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Abstract

Lagrangian variational inequalities feature both primal and dual elements in expressing first-
order conditions for optimality in a wide variety of settings where “multipliers” in a very general
sense need to be brought in. Their stochastic version relates to problems of stochastic programming
and covers not only classical formats with inequality constraints but also composite models with
nonsmooth objectives. The progressive hedging algorithm, as a means of solving stochastic pro-
gramming problems, has however focused so far only on optimality conditions that correspond to
variational inequalities in primal variables alone. Here that limitation is removed by appealing to a
recent extension of progressive hedging to multistage stochastic variational inequalities in general.
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1 Introduction

Variational inequalities provide a effective modeling scheme for conditions that express optimality
or equilibrium. Lagrangian variational inequalities emphasize a primal-dual structure in this respect
which allows Lagrange multipliers to be brought in and handled explicitly. This paper is devoted
to showing how Lagrangian variational inequalities, articulated in a stochastic setting, can furnish
broader ways of formulating and solving problems of convex stochastic programming, whether single-
stage or multistage. The particular aim within this is expanding the progressive hedging algorithm of
[11] to take advantage of Lagrange multipliers as dual variables alongside of the usual primal variables.

For simplicity and in line with our computational aims, we keep to a finite-dimensional framework.
When it comes to stochastics, that will mean limiting ourselves to probability spaces based on only
finitely many scenarios, which was the case originally for the progressive hedging algorithm as well.

The variational inequality problem associated with a nonempty closed convex set C ⊂ IRn and a
continuous mapping F : C →→ IRn is to

find x̄ ∈ C such that − F (x̄) ∈ NC(x̄), (1.1)

where NC(x̄) is the normal cone to C at x̄ in the sense of convex analysis [4], namely the closed convex
cone defined by

v ∈ NC(x̄) ⇐⇒ x̄ ∈ C and v·(x− x̄) ≤ 0 for all x ∈ C. (1.2)

An immediate connection with optimization comes from the problem of minimizing a continuously
differentiable function f0 over C, since the first-order necessary condition for local optimality in that
is the case of (1.1) in which F = ∇f0. This is moreover a sufficient condition for global optimality
when f0 is convex. But the connections between variational inequalities and optimality can be much
richer than just this.

The Lagrangian variational inequality problem for a pair of nonempty closed convex sets X ⊂ IRn
and Y ⊂ IRm and a continuously differentiable function L on X × Y is to

find (x̄, ȳ) ∈ X × Y such that −∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ). (1.3)

This is indeed a variational inequality problem in the mold of (1.1), although trageting (x̄, ȳ) instead
of just x̄, as can be seen through the rule that

NX×Y (x̄, ȳ) = NX(x̄)×NY (ȳ) (1.4)

by taking
F (x, y) = (∇xL(x, y),−∇yL(x, y)). (1.5)

The classical case of this builds on minimizing f0(x) over x ∈ C by introducing a constraint represen-
tation for C such as

x ∈ C ⇐⇒ x ∈ X and (f1(x), . . . , fm(x)) ∈ (−∞, 0]s × [0, 0]m−s (1.6)

with f0, f1, . . . , fm being continuously differentiable. The associated Lagrangian function is

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x) for x ∈ X
and y = (y1, . . . , ym) ∈ Y = [0,∞)s × (−∞,∞)m−s,

(1.7)

and the Lagrangian variational inequality (1.3) then gives the corresponding Karush-Kuhn-Tucker
necessary conditions for local optimality, which are sufficient in the convex programming case where

2



fi is convex for i = 0, 1, . . . , s and affine for i = s + 1, . . . ,m. It was the recognition of this formula-
tion by Robinson in 1979 [3] that brought variational inequality problems (although he called them
“generalized equations”) into the mainstream of optimization from their origins in territory of partial
differential equations, cf. [2].

Lagrangian variational inequality problems have diverse applications beyond this classical case,
however. They can cover many other situations, for instance in nonsmooth composite optimization,
where the y vector isn’t merely tied to constraints. In general, as long as the continuously differentiable
function L on X×Y has L(x, y) concave with respect to y ∈ Y for each x ∈ X, there is an optimization
problem in x directly associated with it:

minimize f(x) over x ∈ X for f(x) = sup
y∈Y

L(x, y). (1.8)

(Here f(x) might take on ∞, so an implicit constraint, beyond x ∈ X, is that x should belong to
{x | f(x) < ∞}.) Typically the variational inequality in (1.3) will serve as a first-order necessary
condition for local optimality under a constraint qualification and, on the other hand, as a sufficient
condition for global optimality when, in addition L(x, y) is convex in x ∈ X for each y ∈ Y . For
example, in generalization of (1.7), the function

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x)− k(y) for x ∈ X
for some choice of a differentiable convex function k on Y

(1.9)

serves as the Lagrangian for the problem

minimize f0(x) + θ(f1(x), . . . , fm(x)) over x ∈ X,
where θ(u1, . . . , um) = sup

y∈Y
{ y1u1 + . . . ymum − k(y)}. (1.10)

Observe that the classical case (1.7) corresponds to the Y indicated there along with k(y) ≡ 0, but the
nonclassical possibilities can cover penalty functions, max expressions, and a lot more. Background
on this can be found in [9] and [12, Chapter 11].

