information. For this we pose the scenarios as elements ξ = (ξ1, . . . , ξN) of a
product space Ξ1 × · · · × ΞN , with ξk ∈ Ξk standing for the information revealed in stage k.

Scenario-dependent decisions in this context take the form of policies

x(·) : ξ 7→ x(ξ) = (x1(ξ), . . . , xN (ξ)) ∈ IRn1 × · · · × IRnN = IRn, (2.1)

where xk(ξ) ∈ IRnk is the decision component in stage k. A critical constraint on policies is that they
must be nonanticipative, which means that the kth-stage decision can only depend on the information
revealed in previous stages (and in particular the first-stage decision must be scenario-independent).
Another constraint will be that

x(ξ) ∈ C(ξ) for all scenarios ξ (2.2)

with respect to some specification of nonempty closed convex sets C(ξ) ⊂ IRn. Within the finite-
dimensional linear space

L = { all policies x(·) in (2.1) } (2.3)

the concern is therefore with policies x(·) ∈ C ∩ N , where

C = { the policies x(·) satisfying (2.2) },
N = { the policies such that xk(ξ) depends only on (ξ1, . . . , ξk−1) }. (2.4)

Here C is a nonempty closed convex subset of L and N is a subspace of L.
The contemplated optimization will be to minimize over C ∩ N an objective functional F defined

on L. The objective will be tied to a “cost” structure dictated by scenario-dependent convex functions
on IRn:

f(·, ξ) : IRn → IR for each scenario ξ. (2.5)

Such structure associates with any policy x(·) a “cost” random variable

Xf (x(·)) : ξ ∈ Ξ 7→ f(x(ξ), ξ) ∈ IR, (2.6)

4

but a random variable itself can’t be minimized. It must first be transformed in one way or another
into a scalar value associated with x(·) to define as F(x(·)).

The long-standing approach to that is to pass to the expectation of Xf (x(·)). The optimization
problem is then to

minimize F(x(·)) subject to x(·) ∈ C ∩ N , where
F(x(·)) = E[Xf (x(·))] = Eξ[f(x(ξ), ξ)] =

∑
ξ∈Ξ π(ξ)f(x(ξ), ξ).

(2.7)

With this choice the functional F on L is convex and finite, hence also continuous (due to the finite-
dimensionality of L). But the expectation choice isn’t the only attractive possibility. One could
instead choose

F(x(·)) = R(Xf (x(·))) for some risk measure R, (2.8)

which was the topic in [11] in the case of R being CVaRα, or a mixture λ1CVaRα1 + · · ·+λmCVaRαm

with weights λi > 0 adding to 1. Coming up in next section of this paper will be a bPOE version
of F obtained by applying bPOEτ (X) to X = Xf (x(·)). The discussion of the moment, though,
concentrates on the choice of F in (2.7) and how it fits with progressive hedging.

Very important for that is the subspace representation of the nonanticipativity constraint as
x(·) ∈ N , because it leads to the introduction of “multipliers” able to dualize that constraint in
computations.3 When L is furnished with the expectational inner product

〈x(·), x′(·)〉 = Eξ[x(ξ)·x′(ξ)] =
∑
ξ∈Ξ

π(ξ)
N∑
k=1

[xk(ξ)·x′k(ξ)], (2.9)

it becomes a (finite-dimensional) Hilbert space, and the ”multipliers” in question lie in the orthogonal
complement of N . In denoting the conditional expectation with respect to ξ = (ξ1, . . . , ξN) given its
initial components ξ1, . . . , ξk−1 by Eξ | ξ1,...,ξk−1

, that complementary subspace M = N⊥ is

M =
{
w(·) ∈ L

∣∣∣Eξ | ξ1,...,ξk−1
wk(ξ) = 0, ∀k

}
. (2.10)

The key observation is that finding a solution x̄(·) to (2.7) can be recast very generally as a problem
involving dual elements in M alongside of primal elements in N :

find x̄(·) ∈ N , w̄(·) ∈M, such that ∀ξ ∈ Ξ,

x̄(ξ) ∈ argmin
x(ξ)∈IRn

{
f(x(ξ), ξ) + w̄(ξ)·x(ξ)

}
, (2.11)

where the argmin condition is equivalent to

x̄(·) ∈ argmin
x(·)∈L

{
F(x(·)) + 〈w̄(·)·x(·)〉

}
. (2.12)

Namely, if x̄(·) and w̄(·) satisfy (2.11), then x̄(·) solves (2.7). Conversely, if x̄(·) solves (2.7) and a
constraint qualification is satisfied, then there will exist a companion w̄(·) to x̄(·) for which (2.11)
holds. An example of a constraint qualification that works is the existence of some x̃(·) ∈ N such that
x̃(·) ∈ ri C, which is the same as x̃(ξ) ∈ riC(ξ) for all ξ. When the convex sets C(ξ) are polyhedral,
even that isn’t needed.

Progressive hedging takes advantage of this recasting of the stochastic programming problem (2.7)
and makes use of the mappings

PN = projection onto N , PM = projection onto M, satisfying PN + PM = I. (2.13)

3This represention goes back to [27].

5

Progressive hedging algorithm [28]. With a parameter value r > 0 and iterations indexed by
ν = 1, 2, . . ., proceed as follows from current elements xν(·) ∈ N and wν(·) ∈M.

