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Abstract

Problem decomposition in convex optimization can take several forms, but one of the most
important is seen in the case of block-separable constraints and objectives. Such structure is
able to support solution methodology in which, in each iteration, individual agents solve separate
subproblems that incorporate input from a “coordinating entity.” Here the history of that approach
to computation will be reviewed with its accomplishments and shortcomings, and a new primal-
dual decomposition algorithm will be presented. In that procedure augmented Lagrangians for
subproblems, instead of for the problem as a whole, have a key role.
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1 Introduction

Many problems in optimization have a structure suggestive of decisions being made by a number
of “agents” who could almost act independently, except for having to coordinate over some shared
resources. Such problems could be solved as a whole in various ways but it’s tempting to contemplate
ways in which the individual agents could be left to do most of the work on their own subject to iterative
coordination on the part of a central entitity. The concept has roots in economics. A “market” could
set prices for the resources on the basis of which each agent could proceed to optimize without paying
attention to what the others are doing. The market could adjust those prices iteratively until supply
equals demand, at which point the overall optimization problem would be solved. This attractive
prospect underlies familiar free-market philosophy, but what are the mathematical assumptions and
algorithmic rules under which it can be realized? Here that will be discussed in the context of convexity,
which appears essential, and known developments will be augmented by new results.

The Dantzig-Wolfe method in linear programming [3] in 1961 was one of the first approaches to
utilizing separability to decompose an optimization problem into smaller subproblems which could be
solved in parallel. It accomplishes this effectively by solving the linear programming dual as the “mas-
ter problem” that coordinates solutions and iterative modifications of the subproblems. Extensions
of that approach have been made to nonlinear convex programming in which the Lagrangian dual is
solved by a cutting plane method, but that leads to ever-bigger dual subproblems which could get out
of hand without some heuristic “pruning.”

So-called multiplier methods based on the augmented Lagrangian function and utilizing the dual
problem associated with it [12] might in principle avoid such difficulties and lead to better convergence
properties. However, they disrupt the separability on which decomposition relies. One way of getting
around that is offered by the ADMM algorithm, which tackles the nonseparated augmented Lagrangian
one variable component at a time; see [2] for a recent survey. This has worked well in some applications
and is now popular in computer science, but there is little theory to support its convergence when
separability leads to more than just two block-components, although some progress was recently made
in [6].

Here a different method will be presented which produces augmented Lagrangians that are them-
selves separable, as in the scheme of Spingarn [17] but with additional flexibility. It employs proximal
terms in the primal variables along with “allocation variables” in a mode traditionally associated with
primal, instead of dual, approaches to decomposition. Convergence to particular solutions to both the
primal and dual problems is assured even when solutions might not be unique.

This method, which we call the augmented decomposition algorithm, will be derived from the
proximal point algorithm for maximal monotone mappings [11] by way of application to a special
primal-dual saddle function associated with the given optimization problem. This derivation is parallel
to that of the progressive hedging algorithm in stochastic programming [14] and its new extension to
stochastic variational inequalities in [13].

2 Block-separable problem format and the role of duality

A common platform for utilizing separability in convex optimization is the following problem with
respect to x = (x1, . . . , xq) in which the xj ’s are “subvectors” belonging to spaces IRnj :

(P )

minimize f0(x) = f01(x1) + · · ·+ f0q(xq) subject to xj ∈ Xj and

fi(x) = fi1(x1) + · · ·+ fiq(xq)

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,
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where each Xj is a nonempty closed convex set in IRnj and the functions fij are convex for i = 1, . . . , s
but affine for i = s+ 1, . . . ,m. The corresponding Lagrangian function in terms of x in the convex set

X = X1 × · · · ×Xq ⊂ IRn1 × · · · × IRnq = IRn

and multiplier vectors y = (y1, . . . , ym) in the cone

Y = IRs+ × IRm−s

is given by
L(x, y) =

∑q

j=1
f0j(xj) +

∑m

i=1
yi

∑q

j=1
fij(xj). (2.1)

It is convex with respect to x and affine in y. Under a constraint qualification of one type or another,
if needed at all, a necessary condition for global optimality of x̄ = (x̄1, . . . , x̄q) is the existence of some
ȳ such that (x̄, ȳ) is a saddle point of L over X × Y :

x̄ ∈ argmin
x∈X

L(x, ȳ), ȳ ∈ argmax
y∈Y

L(x̄, y). (2.2)

Even without a constraint qualification, the saddle point condition is sufficient for global optimality.
That is all standard theory, so for our purposes we can simply assume from now on that at least one
saddle point pair (x̄, ȳ) exists.

The important consequence of the separability in (2.1) is that the Lagrangian can be expressed as

L(x, y) =
∑q

j=1
Lj(xj , y), where Lj(xj , y) = f0j(xj) +

∑m

i=1
yifij(xj), (2.3)

and the minimization side of the saddle point condition (2.3) breaks down then to a separate mini-
mization for each xj :

x̄j ∈ argmin
xj∈Xj

Lj(xj , ȳ) for j = 1, . . . , q. (2.4)

This strongly suggests that the task of solving the (P ) to get x̄ = (x̄1, . . . , x̄q) might be decomposed
into solving the subproblems in (2.4), in which convex function Lj(·, ȳ) are minimized over the convex
sets Xj without imposition of other constraints. A catch, of course, is that this apparently requires
knowing ȳ. Nonetheless, the idea is valuable and does turn out, in an iterative formulation, to support
interesting numerical approaches to solving problem (P ), as will be explained.