The variational inequalities associated with stochastic programming problems, in which optimiza-
tion proceeds in discrete stages under constraints of nonanticipativity on how decisions can respond
to information, will be described in the next section. They are more complicated because of the
nonanticipativity, but can have aspects reflecting the optimization cases of (1.1) and (1.3). The La-
grangian forms allied with (1.3) will especially be our focus. They will be cast as stochastic variational
inequalities in the pattern developed in [13] which adapts to allowing “informations prices” to serve
as Lagrange multiplier of another sort.

Methods for solving variational inequalities have especially relied on taking avantage of mono-
tonicity when available. A variational inequality problem (1.1) is monotone when the mapping F is
monotone on C, which means that

(F (x′)− F (x))·(x′ − x) ≥ 0 for all x, x′ ∈ C, (1.11)

and is true in particular when F = ∇f0 for a convex function f0. Then the set-valued mapping

T : x 7→ F (x) +NC(x) (1.12)

is in fact maximal monotone in the sense that its graph can’t be enlarged without upsetting mono-
tonicity, i.e., it’s impossible to have a pair (x∗, v∗) satisfying (v∗ − F (x))·(x∗ − x) ≥ 0 for all x ∈ C
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unless x∗ ∈ C and v∗ = F (x∗). The Lagrangian variational inequality problem enjoys such mono-
tonicity when L(x, y) is convex with respect to x ∈ X and concave with respect to y ∈ Y , which is
true of course in the convex programming version in particular.

Solving (1.1) corresponds with respect to (1.12) to finding some x̄ such that 0 ∈ T (x̄). The
proximal point algorithm [7] is one of the most basic approaches to doing that when T is maximal
monotone. When executed in the Lagrangian framework, it comes out as a “multiplier method” of
augmented Lagrangian type, as shown in [8]. That will have a role in our efforts later, on the side, but
our main goal will be to expand the capabilities of the progressive hedging algorithm [11] for solving
stochastic programming problems so as to iterate also on Lagrange multipliers.

Our contribution in this direction will be kept to the convex case of stochastic programming with
its underlying monotonicity. Already in [10] we have shown that the progressive hedging algorithm
can be generalized to work not just with minimization but in solving monotone stochastic variational
inequality problems very broadly. The key here will be specializing that to Lagrangian variational
inequalities and determining how that plays out in optimization-based iterations.

2 Stochastic variational inequalities and progressive hedging

The special feature of stochastic programming in contrast to other areas of optimization is the structure
of one or more stages, in which information may be revealed, and the extra constraints that may impose
on how decisions can be made. This structure carries over to stochastic variational inequalities as well
and must be reviewed before we can proceed further.

The information structure put to use here will be based on there being finitely many scenarios, each
with its own probability, but the particular scenario being followed is only known in part, until the
very end. It’s popular to express this in terms of a so-called scenario tree with branching probabilities,
however our formulation (ultimately equivalent) will follow that in [13] and [10].

We consider a finite collection Ξ of scenarios ξ, each having an assigned probability π(ξ) > 0, with
these probabilities adding of course to 1; this furnishes the elementary discrete probability space that
underlies the developments. In allowing for one or more stages k = 1, . . . , N of scenario-influenced
decision-making, we denote by Ln the (finite-dimensional) linear space consisting of all mappings

x(·) : ξ ∈ Ξ 7→ x(ξ) = (x1(ξ), . . . , xN (ξ)) ∈ ΠN
k=1IR

nk = IRn (2.1)

and furnish it with the expectational inner product

〈w(·), x(·)〉 =
∑

ξ∈Ξ
π(ξ)

∑n

k=1
wk(ξ)·xk(ξ) = Eξ[w(ξ)·x(ξ)]. (2.2)

Here wk(ξ)·xk(ξ) refers to the uaual inner product between the vectors wk(ξ) and xk(ξ) in IRnk , and
likewise w(ξ)·x(ξ) refers to the usual inner product in IRn. But the inner product (2.2) makes Ln into
a Hilbert space with a different norm than the Euclidean norm, which would have 1 in place of the
probabilities, and also a different meaning for orthogonality — as is essential in what follows.

For information structure we regard scenarios as having the form

ξ = (ξ1, . . . , ξN ) with ξi ∈ Ξk, so that Ξ ⊂ ΠN
k=1Ξi, (2.3)

with the interpretation that ξk is the aspect of ξ that becomes known in decision stage k after the
decision in that stage has been finalized.