(a) Calculate x̂ν(ξ) ∈ C(ξ) for each scenario ξ ∈ Ξ by solving a strongly convex optimization
problem in the variable x ∈ IRn that has this as its unique solution:

x̂ν(ξ) = argmin
x∈C(ξ)

{
f(x, ξ) + wν(ξ)·x+

r

2
||x− xν(ξ)||2

}
, (2.14)

thereby determining a function x̂ν(·) ∈ C that is not necessarily in N .
(b) Update then to iteration ν + 1 by

xν+1(·) = PN [x̂ν(·)], wν+1(·) = wν(·) + rPM[x̂ν(·)], (2.15)

which means taking for each scenario ξ ∈ Ξ and stage k

xν+1
k (ξ) = Eξ | ξ1,...,ξk−1

x̂k(ξ), wν+1
k (ξ) = wν(ξ) + r[x̂ν(ξ)− xν+1(ξ)]. (2.16)

The equivalence of (2.15) with the easy rule in (2.16) corresponds, from the perspective of (2.10),
to the fact that N = N⊥⊥ =M⊥ and PM = I−PN . The algorithm combines the accessibility of that
calculation with the simpicity of only needing to solve nice single-scenario problems in (2.14), which
can be done by means of convex programming software that bypasses stochastic issues. Of course,
solving these subproblems could bring up additional multipliers associated with constraint systems
specifying the sets C(ξ), but that doesn’t have to come into the picture here.4

Convergence of the progressive hedging algorithm requires knowing that a solution x̄(·) to the
given stochastic programming problem does exist and can be combined with a multiplier vector w̄(·).5
Then, according to [28, Theorem 5.1], the sequence of pairs (xν(·), wν(·)) generated by the procedure
from any starting pair is sure to converge to a particular pair (x̄(·), w̄(·)) satisfying (2.13), with x̄(·)
accordingly being a solution to (2.7). In this convergence the expression

r||xν(·)− x(·)||2 + r−1||wν(·)− w(·)||2 (2.20)

will be decreasing. (If a solution didn’t exist, this expression would tend to ∞.)
The role of r in the expression (2.20) yields an important insight about progressive hedging. It

reveals a trade-off in the algorithm’s behavior with respect to the primal elements xν(·) and the dual
elements wν(·). Clearly, a high value of r emphasizes primal convergence whereas a low value of r
emphasizes dual convergence. This may need to be tuned to the circumstances in a particular applica-
tion, although r = 1 is always available. See [32] for more on this topic. Some numerical experience in
a related application of progressive hedging to solving monotone stochastic complementarity problems
can be found in [21].

Remark. It was natural to assume finiteness of the cost expressions in (2.6) for the sake of passing
to random variables in (2.7), but as far as progressive hedging is concerned, such finiteness isn’t
needed. The indicated properties of the algorithm, recalled above from [28], hold even if f(·, ξ) + δC(ξ)

(indicator) is just a lower semicontinuous proper convex function on IRn for each ξ ∈ Ξ. This fact will
enter the developments in the next section.

4An extension of progressive hedging to iterate also on such multipliers with extra proximal terms is available in [22].
5The second part of this has already been addressed; the existence part can be handled by compactness of the sets

C(ξ) or more generality some joint aspects of these sets and growth properties of the functions f(·, ξ). For more on these
issues, see [28, §4].

6

3 Adapting to buffered probability of exceedance

The task we have set for ourselves is ascertaining whether the progressive hedging algorithm can be
adapted to the version of stochastic programming in which, instead of (2.7), the problem is

minimize F(x(·)) subject to x(·) ∈ C ∩ N , where F(x(·)) = bPOEτ (Xf (x(·))). (3.1)

The general meaning of the buffered probability of exceedance now in our spotlight has already been
explained in Section 1. However, because our setting is one of discrete probability, the random variable
Xf (x(·)) will be of special type, taking on only finitely many values, namely f(x(ξ), ξ) with probability
π(ξ) for the finitely many scenarios ξ ∈ Ξ. In particular, such a random variable X = Xf (x(·)) has
values maxX and minX that are attained with positive probability. In accordance with (1.1),

bPOEτ (X)

{
∈ (0, 1] when τ < maxX,
= 0 when τ ≥ maxX,

(3.2)

where moreover,

bPOEτ (X) = 0 ⇐⇒ POEτ (X) = 0 ⇐⇒ prob{X ≥ τ} = 0. (3.3)

These observations induce us to avoid expending energy on “trivial” cases of problem (3.1) by
making the following nondegeneracy assumptions:

6 ∃x(·) ∈ C ∩ N such that f(x(ξ), ξ) ≤ τ for all ξ ∈ Ξ, (3.4)

in which case bPOEτ (Xf (x(·))) = 0, and on the other hand

∃x(·) ∈ C ∩ N such that f(x(ξ), ξ) < τ for some ξ ∈ Ξ, (3.5)

in which case bPOEτ (Xf (x(·))) < 1. A policy x(·) as in (3.4) would solve (3.1) in the extreme sense
of eliminating any risk at all of f(x(ξ), ξ) exceeding τ . No trade-offs would come into play, and the
problem would lack interest. Without a policy as in (3.5), we would be in the opposite extreme of
every policy x(·) giving the worst possible bPOE value 1; this would constitute a sort of infeasibiity
in problem (3.1).

