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Abstract. For a Hilbert space X and a mapping F : X →→ X (potentially set-valued) that
is maximal monotone locally around a pair (x̄, ȳ) in its graph, we obtain a radius theorem of
the following kind: the infimum of the norm of a linear and bounded single-valued mapping
B such that F + B is not locally monotone around (x̄, ȳ + Bx̄) equals the monotonicity
modulus of F . Moreover, the infimum is not changed if taken with respect to B symmetric,
negative semidefinite and of rank one, and also not changed if taken with respect to all
functions f : X → X that are Lipschitz continuous around x̄ and ‖B‖ is replaced by the
Lipschitz modulus of f at x̄. As applications, a radius theorem is obtained for the strong
second-order sufficient optimality condition of an optimization problem, which in turn yields
a radius theorem for quadratic convergence of the Newton method applied to that problem.
A radius theorem is also derived for mappings that are merely hypomonotone.
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1 Introduction

Throughout, unless stated otherwise, X is a real Hilbert space with inner product 〈·, ·〉 and
associated norm ‖ · ‖. A mapping F from X to X, allowed to be set-valued in general as
indicated by the notation F : X →→ X, has graph gphF =

{
(x, y) ∈ X × X

∣∣ y ∈ F (x)
}

and domain domF =
{
x ∈ X

∣∣F (x) 6= ∅
}

. It is single-valued , indicated by F : X → X,
if domF = X and F (x) consists of only one y for each x; then y ∈ F (x) can be written as
F (x) = y. (Single-valued mappings and “functions” are synonomous in this sense.) The inverse
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of a mapping F : X →→ X is the mapping F−1 : X →→ X defined by F−1(y) =
{
x ∈ X

∣∣ y ∈ F (x)
}

,
which of course may be set-valued even if F is single-valued.

The monotonicity for a mapping F : X →→ X means that

〈y − y′, x− x′〉 ≥ 0 whenever (x, y), (x′, y′) ∈ gphF,

while maximal monotonicity refers to the impossibility of enlarging gphF without violating this
inequality. On the local level, F is monotone at x̄ for ȳ if ȳ ∈ F (x̄) and the monotonicity
inequality holds when gphF is replaced by (U × V )∩ gphF for some neighborhoods U of x̄ and
V of ȳ. It is maximal monotone at x̄ for ȳ if, in addition, nothing more in U × V can be added
to gphF without upsetting that. The modulus of monotonicity at x̄ for ȳ ∈ F (x̄) is

mon(F ; x̄| ȳ) = lim inf
x,x′→x̄, x 6=x′

y,y′→ȳ
(x,y),(x′,y′)∈gphF

〈y − y′, x− x′〉
‖x− x′‖2

,

which could be∞ (and is interpreted to be so in particular in the degenerate case where domF =
{x̄}). When mon(F ; x̄| ȳ) > 0, F is said to be strongly monotone at x̄ for ȳ. This corresponds
the existence of σ > 0 for which there are neighborhoods U of x̄ and V of ȳ such that

(1) 〈y − y′, x− x′〉 ≥ σ‖x− x′‖2 whenever (x, y), (x′, y′) ∈ (U × V ) ∩ gphF.

Any positive σ < mon(F ; x̄| ȳ) will fit this description.
Although monotonicity properties are the focus of this paper, Lipschitz continuity will also

have a role. The Lipschitz modulus of a single-valued mapping f : X → X at a point x̄ is defined
by

lip(f ; x̄) = lim sup
x,x′→x̄
x 6=x′

‖f(x)− f(x′)‖
‖x− x′‖

.

Having lip(f ; x̄) < l corresponds to having a neighborhood U of x̄ such that f is Lipschitz
continuous on U with Lipschitz constant l. Conversely, if f is Lipschitz continuous around x̄
with Lipschitz constant l then we have lip(f ; x̄) ≤ l. If f is not Lipschitz continuous around x̄
then lip(f ; x̄) =∞.

As a main result in this paper we obtain the following, where as usual the space of continuous
linear mappings B : X → X is denoted by L(X,X).

Theorem 1 (radius theorem for monotonicity). For a mapping F : X →→ X that is maximal
monotone at x̄ for ȳ,

(2) inf
B∈L(X,X)

{
‖B‖

∣∣F +B not monotone at x̄ for ȳ +Bx̄
}

= mon(F ; x̄| ȳ).

Moreover, the infimum in the left side of (2) is not changed if taken with respect to B ∈ L(X,X)
symmetric, negative semidefinite and of rank one, and also not changed if taken with respect to
all functions f : X → X that are Lipschitz continuous around x̄, with ‖B‖ replaced by lip(f ; x̄).