This structure leads to the important constraint of nonanticipativity on a mapping x(·) as a decision
policy , namely that

xk(ξ) only depends on (ξ1, . . . , ξk−1). (2.4)
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By introducing
Nn = {x(·) ∈ Ln | such that (2.4) holds } (2.5)

as the nonanticipativity subspace of Ln, we can express this constraint by x(·) ∈ Nn.
For the purpose of understanding the concept of a stochastic variational inequality problem that

will be central here, consider now, in combination with this information structure, an underlying
constraint x(·) ∈ C for a nonempty closed convex set C ⊂ Ln. Specifically this is to be of the kind
where

x(·) ∈ C ⇐⇒ x(ξ) ∈ C(ξ) for all ξ ∈ Ξ, (2.6)

with each C(ξ) being a nonempty closed convex set in IRn. (Later, more details about C(ξ) will be
of interest, but they aren’t needed for now.) Consider further a continuous mapping F : Ln → Ln of
the kind where

F(x(·)) = v(·) ⇐⇒ F (x(ξ), ξ) = v(ξ) for all ξ ∈ Ξ, (2.7)

with each F (·, ξ) being a continuous mapping from IRn into IRn.3 The problem

find x̄(·) ∈ C ∩ Nn such that −F(x̄(·)) ∈ NC∩Nn
(x̄(·)) (2.8)

is the stochastic variational inequality problem in basic form associated with C and F in the terminology
of [13]. It is assumed here that C ∩ Nn 6= ∅.

This is truly a variational inequality in the pattern of (1.1), although placed in a more advanced
context. It is of monotone type when F is monotone, which corresponds to each of the mappings
F (·, ξ) being monotone. Such monotonicity is assumed in what follows.

But what does the normal cone condition in (2.8) with respect to the closed convex set C∩Nn ⊂ Ln
really say? For this, the orthogonal complement Mn of the subspace Nn with respect to the inner
product (2.2) has to be brought in:

Mn = N⊥n = {w(·) ∈ Ln | 〈w(·), x(·)〉 = 0 for all x(·) ∈ Nn}. (2.9)

It was established in [13] that a sufficient condition of having −F(x(·)) ∈ NC∩Nn
(x(·)) is the existence

of some w(·) ∈ Mn such that −F (x(ξ), ξ) − w(ξ) ∈ NC(ξ)(x(ξ)) for all ξ, and this is moreover a
necessary condition under a constraint qualification,4 This leads to recasting the problem in (2.8) as

find x̄(·) ∈ Nn for which ∃ w̄(·) ∈Mn such that
−F(x̄(·))− w̄(·) ∈ NC(x̄(·)), this being equivalent to
−F (x̄(ξ), ξ)− w̄(ξ) ∈ NC(ξ)(x̄(ξ)) for all ξ ∈ Ξ,

(2.10)

which is the stochastic variational inequality problem in extensive form associated with C and F in
the terminology of [13].

The striking feature in (2.10) is the decomposition into a separate variational inequality in the
space IRn for each scenario ξ, but one which relies not just on C(ξ) and F (·, ξ) as ingredients, but
also on the assistance of an auxiliary vector w(ξ). The progressive hedging algorithm, which will be
explained shortly, is designed to take advantage of this decomposition.

3We are involved with a set-valued random variable ξ 7→ C(ξ) and a function-valued random variable ξ 7→ F (·, ξ) as
problem data, but in our elementary setting of discrete probability, that perspective isn’t essential.

4A simple criterion is the existence of some x̂(·) ∈ Nn such that x̂(ξ) belongs to the relative interior of C(ξ) for every
ξ, but nothing at all is required if the sets C(ξ) are polyhedral. In the finite-dimensional context here, the principles of
convex analysis behind this are enough, and nothing about nonanticipativity of the mapping ξ 7→ C(ξ) is needed.
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The subspace Mn that enters (2.10) from (2.9) has the probabilistic description that

w(·) ∈Mn ⇐⇒ Eξ | ξ1,...,ξk−1
[wk(ξ)] = 0 for k = 1, . . . , N, (2.11)

where the expectation is the conditional expectation over the remaining possibilities for the scenario
ξ, given that the portion (ξ1, . . . , ξk−1) is already known when a decision has to be fixed for stage
k. (Note that this means for k = 1 that x1(ξ) must be the same for all scenarios k.) The linear
transformations

PNn = projection onto Nn, PMn = projection onto Mn, PNn + PMn = I, (2.12)

are easily executed in a numerical context and provide vital computational tools.

Progressive Hedging Algorithm for General Stochastic Variational Inequalities [10]. Under
the assumption of monotonicity, the iterations, indexed by ν = 1, . . ., utilize a parameter value r > 0
and current elements xν(·) ∈ Nn and wν(·) ∈ Mn. For each ξ ∈ Ξ, a vector x̂ν(ξ) is obtained by
solving the variational inequality

−F ν(x̂ν(ξ), ξ) ∈ NC(ξ)(x̂
ν(ξ)), where F ν(x, ξ) = F (x, ξ) + wν(ξ) + r[x− xν(ξ)]. (2.13)

The function x̂ν(·) ∈ Ln thereby determined is projected onto Nn and Mn to get the updates

xν+1(·) = PNn(x̂ν(·)), wν+1(·) = wν(·) + rPMn(x̂ν(·)). (2.14)