It may be hard to imagine how progressive hedging could be applied to a bPOE objective in (3.1),
because PHA relies on the separability with respect to ξ that’s enjoyed by the expectational objective
in the traditional format (2.7). That difficulty was overcome, however, in the extension of PHA in
[11] to the problem

minimize F(x(·)) subject to x(·) ∈ C ∩ N , where F(x(·)) = CVaRα(Xf (x(·))). (3.6)

That extension invoked an optimization formula for CVaR developed in [23, 24],

CVaRα(X) = min
τ∈IR

{
τ +

1

1− α
E[max{0, X − τ}]

}
, (3.7)

to translate (3.6) into a problem with one more decision variable and an objective again written as
an expectation. We pursue that lead by putting our hopes on an analogous formula for bPOE in [4,
Proposition 2.2]:

bPOEτ (X) =

 min
λ≥0

Eξ
[

max{0, λ(X(ξ)− τ) + 1}
]

when τ 6= maxX,

0 when τ = maxX.
(3.8)

7

The exception in this formula is clarified in [4, Proposition 3.2] as being triggered because

min
λ≥0

Eξ
[

max{0, λ(X(ξ)− τ) + 1}
]

= prob{X = τ} > 0 when τ = maxX, (3.9)

in discrepancy with the value 0 that bPOEτ (X) should have for τ = maxX by (3.3). Under our
nondegeneracy assumption (3.4), though, this can’t come up in problem (3.1). Our nondegeneracy
assumption (3.5) instead excludes λ = 0 from coming into play at the minimum in problem (3.1),
since the expression being minimized in (3.8) equals 1 when λ = 0.

Problem Reformulation 1. Under our assumptions (3.4) and (3.5), problem (3.1) can be solved by
solving

minimize Eξ
[

max{0, λ(f(x(ξ), ξ)− τ) + 1}
]

with respect to λ ∈ [0,∞), x(·) ∈ C ∩ N . (3.10)

Namely, solution pairs λ, x(·), to (3.108) necessarily have λ > 0 and yield solutions x(·) to (3.1).

Anyway, even in the degenerate case, if in solving the substitute problem (3.10) for a given τ , we
ended up with a policy x(·) corresponding to the exception in (3.9), i.e., such that maxξ f(x(ξ), ξ) = τ ,
then we would know we had thereby solved the original problem with 0 as the bPOE minimum.

Our next step is to interpret (3.10) as a problem in the expectational format of stochastic pro-
gramming by interpreting λ as an additional first-stage decision variable. For that we introduce, in
parallel to (2.2)–(2.3),

L̃ =
{
x̃(·) : ξ 7→ (λ(ξ), x(ξ)) ∈ IR× IRn

}
C̃ =

{
x̃(·) ∈ L̃

∣∣∣ (λ(ξ), x(ξ)) ∈ C̃(ξ) = [0,∞)× C(ξ)
}
,

Ñ =
{
x̃(·) ∈ L̃

∣∣∣λ(·) ≡ constant, x(·) ∈ N
}
.

(3.11)

Problem Reformulation 2. In the notation (3.11) problem (3.10) fits the expectational pattern of
multistage stochastic programming in seeking to

minimize Eξ[f̃(x̃(ξ), ξ)] over policies x̃(·) ∈ C̃ ∩ Ñ (3.12)

for the cost expressions
f̃(x̃, ξ)) = f̃(λ, x, ξ) = max{0, λ(x− τ) + 1}. (3.13)

This appears to bring us very close to the goal of being able to solve the bPOE minization problem
by the progressive hedging algorithm, but that proceedure requires more than just an expectated-cost
objective. It relies on convexity of the cost expressions, but f̃(λ, x, ξ)) in (3.13) isn’t convex jointly in
λ and x. The expectation in (3.12) does exhibit quasi-convexity with respect to x̃(·), as shown in [4,
Proposition 3.4], but that’s not enough.

The way around this obstacle is to make a change of variables as proposed in [4, Proposition 4.5]:

(λ, x)←→ (λ, y) for λ > 0, y = λx, x = λ−1y. (3.14)

Problem Reformulation 3. Problem (3.10), in not having to take λ = 0 into account under our
nondegeneracy assumptions (3.4) and (3.5), can be recast as:

minimize Eξ
[

max{0, λ(f(λ−1y(ξ), ξ)− τ) + 1}
]

over λ ∈ (0,∞), λ−1y(·) ∈ C ∩ N . (3.15)

8

Specifically, solution pairs λ, x(·), for problem (3.10) correspond to solutions pairs λ, y(·), for problem
(3.15) through the change of variables (3.14).

This change of variables will serve in bootstrapping quasi-convexity into convexity, as will soon be
seen, but technicalities have to be handled carefully en route. The version of optimization in (3.15)
falls short of the format needed for progressive hedging. With that format as the goal, we would like
proceed from (3.15) in the way we did from the problem statement in (3.10) to the one in (3.12),
but that’s not possible when the expressions in (3.15) are even undefined when λ ≤ 0. We must first
manage to make an appropriate extension of them.

Two additional assumptions of mild character will have a part in this. We suppose the constraint
sets C(ξ) and cost functions f(·, ξ) satisfy the level-boundedness condition that

{x ∈ C(ξ) | f(x, ξ) ≤ β} is bounded for all ξ ∈ Ξ, β ∈ IR. (3.16)

We suppose further that
∃ ξ ∈ Ξ such that 0 6∈ C(ξ), (3.17)

or in other words that the do-nothing policy x(·) = 0 isn’t feasible; it doesn’t lie in C ∩ N . In this
setting we introduce the sets

K(ξ) = { (λ, y) |λ ≥ 0, y ∈ λC(ξ)} ∪ { (0, y) | y ∈ 0+C(ξ)}, (3.18)

where 0+C(ξ) is the recession cone of C(ξ) in convex analysis [10, §8], and the functions

h(λ, y, ξ) =

{
max{0, λf(λ−1y, ξ)− λτ + 1} when λ > 0,
max{0, f0+(y, ξ) + 1} when λ = 0, but ∞ when λ < 0,

(3.19)

where f0+(·, ξ) is the recession function associated with the convex function f(·, ξ), cf. [10, §8].