The proof of Theorem 1 will be given in Section 3 after preparations in Section 2 which include
a demonstration that local strong monotonocity is stable under perturbations by single-valued
mappings with small Lipschitz constants. Some applications will be taken up in Section 4.
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The result in Theorem 1 is in line with the general pattern of so-called radius theorems:
given a mapping with a certain desirable property, the “radius” of this property is the “minimal
perturbation” such that the perturbed mapping may lose this property. In other words, the
radius for a property of a mapping tells us the “distance” from that mapping to mappings that
do not have the property. An early example in linear algebra is a radius theorem that goes back
to a paper by Eckart and Young [5]: for any nonsingular matrix A,

(3) inf
{
‖B‖

∣∣A+B singular
}

=
1

‖A−1‖
.

Far reaching generalizations of that result were obtained in [2] and in [3], see also [4, Section 6A],
establishing that typically

(4) rad =
1

reg
,

where rad is the radius for the property in question, in analogy with the left side of (2) in The-
orem 1, and reg is the regularity modulus for the property. Specifically, these papers considered
three basic properties of set-valued mappings that are important in variational analysis and op-
timization, namely metric regularity, strong metric regularity, and strong metric subregularity,
which extend to set-valued/nonlinear mappings the classical properties of surjectivity, invertibil-
ity and injectivity, respectively, of continuous linear mappings in linear normed spaces. Radius
theorems are sometimes called condition number theorems in the literature, see e.g. [11]; indeed,
the equality (3) can be also written in terms of the (absolute) condition number of the matrix
A. We do not use such terminology here because there are variants of “condition number” that
are not tied with any concept of radius.

2 Stability under small Lipschitz perturbations

A mapping F acting from a metric space to possibly another metric space is said to have a
single-valued localization at x̄ for ȳ, where (x̄, ȳ) ∈ gphF , if there exist neighborhoods U of x̄
and V of ȳ such that the truncated inverse V 3 y 7→ F−1(y) ∩ U is a single-valued on V . If
F−1 has a single-valued localization at ȳ for x̄ that is Lipschitz continuous around ȳ, then F is
said to be strongly metrically regular at x̄ for ȳ. This term was coined by S. M. Robinson in his
seminal paper [9] for a formally different property whose definition was subsequently adapted
to the form we use here; for a broad coverage of the major developments around this property
as well as other related properties of mappings in variational analysis and optimization; see [4].
The following result was proved in [3, Theorem 4.6]; see also [4, Theorem 6A.8]:

Theorem 2 (radius theorem for strong metric regularity). Consider a mapping F : IRn →→ IRm

that is strongly metrically regular at x̄ for ȳ; specifically, F−1 has a single-valued localization s
at ȳ for x̄ with lip(s; ȳ) <∞. Then

(5) inf
B∈L(IRn,IRm)

{
‖B‖

∣∣∣F +B is not strongly metrically regular at x̄ for ȳ +Bx̄
}

=
1

lip(s; ȳ)
.
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Moreover, the infimum remains unchanged when taken either with respect to linear mappings
of rank one or with respect to all functions f that are Lipschitz continuous around x̄, with ‖B‖
replaced by the Lipschitz modulus lip(f ; x̄) of f at x̄.

Clearly Theorem 2 covers the Eckart-Young equality (3) but goes far beyond that in revealing
key importance of Lipschitz properties in the study of solution stability.

The proof of Theorem 2 presented in [3] uses a radius theorem for metric regularity given in
[2], the proof of which is based on a criterion involving a generalized derivative of a set-valued
mapping: the so-called coderivative. Another proof of the Theorem 2, given in [4, Theorem
6A.7], uses a criterion involving another kind of generalized derivative, namely the graphical (or
contingent) derivative. However, the derivative and coderivative criteria are essentially valid in
finite-dimensional spaces only. In both proofs the inequality ≥ in (5) is derived first from an
extended version of the Lyusternik-Graves theorem, cf. [4, Theorem 5F.1], for a mapping F acting
in Banach spaces and a perturbation B represented by a Lipschitz covers the case lip(s; ȳ) = 0
under the convention that 1/0 = +∞. Then a specific linear mapping B of rank 1 is constructed
such that the sum F + B violates either the derivative or the coderivative criterion; this limits
the proof to a finite dimensional setting.

It is still an open problem as to whether it may be possible to extend the radius theorem for
(strong) metric regularity to mappings acting in infinite-dimensional spaces; see [6] for a related
discussion.

Theorem 2 is quite general but cannot be applied to situations where the perturbed mapping
F +B ought to have a specific form, i.e., to structured perturbations. For instance, it cannot be
applied satisfactorly to the mapping that describes the Karush-Kuhn-Tucker (KKT) conditions
in nonlinear programming, because the perturbed mapping there ought to have the form corre-
sponding to a KKT condition. It is an open whether one might find a radius theorem in that
sense even for the standard nonlinear programming problem. However, we will give a partial
answer to this question in the Section 4 of this paper for the problem of minimizing a C2 function
over a fixed convex polyhedral set.