Note that because of the proximal term r[x − xν ] in (2.13) the monotonicity assumed for F (·, ξ)
makes F ν(·, ξ) strongly monotone from IRn into itself. That ensures the existence of a unique solution
x̂ν(ξ) to the subproblem in question. The rule for getting wν+1(·) can be posed more simply by
appealing to the relationship at the end of (2.12), according to which PMn(x̂ν(·)) = x̂ν(·)−PNn(x̂ν(·))
with PNn(x̂ν(·)) being xν+1(·):

wν+1(ξ) = wν(ξ) + r[x̂ν(ξ)− xν+1(ξ)] for all ξ ∈ Ξ. (2.15)

We derived this version of the progressive hedging algorithm in [10] by following the pattern in
the original version for stochastic programming in [11]. But it relates also to the method of partial
inverses of Spingarn [14], although that would only yield here the case of r = 1. Ultimately, however,
all this goes back to the proximal point algorithm being applied in a special way, and it inherits the
various convergence properties of that algorithm — except for a different role for r. In constrast to
the parameter in the proximal point algorithm, having r either to high or too low might detract from
performance. Anyway, as long as a solution to (2.10) exists, as holds under a constraint qualification
when a solution to (2.8) exists,5 the sequence of pairs (xν(·), wν(·)) is sure to converge to some
particular solution pair (x̄(·), w̄(·)) and to do so in such a manner that the expression

r||xν(·)− x̄(·)||2 + r−1||wν(·)− w̄(·)||2 (2.16)

keeps decreasing, where the norm in Ln is the one associated with the inner product (2.2). (In the
absence of existence, the norm of this pair tends to ∞.) Conditions are also available under which a
linear convergence rate is assured, but such known details are not the focus here.

5A simple condition for that is the boundedness of the sets C(ξ), but in this monotone case of a variational inequality
many criteria in terms of growth conditions are also available; see [12, Chapter 12].
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3 Lagrangian-type progressive hedging in stochastic programming

In the original version of the progressive hedging algorithm in [11], the mapping F in the stochastic
variational inequality was the gradient of a convex objective function defined as an expectations:

F(x(·)) = ∇F0(x(·)) for F0(x(·)) = Eξ[f0(x(ξ), ξ)] =
∑

ξ∈Ξ)
π(ξ)f0(x(ξ), ξ), (3.1)

where f0(·, ξ) is a continuously differentiable convex function and

∇F0(x(·)) = v(·) ⇐⇒ ∇f0(x(ξ), ξ) = v(ξ) for all ξ ∈ Ξ. (3.2)

In that case, in which F (x, ξ) = ∇f0(x, ξ), solving the variational inequality subproblems in (2.13)
can be cast as solving optimization subproblems:

x̂ν(ξ) = argmin
x∈C(ξ)

{
f0(x, ξ) + wν(ξ)·x+

r

2
||x− xν(ξ)||2

}
, (3.3)

because the function being minimized is strongly convex with its gradient equal to F (x, ξ) + wν +
r[x− xν ].

This is well and good, but it takes no advantage of any possible details in the specification of the
convex set C(ξ). There might, for example, be a constraint structure like

x ∈ C(ξ) ⇐⇒ x ∈ X(ξ) and (f1(x, ξ), . . . , fm(x, ξ)) ∈ (−∞, 0]s × [0, 0]m−s (3.4)

in emulation of (1.6) with respect to sets X(ξ) and functions fi(·, ξ). Presumably, in solving the
optimization subproblems in (3.3), Lagrange multipliers yi(ξ) would come up, but there would be no
coordination of them from iteration to iteration.

Instead, we envision operating in a Lagrangian format in which current multipliers yν(ξ) get
updated to yν+1(ξ) and converge to multipliers ȳ(ξ). Moreover we propose to pursue this in the
general format of Lagrangian functions and their associated optimization problems in (1.8) so as to
provide a far broader modeling scheme for stochastic programming than has been available up to now.
Although we will soon be interested in exploring features like how constraints such as in (3.4) might
be broken down into batches that evolve in the decision stages k = 1, . . . , N , and the nonclassical
counterparts to that, we begin with these ideas in a less cluttered and more abstract framework.

Limiting ourselves here anyway to modes of convex optimization, we introduce nonempty closed
convex sets X(ξ) ⊂ IRn and Y (ξ) ⊂ IRm and let

X = {x(·) |x(ξ) ∈ X(ξ), ∀ξ}, Y = { y(·) | y(ξ) ∈ Y (ξ), ∀ξ}. (3.5)

In this situation, where x(·) ∈ Ln, we similarly think of y(·) as belonging to the space Lm consisting
of all mappings

y(·) : ξ → y(ξ) = (y1(ξ), . . . , yN (ξ)) ∈ IRm1 × · · · × IRmN = IRm. (3.6)

Likewise, in parallel to the nonanticipativity subspace Nn ⊂ Ln and its complementMn we will have
the nonanticipativity subspace Nm ⊂ Ln and its complement Mm.