Example: linear constraints and linear objective. If

C(ξ) = {x ∈ IRn |x ≥ 0, A(ξ)x ≥ a(ξ), B(ξ)x = b(ξ)},

the correponding cone in (3.18) is

K(ξ) = { (λ, y) ∈ IR× IRn | (λ, y) ≥ (0, 0), A(ξ)y − λa(ξ) ≥ 0, B(ξ)y − λb(ξ) = 0}.

If f(x, ξ) = c(ξ)·x − d(ξ), then in (3.19) one has h(λ, y, ξ) = max{0, c(ξ)·y − λd(ξ) + 1} when λ ≥ 0,
but h(λ, y, ξ) =∞ when λ < 0.

Theorem 1. Under the additional assumptions (3.16) and (3.17), problem (3.15) can be stated
equivalently in the notation (3.18)–(3.19) as the problem

minimize Eξ[h(λ, y(ξ), ξ)] over (λ, y(·)) ∈ IR×N having (λ, y(ξ)) ∈ K(ξ) for all ξ ∈ Ξ, (3.20)

and it is sure to have at least one solution pair λ, y(·). The sets K(ξ) are closed convex cones, and
with respect to their indicators δK(ξ), the functions

h : (λ, y) 7→ h(λ, y, ξ) + δK(ξ)(λ, y) for ξ ∈ Ξ (3.21)

are lower semicontinuous proper convex functions on IR × IRn. With those functions, (3.20) can be
written as

minimize Eξ[h(λ, y(ξ), ξ)] over (λ, y(·)) ∈ IR×N . (3.22)

9

Proof. In terms of the functions

g(x, ξ) = f(x, ξ)− τ + δC(ξ)(x) for x ∈ IRn, ξ ∈ Ξ, (3.23)

we have
λg(λ−1y, ξ) = λf(λ−1y)− λτ + δK(ξ)(λ, y) when λ > 0, (3.24)

and consequently
h(λ, y, ξ) = max{0, λg(λ−1y, ξ) + 1} when λ > 0. (3.25)

Problem (3.15) can be therefore be stated equivalently as

minimize Eξ[h(λ, y(ξ)] over (λ, y(·)) ∈ (0,∞)×N . (3.26)

We have to show, among other things, that the definition of h on all of IR× IRn in (3.21) permits the
equivalence with (3.15) to persist when (0,∞) is replaced in (3.26) by (−∞,∞).

This revolves around what happens to the objective in (3.26) as λ↘0, and considerations of that
get into convexity issues. It helps first to look at the sets

K0(ξ) = { (λ, y) |λy ∈ C(ξ)} ∪ {0, 0} ⊂ IR× IRn, (3.27)

which are convex cones. According to [10, Theorem 8.2], the closure of K0(ξ) is the cone K(ξ) in (3.19).
Next, the closed convexity of C(ξ) and finite convexity of f(·, ξ) make g(·, ξ) be convex with closed
level sets {x | g(y, ξ) ≤ β}. The closedness of the level sets means that g(·, ξ) is lower semicontinuous.
Our assumption (3.16) makes these level sets also be bounded, and this will soon be needed.

It’s known from convex analysis (cf. [10, page 67]) that the convexity of g(·, ξ) ensures the convex-
ity of λg(λ−1y, ξ) with respect to (λ, y) ∈ (0,∞) × IRn. That convexity holds then also for h(λ, y, ξ)
in (3.25), because the pointwise max of two convex functions is convex. Similarly, the lower semicon-
tinuity of g(·, ξ) ensures that h(λ, y, ξ) is lower semicontinuous with respect to (λ, y) ∈ (0,∞) × IRn.
On the other hand, h(λ, y, ξ) =∞ by definition for (λ, y) ∈ (−∞, 0)× IRn.

In convex analysis [10, §7-§8], these properties on [(−∞, 0) ∪ (0,∞)] × IRn determine a unique
nature extension of h(·, ·, ξ) to a lower semicontinuous convex function on IR× IRn. which is obtained
by taking limits of h(λ, y, ξ) as (λ, y) ∈ (0,∞)× IRn approaches the hyperplane {0} × IRn. Our claim
is that this extension agrees with the values for h(0, y, ξ) coming from its definition (3.21) through
(3.18)–(3.19).

In considering what happens to a sequence of function values h(λν , yν , ξ) < ∞ indexed by ν =
1, 2, . . . and associated with a sequence of pairs (λν , yν) ∈ (0,∞)× IRn that approaches (0, y) for some
y ∈ IRn, we can concentrate through (3.24) on the sequence of values λνg((λν)−1yν , ξ). The liminf
over all such sequences will generate through (3.25) the value that h(·, ·, ξ) should have at (0, y), and
this liminf is known from [10, page 67] to be g0+(y, ξ) for the recession function g0+(·, ξ) associated
with the convex function g(·, ξ). This now is where the boundedness of the level sets of g is important.
That boundedness implies that g0+(y, ξ) equals ∞ when y 6= 0, although it equals 0 when y = 0.

We have hereby confirmed the equivalence of (3.15) with (3.20), the identification of (3.20) with
(3.22), and the assertions about the functions h in (3.21). Only the claim about the existence of a
solution to (3.20), or (3.21), remains. The existence of a feasible solution with a bPOE value < 1
follows from our assumption (3.5), so we need only be concerned with the objective values < 1. The
level sets of the objective in (3.22) for such values are bounded because those of the functions g(·, ξ) are
bounded, and through the lower semicontinuity they are also closed. In light of finite dimensionality,
the minimum in (3.22) must therefore be attained.