There is a well known link between strong metric regularity with strong maximal monotonicity,
which can be established with the help of the Minty parameterization. The following proposition
is a modified version of a part of [7, Lemma 3.3].

Proposition 3. Consider a mapping F : X →→ X that is maximal monotone at x̄ for ȳ with
mon(F ; x̄| ȳ) > 0. Then the inverse F−1 has a Lipschitz continuous single-valued graphical
localization s at ȳ for x̄. Moreover

max
{
σ > 0

∣∣∣ lip(
1

2σ
I − s; ȳ) ≤ 1

2σ

}
= mon(F ; x̄| ȳ)

and so

(6) lip(s; ȳ) =
1

mon(F ; x̄| ȳ)
.

Proof. Suppose that F is strongly maximal monotone at x̄ for ȳ. Let 0 < σ < mon(F ; x̄| ȳ).
From the strong monotonicity there exist neighborhoods U of x̄ and V of ȳ such that for every
x, x′ ∈ domF ∩ U and y ∈ F (x) ∩ V , y′ ∈ F (x′) ∩ V , the inequality (1) holds. The rest of the
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proof in this direction will follow the localization argument presented in a part of the proof of
[7, Lemma 3.3]. First, note that the mapping F̃ = (F − σI) ∩W is maximal monotone at x̄
for ȳ, where I is the identity mapping and W is a neighborhood of (x̄, ȳ), and also gphF−1 ∩
(U × V ) = gph(σI + F̃ )−1 ∩ (U × V ). According to Minty’s theorem, cf. [1, Theorem 21.1],
the mapping (σI + F̃ )−1 is Lipschitz continuous with a constant σ−1, hence lip(s; ȳ) ≤ σ−1, or
lip(s; ȳ) ≤ 1

mon(F ;x̄ | ȳ)
. In particular we have from the strong monotonicity that

‖y′ − y′′ − 2σ(s(y′)− s(y′′))‖2 = ‖y′ − y′′‖2 − 4σ[〈y′ − y′′, s(y′)− s(y′′)〉 − σ‖y′ − y′′‖2](7)

≤ ‖y′ − y′′‖2.

Thus the mapping y 7→ [ 1
2σ
I − s](y) is Lipschitz continuous with Lipschitz constant 1

2σ
, i.e.

lip(
1

2σ
I − s; ȳ) ≤ 1

2σ
.(8)

This yields the inequality max
{
σ > 0

∣∣ lip( 1
2σ
I − s; ȳ) ≤ 1

2σ

}
≥ mon(F ; x̄| ȳ). Now suppose this

inequality is strict. Take σ > mon(F ; x̄| ȳ) > 0 with lip( 1
2σ
I − s; ȳ) ≤ 1

2σ
. Then we have within

some neighbourhoods U of x̄ and V of ȳ and y′, y′′ ∈ V , that x′ := s(y′), x′′ := s(y′′) ∈ U with

‖ 1

2σ
(y′ − y′′)− (s(y′)− s(y′′))‖2 ≤ 1

2σ
‖y′ − y′′‖2.(9)

Expanding this yields 〈x′ − x′′, y′ − y′′〉 ≥ σ‖x′ − x′′‖2, which in turn implies mon(F ; x̄| ȳ) ≥ σ,
a contradiction.

Now suppose, contrary to assertion, that mon(F ; x̄| ȳ) < 1/ lip(s| ȳ). Take mon(F ; x̄| ȳ) < σ <
1/ lip(s| ȳ), so lip(s| ȳ) < 1/σ and mon(F ; x̄| ȳ) < σ. The later inequality implies the existence of
y′, y′′ ∈ V , for which

(10) 〈s(y′)− s(y′′), y′ − y′′〉 < σ‖y′ − y′′‖2.

Using the identity (7) we have the inequality (10) implying the following inequality

‖( 1

2σ
y′ − s(y′))− (

1

2σ
y′′ − s(y′′))‖2 ≥ (

1

2σ
)2‖y′ − y′′‖2,

which shows that the mapping y 7→ 1
2σ
y− s(y) is not 1

2σ
locally Lipschitz, or in other words that

lip( 1
2σ
I − s; ȳ) > 1

2σ
, a contradiction.

Note that (6) enables the relationship in (2) of Theorem 1 to be cast equally in the pattern
of (4) usually followed by radius theorems, and similaly in other such results below.

Strong metric regularity, along with its “siblings” metric regularity and strong metric reg-
ularity, has an important property sometimes called the “inverse function theorem paradigm.”
Namely, mappings do not lose these regularity properties when perturbed by a function having
a “small” Lipschitz constant. A typical such perturbation appears in the case when the map-
ping is a strictly differentiable function and then the perturbation is its linearization around the
reference point minus the function itself.