Next we introduce continuously differentiable functions

L(·, ·, ξ) on X(ξ)× Y (ξ) such that L(x, y, ξ) is convex in x and concave in y (3.7)
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and define

Λ(x(·), y(·)) = Eξ[L(x(ξ), y(ξ), ξ)] =
∑
ξ∈Ξ

π(ξ)L(x(ξ), y(ξ), ξ) for x(·) ∈ X , y(·) ∈ Y. (3.8)

In this way we have a continuously differentiable convex-concave function Λ on the convex product set
X×Y. In formulating a corresponding problem of stochastic programming, however, nonanticipativity
also has to be brought in: we have to consider the Lagrangian not just on X × Y but on the closed
convex set (X ∩Nn)× (Y ∩Nm).

We arrive in this way at the following generalized Lagrangian format for a stochastic programming
problem of convex type:

minimize ϕ(x(·)) over x(·) ∈ X ∩Nn for ϕ(x(·)) = sup
y(·)∈Y∩Nm

Λ(x(·), y(·)). (3.9)

for which the Lagrangian first-order optimality condition will have the saddle point form

−∇x(·)Λ(x̄(·), ȳ(·)) ∈ NX∩Nn
(x̄(·)), ∇y(·)Λ(x̄(·), ȳ(·)) ∈ NY∩Nm

(ȳ(·)) (3.10)

This looks quite different, but all we are really dealing with is the path from a basic variational
inequality problem as in (1.1) to a Lagrangian version as in (1.3) by way of (1.4) and (1.5), when
played out in the context of a stochastic variational inequality (2.8). Here C, comprised of sets C(ξ),
is replaced by X × Y, comprised of sets X(ξ) × Y (ξ), while the associated mapping that takes the
form

F(x(·), y(·)) = (∇x(·)Λ(x(·), y(·)),−∇y(·)Λ(x(·), y(·))) (3.11)

arises from component mappings

F (x, y, ξ) = (−∇xL(x, y, ξ),∇yL(x, y, ξ)). (3.12)

The analysis undertaken earlier in passing from the basic form for a stochastic variational in (2.8) to
the expansive form in (2.10) is reflected then in passing from (3.10) to the problem

find x(·) ∈ Nn, y(·) ∈ Nm, for which ∃ w̄(·) ∈Mn, z̄(·) ∈Mm, such that
−∇x(·)Λ(x̄(·), ȳ(·))− w̄(·) ∈ NX (x̄(·)), ∇y(·)Λ(x̄(·), ȳ(·)) + z̄(·) ∈ NY(ȳ(·)),

which is equivalent to having, for all scenarios ξ ∈ Ξ,
−∇xL(x̄(ξ), ȳ(ξ), ξ)− w̄(ξ) ∈ NX(ξ)(x̄(ξ)), ∇yL(x̄(ξ), ȳ(ξ), ξ) + z̄(ξ) ∈ NY (ξ)(ȳ(ξ)).

(3.13)
Just as before in the relationship between (2,8) and (2.10), we have the fact that (3.13) is always
sufficient for getting a solution to the condition in (3.10), and is moreover necessary under a constraint
qualification.6

No doubt it would help now in understanding this to look at examples of how our scheme of
a stochastic convex problem of optimization and its Lagrangian first-order condition works out in
classical cases like the Lagrangian for the constraints in (3.4). But rather than get into that right
away, with all its variants and commentary, we prefer to explain next how progressive hedging will be
realized in this wider framework.

Although the progressive hedging algorithm in [11] was originally developed only for optimization
without the explicit intervention of Lagrange multipliers, we are able now, in passing by way of
our recent extension of progressing hedging to monotone stochastic variational inequalities in [10] as
reviewed above, to present the new Lagrangian variational inequality form of the algorithm.

6Constraint qualification for this would be the existence of some x̃(·) ∈ Nn and ỹ(·) ∈ Nm such that x̃(ξ) ∈ riX(ξ)
and ỹ(ξ) ∈ riY (ξ). This isn’t needed when X(ξ) and Y (ξ) are polyhedral.
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Progressive Hedging for Lagrangian Stochastic Variational Inequalities. Under the assump-
tion of monotonicity, the iterations, indexed by ν = 1, . . ., utilize a parameter value r > 0 and current
elements xν(·) ∈ Nn, yν(·) ∈ Nm, as well as wν(·) ∈ Mn, zν(·) ∈ Nm. For each ξ ∈ Ξ, a vector pair
(x̂ν(ξ), ŷν(ξ)), is obtained by solving the Lagrangian variational inequality

−∇xLν(x̂ν(ξ), ŷν(ξ), ξ) ∈ NX(ξ)(x̂
ν(ξ)), ∇yLν(x̂ν(ξ), ŷν(ξ), ξ) ∈ NX(ξ)(x̂

ν(ξ)), (3.14)

where
Lν(x, y, ξ) = L(x, y, ξ) + wν(ξ)·x+

r

2
||x− xν(ξ)||2 − zν(ξ)·y − r

2
||y − yν(ξ)||2. (3.15)

Updates are obtained then by

xν+1(·) = PNn(x̂ν(·)), wν+1(·) = wν(·) + rPMn(x̂ν(·)),
yν+1(·) = PNm(ŷν(·)), zν+1(·) = zν(·) + rPMn(ŷν(·)). (3.16)

The choice of Lν in (3.15) captures, in function terms, the replacement of the gradient-based
mapping F (x, y, ξ) = (−∇xL(x, y, ξ),∇yL(x, y, ξ)) in (3.11) by

F ν(x, y, ξ) = F (x, y, ξ) + (wν(ξ), zν(ξ)) + r[(x, y)− (xν(ξ), yν(ξ))], (3.17)

as demanded by the execution pattern of progressive hedging in solving a general stochastic variational
inequality (with monotonicity).