10

By virtue of Theorem 1 we can pass to a form of our problem that parallels the one in (3.11)
but rigorously incorporates the change of variables undertaken in (3.14). Again λ is interpreted as a
first-stage decision variable in a multistage stochastic programming problem, and we are looking at
extended policies

ỹ(·) = (λ(·), y(·)) (3.28)

that are nonanticipative in the sense of λ(ξ) being independent of ξ, or in other words, ỹ(·) belonging
to the nonanticipative subspace Ñ of the policy space L̃ as in (3.11). Where before we had the
constraints x(ξ) ∈ C(ξ), we now have the constraints (λ, y(ξ)) ∈ K(ξ), where K(ξ), given by (3.19) is
the the closure of the convex cone K0(ξ) in (3.27), as revealed in the proof of Theorem 1. To cover
this we introduce

K = { ỹ(·) ∈ L̃ | ỹ(ξ) ∈ K(ξ)} (3.29)

for policies (3.28). Then, by also introducing

H(ỹ(·)) = Eξ[h̃(ỹ(ξ), ξ)] for h̃(ỹ, ξ) = h(λ, y, ξ) as in (3.21), (3.30)

we are ready for a problem statement in the expectational mold of stochastic programming, but in
terms of extended policies.

Problem Reformulation 4. Under the nondegeneracy assumptions (3.4) and (3.5), along with the
additional assumptions (3.16) and (3.17), solving the bPOE problem (3.1) is equivalent to solving the
problem

minimize H(ỹ(·)) subject to ỹ(·) ∈ K ∩ Ñ . (3.31)

This problem meets the requirements of the progressive hedging algorithm and is sure to have at least
one solution ỹ(·). Any such solution as its λ-constant positive and translates back to a solution x̃(·)
to (3.12) through the change of variables (3.14), and that manner it yields a solution x(·) to (3.1).

The claim about the problem being suitable for progressive hedging is justified by the remark at
the end of Section 2, in view of the properties established in Theorem 1. Note that because only
positive λ actually comes up, the part of the definition of K(ξ) concerned with the recession cone
in (3.19), although important in getting K(ξ) to be closed, never has to be encountered numerically
(under our assumptions). It can be replaced in practice by {(0, 0)}.

The corresponding implementation of the progressive hedging algorithm requires knowing not only
the nonanticipativity subspace Ñ , but also its orthogonal complement M̃ = Ñ⊥ in L̃. Since we have
merely augmented the policies in N by a first-stage component as a constant function, the complement
is given by

M̃ = { (θ(·), w(·)) ∈ L̃ |w(·) ∈M, Eξ[θ(ξ)] = 0}. (3.32)

Projections onto Ñ and M̃, which likewise are essential, can readily identified as well:

PÑ (ỹ(·)) for ỹ(·) = (λ(·), y(·)) equals (Eξ[λ(ξ)], PN (y(·))), (3.33)

and then PM̃(ỹ(·)) = ỹ(·)− PÑ (ỹ(·)).

Progressive hedging algorithm, bPOE version. Proceed as follows with a parameter r > 0 from
current elements (λν , yν(·)) ∈ IR×N and (θν(·), wν(·)) with wν ∈M and Eξ[θ(ξ))] = 0.

(a) Determine (λ̂ν(·), ŷν(·)) ∈ L̃ by calculating (λ̂ν(ξ), ŷν(ξ)) for each scenario ξ ∈ Ξ as the unique
solution (λ(ξ), y(ξ)) ∈ IRn+1 to an optimization problem that is strongly convex:

(λ̂ν(ξ), ŷν(ξ)) = argmin
(λ,y)∈K(ξ)

hν(λ, y, ξ), (3.34)

11

where hν is obtained from the function h in (3.19) by

hν(λ, y, ξ) = h(λ, y, ξ) + θν(ξ)λ+ wν(ξ)·y +
r

2
|λ− λν |2 +

r

2
||y − yν(ξ)||2. (3.35)

(b) Update then to iteration ν + 1 by

yν+1(·) = PN [ŷν(·)], wν+1(·) = wν(·) + rPM[ŷν(·)],
λν+1 = Eξ[λ̂

ν(ξ)], θν+1(ξ) = θν(ξ) + r[λν+1 − λ̂ν(ξ)],
(3.36)

which for yν+1(·) and wν+1(·) means taking for each scenario ξ ∈ Ξ and stage k = 1, . . . , N

yν+1
k (ξ) = Eξ | ξ1,...,ξk−1

ŷνk(ξ), wν+1
k (ξ) = wνk(ξ) + r[ŷνk(ξ)− yν+1

k (ξ)]. (3.37)

The preceding developments in levels of reformulation, drawing on Theorem 1 and the additional
capabilities of progressive hedging noted in the remark at the end of Section 2, furnish the following
assurances about this procedure, in summary.

Theorem 2. Under assumptions (3.4)–(3.5) and (3.16)–(3.17), the bPOE version of the progressive
hedging algorithm, regardless of where it starts, will converge to some particular triple λ ∈ (0,∞),
y(·) ∈ N , w(·) ∈M, and then x(·) = λ−1y(·) will solve the bPOE minimization problem (3.1).