For metric regularity, this kind of stability comes from the classical Lyusternik-Graves theo-
rem, already mentioned after Theorem 2. For strong metric regularity, the corresponding result
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is known as Robinson’s inverse function theorem; see [4, Theorem 5F.1]. A simplified version of
that is as follows. Consider a mapping F : X →→ X with (x̄, ȳ) ∈ gphF and a function f : X → X
that is strictly differentiable at x̄. Then the sum f + F is strongly metrically regular at x̄ for
f(x̄)+ ȳ if and only of its partial linearization x 7→ f(x̄)+Df(x̄)(x− x̄)+F (x) has that property.
A broad coverage of the inverse function theorem paradigm together with numerous applications
is furnished in [4].

It turns out that strong monotonicity has a property which is analogous to the inverse function
theorem paradigm. Specifically, we have the following theorem:

Theorem 4 (perturbation stability). Consider a mapping F : X →→ X that is monotone at x̄
for ȳ. Then for any f : X → X we have

(11) mon(F ; x̄| ȳ) + lip(f ; x̄) ≥ mon(f + F ; x̄| ȳ + f(x̄)) ≥ mon(F ; x̄| ȳ)− lip(f ; x̄).

Proof. Suppose mon(F ; x̄| ȳ) = 0 and lip(f ; x̄) < l. Then for any xk, x
′
k → x̄ we have eventually

‖f(xk)− f(x′k)‖ ≤ l‖xk − x′k‖.

There exist sequences τk↘0 and (xk, yk), (x
′
k, y
′
k) ∈ gphF , (xk, yk), (x

′
k, y
′
k)→ (x̄, ȳ), such that

〈yk − y′k, xk − x′k〉 ≤ τk‖xk − x′k‖2.

But then
〈yk − y′k + f(xk)− f(x′k), xk − x′k〉 ≤ (τk + l)‖xk − x′k‖2.

That is, mon(f +F ; x̄| ȳ+ f(x̄)) ≤ l. Also, mon(f +F ; x̄| ȳ+ f(x̄)) ≥ 0− l, and the arbitrariness
of l gives (11).

Let mon(F ; x̄| ȳ) > 0 and choose 0 < τ < mon(F ; x̄| ȳ) and κ > lip(f ; x̄). Then there exist
neighborhoods U of x̄ and V of ȳ such that

〈y − y′, x− x′〉 ≥ τ‖x− x′‖2 for all (x, y), (x′, y′) ∈ gphF ∩ (U × V )

and
〈f(x)− f(x′), x− x′〉 ≥ −κ‖x− x′‖2 for all x, x′ ∈ U.

Then

〈y − y′ + (f(x)− f(x′), x− x′〉 ≥ (τ − κ)‖x− x′‖2 for all (x, y), (x′, y′) ∈ gphF ∩ (U × V ),

which confirms that the middle quantity of (11) is not greater than the right side. Now apply
this proven inequality to the mapping f + F and for the Lipschitz function −f , noting that
lip(−f ; x̄) = lip(f ; x̄), to get

mon(F ; x̄| ȳ) = mon(−f + f + F ; x̄| ȳ + f(x̄)− f(x̄)) ≥ mon(f + F ; x̄| ȳ + f(x̄))− lip(−f ; x̄)

and so
mon(F ; x̄| ȳ) + lip(f ; x̄) ≥ mon(f + F ; x̄| ȳ + f(x̄)).
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Corollary 5 (stability under linearization). Consider a mapping of the form f + F : X →→ X
with (x̄, ȳ) ∈ gph(f + F ), where f : X → X is strictly differentiable at x̄ and F is general
set-valued mapping. Then

mon(f + F ; x̄| ȳ) = mon(f(x̄) +Df(x̄)(· − x̄) + F (·); x̄| ȳ).

Proof. Let
g(x) := −[f(x)− f(x̄)−Df(x̄)(x− x̄)]

and note that

lip(g; x̄) = lim sup
x,x′→x̄
x 6=x′

g(x)− g(x′)

‖x− x′‖
= 0.

Now apply Theorem 4 using the mapping f + F and the Lipschitz mapping g to get

mon(f + F ; x̄| ȳ) = mon(g + f + F ; x̄| ȳ + g(x̄))

= mon(f(x̄) +Df(x̄)(· − x̄) + F (·); x̄| ȳ).

3 Proof of Theorem 1

A first step toward the proof of Theorem 1 is the following weaker result:

Theorem 6 (radius theorem for strong monotonicity). For a mapping F : X →→ X that is
maximal monotone at x̄ for ȳ ∈ F (x̄),

(12) inf
B∈L(X,X)

{
‖B‖

∣∣F +B not strongly monotone at x̄ for ȳ +Bx̄
}

= mon(F ; x̄| ȳ) .

Moreover, the infimum in the left side of (12) is not changed if taken with respect to B ∈ L(X,X)
symmetric, negative semidefinite, and of rank one, and also not changed if taken with respect to
all functions f : X → X that are Lipschitz continuous around x̄ and then ‖B‖ is replaced by
lip(f ; x̄).