This version of progressive hedging inherits from the one for general stochastic variational inequal-
ities in the preceding section the property that, as long as a solution exists, the sequence of iterates
(xν(·), yν(·), wν(·), zν(·)) will converge to some particular solution (x̄(·), ȳ(·), w̄(·), z̄(·)), moreover with
the expression

r||(xν(·), yν(·))− (x̄(·), ȳ(·)||2 + r−1||(wν(·), zν(·))− (w̄(·), z̄(·))||2 (3.18)

decreasing (unless a solution has already been reached). However, instead of forcing the x part and
the y part to obey the same parameter, the bond between them can be relaxed, as shown next.

Theorem 1 (double parameterization). The Lagrangian version of the progressive hedging algorithm
still works if, for some s > 0 different from r, the function in (3.15) is replaced by

Lν(x, y, ξ) = L(x, y, ξ) + wν(ξ)·x+
s

2
||x− xν(ξ)||2 − zν(ξ)·y − r

2
||y − yν(ξ)||2. (3.19)

and the w-update rule in (3.16) is changed to

wν+1(·) = wν(·) + sPMn(x̂ν(·)). (3.20)

In that case convergence takes place with the different expression

s||xν(·)− x̄(·)||2 + r||yν(·)− ȳ(·)||2 + s−1||wν(·)− w̄(·)||2 + r−1||zν(·)− z̄(·)||2 (3.21)

decreasing instead of the expression (3.18).

Proof. This modification is achieved by a change of variable from x(·) to x̃(·) = tx(·) and w(·) to
w̃(·) = t−1x(·) with t =

√
s/r. This corresponds to replacing L(x, y, ξ) by

L̃(x̃, y, ξ) = L(t−1x̃, y, ξ) (3.22)
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and Lν(x, y, ξ) accordingly by

L̃ν(x̃, y, ξ) = L̃(x̃, y, ξ) + w̃ν(ξ)·x̃+
r

2
||x̃− x̃ν(ξ)||2 − zν(ξ)·y − r

2
||y − yν(ξ)||2 (3.23)

while X(ξ) is changed to
X̃(ξ) = t−1X(ξ). (3.24)

Note that executing the algorithm with these modified ingredients just amounts to executing it as
before, except with the alterations in (3.19) and (3.20), inasmuch as rt2 = s.

The algorithm with the modified ingredients generates sequences (x̃ν(·), yν(·)) and (w̃ν(·), zν(·))
which converge to solution elements (¯̃x(·), ȳ(·)) and ( ¯̃w(·), z̄(·)), moreover with the expression

r||(x̃ν(·), yν(·))− (¯̃x(·), ȳ(·))||2 + r−1||(w̃ν(·), zν(·))− ( ¯̃w(·), z̄(·))||2

always decreasing. In reversing the change of variables, we see that this expression converts to

r||txν(·), yν(·))− (tx̄(·), ȳ(·))||2 + r−1||(t−1wν(·), zν(·))− (t−1w̄(·), z̄(·))||2,

which can be written as

rt2||xν(·)− x̄(·)||2 + r||yν(·)− ȳ(·)||2 + r−1t−2||wν(·)− w̄(·)||2 + r−1||zν(·)− z̄(·)||2

and thus identified with (3.21).

Our statement of the algorithm needs further explanation, which we turn to next. It’s one thing to
propose solving Lagrangian variational inequality subproblems in the form of (3.14) as a key step in
computations, but another thing to make clear how this can actually be carried out with optimization
software.

Theorem 2 (solving Lagrangian VI subproblems by optimization). Solving the subproblem (3.14)
means determining the unique saddle point of Lν(x, y, ξ) with respect to minimizing over x ∈ X(ξ)
and maximizing over y ∈ Y (ξ):

x̂ν(ξ) = argmin
x∈X(ξ)

Lν(x, ŷν(ξ), ξ), ŷν(ξ) = argmax
y∈Y (ξ)

Lν(x̂ν(ξ), y, ξ). (3.25)

This can be achieved in terms of the function uνr (x, ξ) and set Uνr (x, ξ) defined by

uνr (x, ξ) = max
y∈Y (ξ)

{
L(x, y, ξ)− zν(ξ)·y − r

2
||y − yν(ξ)||2

}
,

Uνr (x, ξ) = argmax
y∈Y (ξ)

{
L(x, y, ξ)− zν(ξ)·y − r

2
||y − yν(ξ)||2

}
,

(3.26)

in two steps, as follows:

x̂ν(x) = argmin
x∈X(ξ)

{
uνr (x, ξ) + wν(ξ)·x+

s

2
||x− xν(ξ)||2

}
, ŷν(ξ) = Uνr (x̂ν(ξ), ξ), (3.27)

where having s in place of r in the minimization formula for x̂ν(ξ) reflects the double parameterization
allowable through Theorem 1.