4 Numerical experiments in the one-stage case

When N = 1 in our stochastic programming framework, the problem to be solved is much simpler.
The nonanticipative policies reduce to constant functions from Ξ to IRn. Although the policy format
remains central to progressive hedging, the underlying bPOE problem to be solved can be stated
without resorting to the policy-dependent random variables Xf (x(·)) in (2.6). It just concerns the
vector-dependent random variables

f(x, ·) : ξ ∈ Ξ 7→ f(x, ξ) ∈ IR for x ∈ IRn (4.1)

and seeks to
minimize bPOEτ (f(x, ·)) over x ∈

⋂
ξ∈Ξ

C(ξ). (4.2)

Besides testing the computational performance of PHA for the bPOE minimization problem (3.1),
we test it also for the corresponding CVaR minimization problem (3.6), since the tight “inverse”
connection between bPOE and CVaR, explained in Section 1, suggests this might be interesting. The
CVaR version of PHA that we employ is the one developed in [11]. Numerical experiments weren’t
offered in [11], and that’s another reason for providing them here in a PHA comparison between bPOE
and CVaR. The one-stage CVaR problem corresponding to (4.2) is

minimize CVaRα(f(x, ·)) over x ∈
⋂
ξ∈Ξ

C(ξ). (4.3)

In both the bPOE and CVaR problems we simplify further by specializizing to cost structure in
terms of linear functions with random coefficients:

f(x, ξ) =
n∑
i=1

ci(ξ)xi − d(ξ) for x = (x1, . . . , xn) ∈ IRn, (4.4)

12

and scenario-independent constraint structure:

C(ξ) = the same C ⊂ IRn for all ξ, (4.5)

moreover with C given by linear constraints. This puts us in the pattern of the example of specializa-
tion offered just ahead of Theorem 1.

We solved several bPOE minimization problems with PHA, and for two of them we solved the
corresponding CVaR minimization problem. We demonstrated numerically that the solutions for
bPOE and CVaR coincide for values of τ and α coordinated with each other through the inverse
relationship, which in constraint mode is reflected by

bPOEτ (X) ≤ 1− α ⇐⇒ CVaRα(X) ≤ τ. (4.6)

The selected problems are based on the financial optimization dataset (PROBLEM 1: prob-
lem min cvar dev 2p9) considered in the link6. Its dataset has 1000 scenarios, corresponding here
to potential elements ξ of Ξ. It has x ∈ IR10 restricted by nonnegativity and two scenario-independent
linear constraints, which here serve to determine the set C. Specifically

(x1, . . . , x10) ∈ C ⇐⇒ xi ≥ 0,
10∑
i=1

rixi ≥ r,
10∑
i=1

xi = 1. (4.7)

But the problem’s objective, the minimization of CVaR deviation (see the definition of that in [26]),
has been altered to suit our present purposes.

In the bPOE case we carried out the change of variables from x to λ−1y in the manner explained
in Section 3. The resulting optimization problem, specialized to N = 1 from (3.20), then has 11
decision variables, all first-stage, comprised of λ ∈ IR and the components of y ∈ IR10. As in the
example preceding Theorem 1, this produced from our constraint set C described by (4.7) the cone
K described by

(λ, y1, . . . , y10) ∈ K ⇐⇒ λ ≥ 0, yi ≥ 0,
10∑
i=1

riyi − rλ ≥ 0,
10∑
i=1

yi − λ = 0. (4.8)

The problem further has, in progressive hedging, 11 dual variables comprised of θ and the components
of w ∈ IR10.

To test performance of PHA for bPOE, we solved 5 instances of the problem with 10, 20, 30, 100
and 1000 scenarios (taken from the original matrix with 1000 scenarios). We used λ1 = 0, y1 = 0,
θ1(ξ) = 0, w1(ξ) = 0 for the initial iteration of the algorithm, where 0 is the 10-dimension zero
vector. The initial values turn out to be quite important for fast convergence of the progressive
hedging algorithm. Watson and Woodruff [32] proposed solving the subproblems (2.14) on the first
iteration without the quadratic terms, for a class of discrete stochastic optimization problems with
the expectational objective. But for the bPOE minimization problems here, that suggested initiation
yields a large first step for variables λ, y, and then convergence becomes very slow. More exactly, in
iteration 2, values of λ2 and the components of y2 are around 400 to 800 when the quadratic terms
are excluded. Without excluding the quadratic terms, they instead have the order of magnitude 102.
The parameter r was always r = 1. The stopping criterion was set to Eξ‖ẑν(ξ) − zν+1(ξ)‖ < 10−5,
where z = (λ, y) ∈ IR11 is an 11-dimensional vector.

6http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/

portfolio-optimization-cvar-vs-st_dev/

13

http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/portfolio-optimization-cvar-vs-st_dev/
http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/portfolio-optimization-cvar-vs-st_dev/

In our experiments with PHA for CVaR minimization we found instead that it is not so sensitive
to dropping the quadratic terms from the initial subproblem in the way of Watson and Woodruff [32].

For benchmarking PHA performance, we have employed the Portfolio Safeguard (PSG) package7.
PSG has precoded CVaR and bPOE functions, which can be set in analytic format in optimization
problems. See the PSG-based case study (data and codes in Text, MATLAB, and R environment)
comparing CVaR and bPOE minimization problems at the link8

Solution results are shown in Table 1 for several numbers of scenarios.

• Column 1: the number of scenarios of the linear random function;

• Column 2: the threshold τ in bPOE;

• Column 3: the number of iterations of the algorithm;

• Column 4: minimum value of bPOE obtained with PHA;

• Column5: the difference between the PHA minimum value and the one obtained directly with
PSG.