Proof. Let F be maximal monotone at x̄ for ȳ but not strongly monotone there; mon(F ; x̄| ȳ) =
0. Then (12) holds withB the zero mapping, and we are done. Next let F be strongly monotone at
x̄ for ȳ and let ε > 0. From the definition of the monotonicity modulus, there exist neighborhoods
U of x̄ and V of ȳ such that

(13) 〈y − y′, x− x′〉 ≥ (mon(F ; x̄|ȳ)− ε)‖x− x′‖2 for all (x, y), (x′, y′) ∈ gphF ∩ (U × V ).

From Proposition 3 the inverse mapping F−1 has a Lipschitz localization s around ȳ for x̄.
Choose any γ > 0 and let α > 0 and β > 0 be such that IBα(x̄) ⊂ U , IBβ(ȳ) ⊂ V , the mapping
IBβ(ȳ) 3 y 7→ s(y) := F−1(y) ∩ IBα(x̄) is single-valued and Lipschitz continuous, and

(14) β +
α

(mon(F ; | ȳ)− ε)(lip s(·)− ε)2
≤ γ.
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From the definition of the Lipschitz modulus, there exist (x, y), (x′, y′) ∈ (IBα(x̄)×IBβ(ȳ))∩gphF ,
x 6= x′, y′ 6= y, such that

‖y − y′‖2

‖x− x′‖
≥ lip(s; ȳ)− ε,

which is the same as

(15)
‖y − y′‖2

‖s(y)− s(y′)‖
≤ 1

lip(s; ȳ)− ε
.

With the so chosen y, y′, define the continuous linear mapping B : X → X by

(16) ξ 7→ B(ξ) = − 〈y − y
′, ξ〉(y − y′)

〈y − y′, s(y)− s(y′)〉
.

This mapping B is symmetric, negative semidefinite, and of rank one. Furthermore, from (13)
and (15) we have

‖B‖ =
‖y − y′‖2

〈y − y′, s(y)− s(y′)〉
(17)

≤ ‖y − y′‖2

(mon(F ; x̄| ȳ)− ε)‖s(y)− s(y′)‖2
≤ 1

(mon(F ; x̄| ȳ)− ε)(lip s(·)− ε)2
.

We also have from (14) that

‖y +B(x)− ȳ −B(x̄)‖ ≤ ‖y − ȳ‖+ ‖B‖‖s(y)− x̄‖ ≤ γ,

and the same for y′ −Bs(y′).
Since B(s(y)− s(y′)) = y′ − y we obtain

F (s(y)) +B(s(y))− y′ −B(s(y′)) = F (s(y)) +B(s(y)− s(y′))− y′

= F (s(y)) + y′ − y − y′ = F (s(y))− y 3 0.

Hence, F (s(y)) +B(s(y)) 3 y′ +B(s(y′)), that is,

s(y) ∈ (F +B)−1(y′ +B(s(y′))).

But since F (s(y′)) 3 y′, we also have F (s(y′)) +B(s(y′)) 3 y′ +B(s(y′)), that is,

s(y′) ∈ (F +B)−1(y′ +B(s(y′))).

We see that any localization of the mapping (F+B)−1 around (x̄, ȳ+Bx̄) cannot be single-valued
on IBγ(ȳ + Bx̄). Because γ could be arbitrarily small, this means that F + B is not strongly
monotone.

Let

ρ1(F ) = inf
B∈L(X,X) symmetric,

negative semidefinite, rank 1

{
‖B‖

∣∣F +B is not strongly monotone at x̄ for ȳ +Bx̄
}
.
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Since the mapping B defined in (16) is symmetric, negative semidefinite, and of rank 1, we get
from the bound (17) that

ρ1(F ) ≤ 1

(mon(F ; x̄|ȳ)− ε)(lip(s; ȳ)− ε)2
.

Since ρ1(F ) doesn’t depend on ε, passing with ε to zero and taking into account (6), we obtain

(18) ρ1(F ) ≤ mon(F ; x̄| ȳ) .

Denote by ρ2(F ) the left side of (12), where the infinum is taken with respect to all functions
g : X → X that are Lipschitz continuous around x̄. Take any such g with lip(g; x̄) < mon(F ; x̄| ȳ)
and choose µ and ν such that mon(F ; x̄| ȳ) > µ > ν > lip(g; x̄). Let (x′, y′), (x′′, y′′) ∈ gphF be
sufficiently close to (x̄, ȳ), so that strong monotonicity of F at x̄ for ȳ and Lipschitz continuity
of g around x̄ apply. Note that

(19) 〈g(x′)− g(x′′), x′′ − x′〉 ≥ −ν‖x′′ − x′‖2 .

Adding and subtracting the expressions in (19) in (1) we get

〈(y′ + g(x′))− (y′′ + g(x′′)), x′ − x′′〉 ≥ (µ− ν)‖x′ − x′′‖2.