Proof. The normal cone conditions in (3.14) are the first-order optimality conditions for the mini-
mization and maximization in question, and because of the convexity in x and concavity in y they are
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both necessary and sufficient. The proximal terms in (3.15) guarantee strong convexity and concavity
in fact, so the max and min are attained and the saddle point is unique.

It’s fundamental from saddle point theory that having (x̂ν(ξ), ŷν(ξ)) be a saddle point as in (3.25)
is equivalent (when a saddle point is known to exist, as here) to having

x̂ν(ξ) ∈ argminx∈X(ξ) ϕ
ν(x, ξ) for ϕν(x) = maxy∈Y (ξ) L

ν(x, y, ξ),

ŷν(ξ) ∈ argmaxy∈Y (ξ) ψ
ν(y, ξ) for ψν(y) = minx∈X(ξ) L

ν(x, y, ξ).
(3.28)

In this case we have through (3.26) that

ϕν(x, ξ) = uνr (x, ξ) + wν(ξ)·x+
s

2
||x− xν(ξ)||2,

so that the first part of (3.28) is equivalent to the first part of (3.27) and correctly identifies x̂ν(ξ).
Then, though, without going back to (3.28), we can appeal to the second part of (3.25) to get ŷν(ξ),
with the recognition that this reduces to the prescription in the second part of (3.27).

The usefulness of the mode of calculation in Theorem 2 depends, of course, on the accessibility of
the expressions in (3.26). That could depend on the circumstances of the problem and its Lagrangian
formulation, and there’s a lot of territory to explore in that direction. However, in the case of classical
Lagrangians like (1.7) entering as ingredients, everything works well and introduces to stochastic
programming the methodology of so-called multiplier methods [5, 1, 6]. That carries over more or less
intact also to the kind of composite optimization structure covered in (1.9)–(1.10). This advanced
topic in implementation will be taken up in the next section along with other details.

4 Multistage details and implementations

The concept of decisions xk(ξ) being made nonanticipatively in stages k as information about a scenario
ξ evolves is fundamental in stochastic programming problems and stochastic variational inequalities.
The generalized multiplier vectors yk(ξ) introduced in the preceding section were likewise subjected
to nonanticipativity, but nothing has yet been said about how that might specifically be valuable in
optimization modeling, or how Lagrangian functions themselves might be built up in stages.

A basic source of stage structure in Lagrangians is easy to understand. The decision xk(ξ) in
stage k, while subject to the nonanticipativty condition of only responding to ξ1, . . . , ξk−1 could be
constrained to belong to a set that could depend on those scenario elements and the decisions already
made in earlier stages. That set could be expressed by a constraint system for which yk(ξ) gives the
Lagrange multipliers. We will get back to this pattern after formulating a Lagrangian stage scheme
with more versatility.

For this purpose we introduce for each stage k = 1, . . . , N , nonempty closed convex sets

Xk(ξ) ⊂ IRnk , Yk(ξ) ⊂ IRmk , depending only on (ξ1, . . . , ξk−1),
X(ξ) = X1(ξ)× · · · ×XN (ξ), Y (ξ) = Y1(ξ)× · · · × YN (ξ),

(4.1)

and a continuously differentiable Lagrangian term

Lk(x1, . . . , xk, yk, ξ1, . . . , ξk−1) for (x1, . . . , xk) ∈ X1(ξ)× · · · ×Xk(ξ), yk ∈ Yk(ξ), (4.2)

that is convex in the (x1, . . . , xk) and concave in yk. We then define the overall Lagrangian, to serve
in the role of (3.7), by

L(x, y, ξ) =
∑N

k=1
Lk(x1, . . . , xk, yk, ξ1, . . . , ξk−1) on X(ξ)× Y (ξ). (4.3)
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As explained in Section 3, the monotone stochastic variational inequality problem specified in this way
expresses optimality in a saddle point format for a convex stochastic programming problem derived
from (3.8) and (3.9), but in this framework that problem can be described in more detail.

Theorem 3 (multistage Lagrangian model). The stochastic programming problem associated with
the Lagrangian structure in (4.1)–(4.2)–(4.3) is to

minimize over x(·) ∈ Nn, subject to xk(ξ) ∈ Xk(ξ), the objective function
ϕ(x(·)) = Eξ[ϕ1(x1(ξ), ξ) + ϕ2(x1(ξ), x2(ξ), ξ) + · · ·+ ϕN (x1(ξ), · · · , xN (ξ), ξ)],

(4.4)

where the functions ϕk(·, ξ) are convex, lower semicontinuous and possibly take on ∞, and depend
only on ξ1, . . . , ξk−1:

ϕk(x1, . . . , xk−1, xk, ξ1, . . . , ξk−1) = sup
yk∈Yk(ξ1,...,ξk−1)

Lk(x1, . . . , xk−1, xk, yk, ξ1, . . . , ξk−1). (4.5)

In applying the progressive hedging algorithm in this case as prescribed in Theorem 2, the expressions
in (3.26) have stage structure in terms of

uνk,r(x1, . . . , xk, ξ) = max
yk∈Yk(ξ)

{
Lk(x1, . . . , xk, yk, ξ)− zνk(ξ)·yk −

r

2
||yk − yνk(ξ)||2

}
,

Uνk,r(x1, . . . , xk, ξ) = argmax
yk∈Yk(ξ)

{
Lk(x1, . . . , xk, yk, ξ)− zνk(ξ)·yk −

r

2
||yk − yνk(ξ)||2

}
.