Table 1: Results for the bPOE minimization problem with PHA.
scenarios Threshold in bPOE # of interations Minimum bPOE Solution precision

10 -0.035 4 2.6159E-01 9.40E-09

20 -0.03 7 3.2343E-01 2.80E-09

30 -0.025 7 2.7641E-01 3.29E-09

100 -0.016499 6 2.0000E-01 4.94E-06

1000 -0.025 7 3.5837E-01 2.05E-06

CVaR and bPOE constraints are equivalent via (4.6). To verify correctness of the bPOE optimiza-
tion algorithm we considered one case with 30 scenarios (see the corresponding row in Table 1). We
minimized CVaR with PHA, as proposed in [11]. This CVaR minimization problem contains the same
variables and constraints as the bPOE minimization problem. We set the confidence level for CVaR
equal to α = 1 - Minimum bPOE = 1 - 0.27641 = 0.72359 (see, minimum bPOE value in Table 1).
According to (3.19) the CVaR minimum value should be equal to the threshold in bPOE, i.e., -0.025
(the threshold is specified in Table 1). This minimum CVaR value -0.025 was obtained with PHA for
superquantile minimization, as further reported in Table 2. This fact confirms that both the bPOE
and the CVaR optimization problems were solved correctly.

Further we solved the CVaR minimization problem with confidence level α = 0.8 for the case with
100 scenarios. Afterward the minimum CVaR value, which is equal to -0.016499 (see Table 2) was
used as the threshold τ in the bPOE minimization problem. According to (4.6) the minimum bPOE
value should be equal to 1−α = 0.2. We obtained exactly this minimum value of bPOE by PHA. We
have already mentioned Table 2 twice. Here is a description of the columns in Table 2.

• Column 1: the number of scenarios of the linear random function;

7Portfolio Safeguard (PSG), http://www.aorda.com
8http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/

case-study-cash-matching-with-bpoe-and-cvar-functions/

14

http://www.aorda.com
http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/case-study-cash-matching-with-bpoe-and-cvar-functions/
http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/case-study-cash-matching-with-bpoe-and-cvar-functions/

• Column 2: the confidence level α in CVaR;

• Column 3: the number of iterations of PHA;

• Column 4: the minimum value of CVaR obtained with PHA;

• Column 5: the difference between the PHA solution and solution obtained directly with PSG.

Table 2: Results of solving the CVaR minimization problems.
scenarios Confidence level # of interations Minimum Solution precision

in CVaR CVaR value

30 0.72359 1899 -2.5000E-02 3.41E-07

100 0.8 1621 -1.6499E-02 4.39E-05

We have indicated that for benchmarking the PHA solutions by a different means of computation,
made feasible by the simplicity of the problems being tested, we used the PSG package. Here is the
information on how that PSG optimization of CVaR and bPOE was carried out. We utilized the
Partial Moment (PM) function in the PSG package, which is defined for a random variable X by

PMτ (X) = E[max{0, X − τ}], (4.7)

applying it to the x-dependent random variables in (4.1) to have

PMτ (f(x, ·)) = E[max{0, f(x, ·)− τ}]. (4.8)

In the case of benchmarking CVaR we drew on the formula (3.7) that was developed for it in
[23, 24], getting its application to X = f(x, ·) to take the form

CVaRα(f(x, ·)) = min
τ∈R

{
τ +

1

1− α
PM0 (f(x, ·)− τ)

}
. (4.9)

Therefore,

min
x∈C

CVaRα(f(x, ·)) = min
(τ,x)∈IR×C

{
τ +

1

1− α
PM0(f(x, ·)− τ)

}
, (4.10)

where f(x, ξ)− τ is a linear function jointly in the variables x and τ .
In the case of benchmarking bPOE, we are in the realm of the one-stage version of (3.20) with the

function h given by (3.19), but because of the linearity of f in (4.5), this reduces to

h(λ, y, ξ) = PM0(f(y, ·)− λτ + 1) if λ ≥ 0, but =∞ otherwise . (4.11)

Consequently,

min
x∈C

bPOEτ (f(x, ·)) = min
(λ,y)∈K

PM−1

(
(c0(ξ)− τ)λ+

n∑
i=1

ci(ξ)yi
)
, (4.12)

where K is a polyhedral convex cone described in (4.8).
In this way the objective in both optimization problems (4.2), (4.3), under the simplification in

(4.4), is expressible through the PM function. PM minimization for a linear function with random
coefficients can be reduced to convex and linear programming. PSG algorithms for minimizing CVaR
and bPOE were thereby obtained for the benchmarking in our study.

Acknowledgment. This research was sponsored for both authors by DARPA EQUiPS grant
SNL 014150709. The authors are grateful also to Dr. Viktor Kuzmeno for help with conducting the
numerical case study.

15

References

[1] Davis, R. A., and Uryasev, S., “Analysis of tropical storm damage using buffered probability
of exceedance,” Natural Hazards (2016), 1–19, DOI 10.1007/s11069-016-2324-y.

[2] Kouri, D. P., Shapiro, A., “Optimization of PDEs with Uncertain Inputs,” In: Antil H.,
Kouri D., Lacasse MD., Ridzal D. (eds), Frontiers in PDE-constrained optimization. The IMA
volumes in mathematics and its applications, vol 163. Springer, New York, NY (2018).

[3] Kouri, D. P., “Higher-moment buffered probability,” Optimization Letters (accepted for pub-
lication) (2019).

[4] Mafusalov, A., and Uryasev, S. “Buffered probability of exceedance: mathematical prop-
erties and optimization,” SIAM J. Optimization (2018), 1077–1103.

[5] Norton, M., ,and Uryasev, S. “Maximization of AUC and Buffered AUC in binary classifi-
cation,” Mathematical Programming (2018), DOI 10.1007/s10107-018-1312-2.