Thus F + g is strongly monotone and therefore

ρ2(F ) ≥ µ− ν .

Since ρ2(F ) does not depend on the choice of µ and ν, by passing to the limits α→ mon(F ; x̄| ȳ)
and β → lip(g; x̄) we obtain

(20) ρ2(F ) ≥ mon(F ; x̄| ȳ)− lip(g; x̄) .

But ρ2(F ) doesn’t depend on the particular g either, hence we can take the infimum of lip(g; x̄)
in (20) which is zero. Therefore,

(21) ρ2(F ) ≥ mon(F ; x̄| ȳ) .

Taking into account that ρ2(F ) is the infimum in the left side of (12) taken over a set that is
larger than the one over which the infimum is taken to define ρ1(F ), we obtain

ρ1(F ) ≥ ρ2(F ) .

This inequality, combined with (18) and (21), completes the proof of (12).

Remark. When X = IRn, the first part of the proof of Theorem 6 can be easily obtained from
Theorem 2. Indeed, from Proposition 3, the left side of (12) is not greater than the left side of
(5). But the letter is equal to the reciprocal of lip(s; x̄), which equals mon(F ; x̄| ȳ).
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Completion of the proof of Theorem 1. First let mon(F ; x̄| ȳ) = 0. Then for any ε > 0
and any neighborhood U × V of (x̄, ȳ) there exist (x1, y1), (x2, y2) ∈ (U × V ) ∩ gphF , x1 6= x2

such that

(22) 0 ≤ 〈x1 − x2, y1 − y2〉
‖x1 − x2‖2

< ε.

The mapping
x 7→ H(x) = −εx

is linear, symmetric and negative definite, and since (x1, y1 − εx1), (x2, y2 − εx2) ∈ gph(F + H)
can be arbitrarily close to (x̄, ȳ), taking into account (22), we have

〈x1 − x2, (y1 − εx1)− (y2 − εx2)〉 < ε‖x1 − x2‖2 − ε〈x1 − x2, x1 − x2〉 = 0.

Hence F + H is not monotone at x̄ for ȳ + Hx̄, and since ‖H‖ can be arbitrarily small, we
conclude that the left side of (2) is zero; this proves the theorem for mon(F ; x̄| ȳ) = 0.

Now suppose that mon(F ; x̄| ȳ) > 0. From the proof of Theorem 6 we know that for every
δ > 0 the symmetric and negative semidefinite mapping B defined in (16) is such that F + B
is not strongly monotone, and ‖B‖ ≤ mon(F ; x̄| ȳ) + δ. If F + B is not monotone, this implies
that the infimum in the left side of (2) is less than mon(F ; x̄| ȳ). On the other hand, if F + B
is monotone at x̄ for ȳ + Bx̄, then mon(F + B; x̄| ȳ) = 0 and, by repeating the argument in the
first part of the proof, for any ε > 0 we find a symmetric and negative definite linear mapping
H such that ‖H‖ < ε and F +B +H is not monotone around x̄ for ȳ+ (B +H)x̄. But the sum
B+H is a symmetric and negative definite linear mapping with ‖B+H‖ ≤ mon(F ; x̄| ȳ)+ δ+ε.
Since δ and ε can be arbitrarily small, we conclude that the infimum in the left side of (2) is less
or equal to mon(F ; x̄| ȳ).

To end the proof, observe that the set of nonmonotone mappings is contained in the set of
the mappings that are not strongly monotone. Hence from Theorem 6 the infimum on the left
side of (2) is not less than mon(F ; x̄| ȳ), and we are done.

4 Applications

An application to optimization will be developed first. Consider the problem

(23) minimize g(x) over x ∈ C,

where C is a nonempty polyhedral convex subset of IRn and g : IRn → IR is twice continuously
differentiable everywhere (for simplicity). As is well known, the first-order necessary optimality
condition for this problem is

(24) ∇g(x) +NC(x) 3 0.

A solution of the variational inequality (24) is said to be a critical point in the problem. The
critical cone at x̄ for −∇g(x̄) is defined as

K := KC(x̄,−∇g(x̄)) = TC(x̄) ∩ [−∇g(x̄)]⊥
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and the critical subspace is
L = K −K.

Let A = ∇2g(x̄). The strong second-order sufficient condition (SOSC) for problem (23) has the
form

(25) 〈u,Au〉 > 0 for all nonzero u ∈ L.

Theorem 7 (strong second-order sufficient condition). Let x̄ be a critical point for (23). Then
the following are equivalent:

(a) the strong second-order sufficient condition (25) holds at x̄;
(b) the point x̄ is a strict local minimizer in (23) and the mapping ∇g+NC is locally strongly

monotone at x̄ for 0, in which case

(26) mon(∇g +NC ; x̄|0) = min
u∈L

‖u‖=1

〈u,Au〉.