(4.6)

The two steps in (3.27) then take the form that

x̂ν(ξ) = argmin
x∈X(ξ)

∑N

k=1

[
uνk,r(x1, . . . , xk, ξ) + wνk(ξ)·xk +

s

2
||xk − xνk(ξ)||2

]
,

ŷνk(ξ) = Uνk,r(x̂
ν
1(ξ), . . . , x̂νk(ξ), ξ) for k = 1, . . . , N.

(4.7)

Proof. The reduction in (4.4) takes advantage of the fact that the Lagrangian in (4.3) is separable
with respect to the components yk of y, which enables the maximization to be carried out separately
in each yk. This is also behind the creation of separate expressions for each stage k in (4.6), which then
leads from (3.27) to (4.7). The proximal terms ensure in each case that the max or min is attained,
uniquely.

This result can be specialized in a rich variety of ways. An important example is the case of
classical constraints of convex programming type, as follows. For each stage k = 1, . . . , N let the set
Yk(ξk) be independent of ξk and given simply by

Yk = [0,∞)sk × (−∞,∞)mk−sk ⊂ IRmk , with elements yk = (yk1, . . . , yk,mk
), (4.8)

and let the Lagrangian term Lk have the form

Lk(x1, . . . , xk, yk, ξ1, . . . , ξk−1) =
fk0(x1, . . . , xk, ξ1, . . . , ξk−1) +

∑mk
i=1 ykifki(x1, . . . , xk, ξ1, . . . , ξk−1),

(4.9)

where fki(·, ξ1, . . . , ξk−1) is a continuously differentiable convex function on Xk(ξ) = Xk(ξ1, . . . , xk)
for i = 0, 1, . . . , sk and an affine function for i = sk + 1, . . . ,mk. Then the objective terms in (4.4) are

ϕk(x1, . . . , xk, ξ1, . . . , ξk−1) =


fk0(x1, . . . , xk, ξ1. . . . , ξk−1)

if xk ∈ Ck(x1, . . . , xk−1, ξ1, . . . , ξk−1)
∞ if xk 6∈ Ck(x1, . . . , xk−1, ξ1, . . . , ξk−1),

(4.10)
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for the closed convex set Ck(x1, . . . , xk−1, ξ1, . . . , ξk−1) defined by

xk ∈ Ck(x1, . . . , xk−1, ξ1, . . . , ξk−1) ⇐⇒
xk ∈ Xk(ξ1, . . . , ξk−1),
(fki(x1, . . . , xk−1, xk, ξ1, . . . , ξk−1) ≤ 0 for i = 1, . . . , sk,
(fki(x1, . . . , xk−1, xk, ξ1, . . . , ξk−1) = 0 for i = sk + 1, . . . ,mk.

(4.11)

The expressions in (4.6) specialize then to

uνk,r(x1, . . . , xk, ξ) = fk0(x1, . . . , xk, ξ1. . . . , ξk−1)

+
mk∑
i=1

λ≤

(
fki(x1, . . . , xk, ξ1. . . . , ξk−1)− zνki(ξ), yνki(ξ)

)
+

mk∑
i=sk+1

λ=

(
fki(x1, . . . , xk, ξ1. . . . , ξk−1)− zνki(ξ), yνki(ξ)

)
,

(4.12)

where

λ≤(a, b) =

{
ab+ 1

2ra
2 if r−1a+ b ≥ 0,

−1
2rb

2 if r−1a+ b ≤ 0,
λ=(a, b) = ab+ 1

2ra
2, (4.13)

and on the other hand

yk = Uνk,r(x1, . . . , xk, ξ) ⇐⇒

yik =

 µ≤

(
fki(x1, . . . , xk, ξ1. . . . , ξk−1 − zνki(ξ), yνki(ξ)

)
for i = 1, . . . , sk,

µ=

(
fki(x1, . . . , xk, ξ1. . . . , ξk−1 − zνki(ξ), yνki(ξ)

)
for i = sk + 1, . . . ,mk,

(4.14)
where

µ≤(a, b) = max{0, r−1a+ b}, µ=(a, b) = r−1a+ b. (4.15)

Here the function uνk,r is an augmented Lagrangian associated with Lk, and the procedure in (4.7)
is then a so-called multiplier method in convex programming [5, 6].

Beyond this example in a classical format for convex programming, one can introduce similar
details in the case of composite optimization as expressed in (1.9)–(1.10) and get essentially the same
pattern.
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