[6] Norton, M., Mafusalov, A., and Uryasev, S. “Soft margin support vector classification
as buffered probability minimization,” Journal of Machine Learning Research (2017), 18, 1–43.

[7] Norton, M., Mafusalov, A., and Uryasev, S. “Cardinality of upper average and applica-
tion to network optimization,” SIAM J. Optimization (2018), 28 (2), 1726–1750.

[8] Norton, M., Khokhlov, V., and Uryasev, S. “Calculating CVaR and bPOE for common
probability distributions with application to portfolio optimization and density estimation,”
Annals of Operations Research, submitted for publication, http://arxiv.org/abs/1811.11301 .

[9] Mafusalov, A., Shapiro, A., and Uryasev, S. “Estimation and Asymptotics for Buffered
Probability of Exceedance,” European Journal of Operational Research (2018), 270, 826–836.

[10] Rockafellar, R. T., Convex Analysis, Princeton University Press, 1970.

[11] Rockafellar, R. T., “Solving stochastic programming problems with risk measures by pro-
gessive hedging,” Set-valued and Variational Analysis, published online 2017.

[12] Rockafellar, R. T., and Royset, J. O., “On buffered failure probability in design and
optimization of structures,” J. Reliability Engineering & System Safety 95 (2010), 499–510.

[13] Rockafellar, R. T., and Royset, J. O., “Superquantiles and their applications to risk,
random variables, and regression,” Tutorials in Operations Research INFORMS 2013, 151–167.

[14] Rockafellar, R. T., Royset, J. O., and Miranda, S. J., “Superquantile regression with
applications to buffered reliability, uncertainty quantification and conditional value-at-risk,”
European J. Operations Research 234 (2014), 140–154.

[15] Rockafellar, R. T., and Royset, J. O., “Engineering decisions under risk averseness,”
Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 1 (2015),
No. 2, 04015005, DOI=10.1061/AJRUA6.0000816.

[16] Rockafellar, R. T., and Royset, J. O., “Risk measures in engineering design under un-
certainty,” Proc. 12th International Conference on Applications of Statistics and Probability in
Civil Engineering (ICASP), Vancouver (2015), DOI=10.14288/1.0076159.

16

[17] Rockafellar, R. T., Royset, J. O., and Harajli, M. M., “Importance sampling in the
evaluation and optimization of buffered probability of failure,” Proc. 12th International Con-
ference on Applications of Statistics and Probability in Civil Engineering (ICASP), Vancouver
(2015), DOI=10.14288/1.0076214.

[18] Rockafellar, R. T., and Royset, J. O., “Measures of residual risk with connections to
regression, risk tracking, surrogate models and ambiguity,” SIAM Journal of Optimization 25
(2015), 1179–1208.

[19] Rockafellar, R. T., and Royset, J. O., “Superquantile/CVaR risk measures: second-order
theory,” Annals of Operations Research 262 (2018), 3–29.

[20] Rockafellar, R. T., and Royset, J. O., “Random variables, monotone relations and convex
analysis,” Mathematical Programming B 128 (2014), 297–331.

[21] Rockafellar, R. T., and Sun, J., “Soving monotone stochastic variational inequalities
and complementarity problems by progressive hedging,” Mathematical Programming B (2018),
published online.

[22] Rockafellar, R. T., and Sun, J., “Lagrangian variational inequalities with applications in
stochastic programming,” Mathematical Programming B, submitted.

[23] Rockafellar, R. T., and Uryasev, S., “Optimization of conditional value-at-risk,” Journal
of Risk 2 (2000), 21–43.

[24] Rockafellar, R. T., and Uryasev, S., “Conditional value-at-risk for general loss distribu-
tions,” Journal of Banking and Finance 26 (2002), 1443–1471.

[25] Rockafellar, R. T., and Uryasev, S., “The fundamental risk quadrangle in risk manage-
ment, optimization and statistical esimation,” Surveys in Operations Research and Management
Science 18 (2013), 33–53.

[26] Rockafellar, R. T., Uryasev, S., and Zabarankin, M., “Generalized deviations in risk
analysis,” Finance and Stochastics 10 (2006), 51-74.

[27] Rockafellar, R. T., and Wets, R. J-B, “Nonanticipativity and L1-martingales in stochas-
tic optimization problems,” in Stochastic Systems: Modeling, Identification, and Optimization,
Math. Programming Study 6 (1976), 170–187.

[28] Rockafellar, R. T., and Wets, R. J-B, “Scenarios and policy aggregation in optimization
under uncertainty.” Mathematics of Operations Research 16 (1991), 119–147.

[29] Rockafellar, R. T., and Wets, R. J-B, “Stochastic variational inequalities: single-stage
to multistage,” Mathematical Programming B 165 (2017), 291–330.

[30] Shang, D., Kuzmenko, V., and Uryasev, S., “Cash flow matching with risks controlled by
buffered probability of exceedance and conditional value-at-risk,” Annals of Operations Research
(2016).

[31] Uryasev, S. “Buffered probability of exceedance and buffered service level: definitions and
properties,” Research Report 2014-3, ISE Dept., University of Florida, 2014.

17

[32] Watson, J.-P., and Woodruff, D.L., “Progressive hedging innovations for a class of stochas-
tic mixed-integer resource allocation problems,” Computational Management Science 8 (2010),
355–370.

[33] Zhitlukhin, M. “Monotone Sharpe ratios and related measures of investment performance,”
(2018) arXiv:1809.10193.

18

	 Introduction
	Background in stochastic programming and progressive hedging
	Adapting to buffered probability of exceedance
	Numerical experiments in the one-stage case