Proof. From Corollary 5 we obtain that

mon(∇g +NC ; x̄|0) = mon(∇g(x̄) + A(· − x̄) +NC ; x̄|0).

Furthermore, from the Reduction Lemma [4, 2E.4] we have that

O ∩ [gphNC − (x̄,−∇g(x̄)] = O ∩ gphNK

for some neighborhood O of (0, 0). Thus,

mon(∇g +NC ; x̄|0) = mon(A+NK ; 0|0).

By definition mon(A+NK ; 0|0) is the infimum of σ such that

〈y − y′, x− x′〉 ≥ σ‖x− x′‖2

for x, x′ ∈ K with x 6= x′, and y ∈ Ax + NK(x), y′ ∈ Ax′ + NK(x′), where we drop the
neighborhoods because the mapping A+NK is positively homogeneous. Thus for σ < mon(A+
NK ; 0|0) we have

〈A(x− x′) + z − z′, x− x′〉 ≥ σ‖x− x′‖2

for all x, x′ ∈ K, and z ∈ NK(x), z′ ∈ NK(x′). In particular we may choose z = 0 ∈ NK(x) and
z′ = 0 ∈ NK(x′) to deduce that:

〈Au, u〉 ≥ σ‖u‖2 for all u ∈ L.

It follows that
min
u∈L

‖u‖=1

〈u,Au〉 ≥ mon(A+NK ; 0|0).

Now suppose this inequality is strict and take σ > 0 with

(27) min
u∈L

‖u‖=1

〈u,Au〉 > σ > mon(A+NK ; 0|0).

11



Then for any neighbourhoods U and V of 0 there exists x, x′ ∈ K ∩ U , y, y′ ∈ V with y ∈
Ax+NK(x), y′ ∈ Ax′ +NK(x′), such that

(28) 〈y − y′, x− x′〉 < σ‖x− x′‖2.

Let z ∈ NK(x) and z′ ∈ NK(x′) be such that y = Ax+ z and y′ = Ax′ + z′. Then we have from
the monotonicity of x 7→ NK(x) that 〈z − z′, x− x′〉 ≥ 0. It is well know that

z ∈ NK(x) ⇔ x ∈ K, z ∈ K∗, 〈x, z〉 = 0,

where K∗ is the polar cone to K. Hence x− x′ ∈ K −K = L. From (27) and (28) we have

σ ≤ σ + 〈 z − z′

‖x− x′‖
,
x− x′

‖x− x′‖
〉 < 〈A x− x′

‖x− x′‖
,
x− x′

‖x− x′‖
〉+ 〈 z − z′

‖x− x′‖
,
x− x′

‖x− x′‖
〉 < σ,

a clear contradiction. This gives us (26).

Note that the expression on the right side of (26) is equal to the minimal eigenvalue of the
matrix V TAV where the rows of V form a basis for the critical subspace L(.

We now obtain a radius theorem for problem (23). Along with (23) we consider the perturbed
problem

(29) min [g(x) + h(x)] over x ∈ C,
where h : IRn → IR is a C2 function standing for a perturbation.

Theorem 8 (radius theorem for stronq second-order sufficiency). Let x̄ be a critical point for
(23) at which the strong second-order sufficient condition holds, and consider the perturbed
problem (29) with h being a C2 function. Then

(30) inf
h∈C2

{
||∇2h(x̄)||

∣∣ x̄ is a critical point for (29) at which SOSC fails
}

= min
u∈L

‖u‖=1

〈u,Au〉.

Proof. From combining Corollary 5 and Theorem 6, the quantity on the left side of (30) is the
same as the quantity

(31)
inf
{
‖∇2h(x̄)‖

∣∣ x̄ is a local minimizer of (29) and the mapping ∇g +∇h+NC

is not strongly monotone at x̄ for 0
}
.

It is well known that the mapping ∇g+NC is maximal monotone. From Theorem 6 the quantity
(31) is equal to mon(∇g + NC ; x̄|0). It remains to invoke the equality (26) proven in Theorem
7.

As another application, consider the Newton method as applied to (24), this being known
also as the sequential quadratic programming method:

(32) ∇g(xk) +∇2g(xk)(xk+1 − xk) +NC(xk+1) 3 0,

where we assume that the function g is C2 around a solution x̄ of (23) and its second derivative is
Lipschitz continuous there. As is well known, see e.g. [4, Theorem 6D.2], the strong second-order
sufficient condition (25) is a sufficient condition for local quadratic convergence of the method;
namely, if SOSC holds then there exists a neighborhood O of x̄ such that for any starting point
x0 ∈ O there is a unique in O sequence {xk} generated by (32) which is quadratically convergent
to x̄. From Theorem 8 we obtain:

12



Theorem 9 (radius theorem for Newton’s method). Let x̄ be a critical point for (23) at which
the strong second-order condition holds, and consider the perturbed problem (29) with h being
a C2 function. Then

inf
h∈C2

{
‖∇2h(x̄)‖

∣∣ x̄ is a critical point for (29) and in every neighborhood of x̄

there exists a point x0 such that the iteration (32)
applied to (29) and starting from x0

is not quadratically convergent to x̄
}
≥ min

u∈L
‖u‖=1

〈u,Au〉.

Observe that in Theorem 8 it is assumed that the reference solution x̄ is also a solution of the
perturbed problem. This requirement could be possibly relaxed by employing results concerning
stability/sensitivity of the solution mapping. We leave this question for future research.

Lastly, we apply Theorem 1 to obtain a radius theorem for hypomonotonicity. Recall that a
mapping F : X →→ X is said to be hypomonotone at x̄ for ȳ if ȳ ∈ F (x̄) if (1) holds for some
σ < 0 and neighborhoods U of x̄ and V of ȳ, which corresponds to F + ρI being monotone at
x̄ for ȳ + ρx̄ with ρ = −σ > 0. This can also be articulated in terms of negative values of the
monotonicity modulus mon(F ; x̄| ȳ). (Trivially, monotonicity entails hypomonotonicity.)

Examples and applications of hypomonotone mappings can be found in [10], p. 550 and p.
615. Hypomonotonicity is important as well in extensions of the proximal point algorithm beyond
monotonicity; see [8]. Notably, every mapping which has a Lipschitz localization at x̄ for ȳ is
hypomonotone at x̄ for ȳ.

From Theorem 1 and the definition of hypomonoticity we obtain:

Theorem 10 (radius theorem for hypomonotonicity). For any mapping F : X →→ X that is
locally maximal monotone at x̄ for ȳ,

(33) inf
B∈L(X,X)

{
‖B‖

∣∣F +B not hypomonotone at x̄ for ȳ +Bx̄
}

= inf
ρ>0

mon(F + ρI; x̄| ȳ).

Moreover, the infimum in the left side of (33) is not changed if taken with respect to B ∈ L(X,X)
symmetric, negative semidefinite and of rank one, and also not changed if taken with respect to
all functions f : X → X that are Lipschitz continuous around x̄, with ‖B‖ replaced by lip(f ; x̄).

Proof. Let α > the left side of (33); then there exists B ∈ L(X,X) with ‖B‖ ≤ α such that
F + B is not hypomonotone at x̄ for ȳ + Bx̄. This means that for every ρ > 0 the mapping
F +B + ρI is not monotone at x̄ for ȳ +Bx̄. But then, from Theorem 1,

α ≥ ‖B‖ > mon(F + ρI; x̄| ȳ) ≥ inf
ρ>0

mon(F + ρI; x̄| ȳ).

Hence, the left side of (33) is not less than the right side.
Conversely, let α > the right side of (33); then for some ρ > 0 we obtain that α > mon(F +

ρI; x̄| ȳ). Then from Theorem 1 we have the existence of B ∈ L(X,X) with ‖B‖ < α such that
F +B+ ρI is not monotone at x̄ for ȳ+Bx̄, hence F +B is not hypomonotone at x̄ for ȳ+Bx̄.
Then the left side of (33) is not greater than α, and therefore not greater than the right side.
This proves the equality (33).

13



References

[1] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, Springer, New York, 2011.

[2] A. L. Dontchev, A. S. Lewis, R. T. Rockafellar, The radius of metric regularity,
Trans. Amer. Math. Soc. 355 (2003), pp. 493–517.

[3] A. L. Dontchev, R. T. Rockafellar, Regularity and conditioning of solution mappings
in variational analysis, Set-Valued Anal. 12 (2004), pp. 79–109.

[4] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution mappings. A
View From Variational Analysis. Springer Monographs in Mathematics, Second Edition,
Springer, Dordrecht, 2014.

[5] C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psy-
chometrica 1 (1936), pp. 211–218.

[6] A. D. Ioffe, On stability estimates for the regularity property of maps, in Topological
Methods, Variational Methods and Their Applications, World Sci. Publ., River Edge, NJ,
2003, pp. 133–142.

[7] B. S. Mordukhovich, T. T. A. Nghia, Local monotonicity and full stability for para-
metric variational systems, SIAM J. Optim. 26 (2016), pp. 1032–1059.

[8] Pennanen, T., Local convergence of the proximal point algorithm and multiplier methods
without monotonicity, Mathematics of Operations Research 27 (2002), pp. 170–191.

[9] S. M. Robinson, Strongly regular generalized equations, Mathematics of Operations Re-
search 5 (1980), pp. 43–62.

[10] R. T. Rockafellar, R. J-B Wets, Variational analysis, Springer, Berlin, 1998.

[11] T. Zolezzi, A condition number theorem in convex programming, Mathematical Program-
ming 149 (2015), pp. 195–207.

14