Decomposition into the subproblems (2.4) has an attractive interpretation in economics. Imagine
that separate “agents” j = 1, . . . , q are in charge of deciding on the vectors xj ∈ Xj , but they can’t do
that without coordinating because of some shared resources. Suppose that the choice of xj incurs a
cost f0j(xj), in dollars, say, but also requires an input of fij(xj) units of resource i for i = 1, . . .m. A
negative input would be an output; agent j may already have supply of each resource, but it might not
be enough, or on the other hand, it might not be fully needed. Interpret yi as the “market price” per
unit of resource i in dollars. Then Lj(xj , y) in (2.3) is the total cost incurred by agent j in choosing
xj , with respect to buying inputs and selling outputs of the resources i in a market in which the prices
are yi. The resource constraints in problem (P ) insist that the aggregate demand of the agents is
matched by the aggregate supply; having 0 on the right side of each constraint corresponds to the
total supplies of the resources being contained in the holdings of the agents.

The existence of a pair (x̄, ȳ) satisfying the saddle point condition assures in this setting that prices
ȳi do exist such that if the agents act independently in their own self interest the results will be able
to come together without an imbalance of supply and demand, but it doesn’t say that an arbitrary
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selection of subproblem solutions x̄j in (2.4) will necessarily accomplish this. The selection must be
such that the second part of the saddle point condition is satisfied as well. That part stands for
complementary slackness: the aggregated demand for resource i can’t be less than 0 unless the price
ȳi for that resource equals 0. Observe, however, that if circumstances are such that the solutions x̄j in
(2.4) are unique, as would hold for instance if the functions f0j are strictly convex, then this second
part of the saddle point condition must be satisfied by x̄ = (x̄1, . . . , x̄q) automatically! The market
prices are able in that case to coordinate the actions of the different agents, who therefore have no
need to interact directly with each other.

This is the famous principle in economics of decentralization of decision-making through markets.
But economics isn’t the only area where such a notion has big implications. Many optimization prob-
lems in engineering and computer science these days have the same kind of mathematical structure.
In solving those problems, different “processors” can be the agents in charge of the subproblems and
acting on them in parallel.

To make progress on such computational methodology, it’s essential to understand more about the
multiplier vectors ȳ that are able to play such a magical role. What can be said about the set of pairs
(x̄, ȳ) serving as saddle points in (2.2), in our working context where at least one such pair exists? For
this the key is the problem dual to (P ), namely

(D) maximize g(y) over y ∈ Y, where g(y) = inf
x∈X

L(x, y).

Note that, as the infimum of a collection of affine functions L(x, ·) on the cone Y = IRs+ × IRm−s,
the function g is concave, but it might have −∞ as a value. The real feasible set in (D) is thus
{ y ∈ Y | g(y) > ∞}. Anyway, in terms of this dual problem we have the elementary but important
fact that

{ set of saddle points (x̄, ȳ)} = { set of solutions x̄ to (P )} × { set of solutions ȳ to (D)}, (2.5)

where the solutions sets to (P ) and (D) are convex, closed and nonempty.
Any attempt at determining a multiplier vector ȳ that supports solving (P ) through the decom-

position in (2.4) must therefore be tantamount to a way of solving (D). The hope is that an iterative
approach to solving (D), for which many ideas could be investigated, can be elaborated into a method
where subproblems akin to those in (2.4), perhaps with modifications, are solved at each step, and
the resulting solutions to those subproblems yield in the limit a solution to (P ).

3 Known approaches to decomposition via the dual problem

The Dantzig-Wolfe method [3], which was the first major decomposition algorithm in optimization
as mentioned already in Section 1, was couched in the technology of the simplex method for linear
programmming with the sets Xj in (P ) being nonnegative orthants and s = 0 (i.e., no inequalities,
only equations). Effectively it did act by solving the dual problem alongside the primal problem,
since that is a general characteristic of the simplex method. But interpretations in economics were
recognized and the procedure was articulated in terms of (D) being the “master problem” in which
a master agent (the market) would interact repeatedly with the agents j in striving to get the prices
right for decomposition.

Eventually all of that was seen more clearly without the imposition of the simplex apparatus.
The particular way of solving the dual problem that came to be popular in articulating this was
a version of the cutting plane method. That method required some adapting because in original
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concept it revolved around minimizing a convex function over a convex set for which there wasn’t
necessarily a convenient constraint representation, but only a way of determining at each boundary
point a supporting half-space. Every closed convex set is the intersection of the closed half-spaces that
support it, so by generating an increasing collection of such half-spaces and taking their intersection
an “outer approximation” could be generated and improved.

In applying that to (D), the crucial convex set is the hypograph of the concave function g, and the
hypographs of the affine functions L(x, ·) can supply the supporting half-spaces to it. In explaining how
that works, it will help to make some simplifying assumptions that avoid some inessential technical
issues. Let’s suppose that the sets Xj , and therefore X as well, are bounded, and that there is a
bounded set B ⊂ Y (closed and convex) which is known to include the solution set to (D). Then the
constraint y ∈ B can harmlessly be added to (D) during the process of solving it.

The boundedness of X ensures that in the formula for g in (D) the infimum is attained, and in
particular that the concave function g is finite (hence continuous). The critical observation is that if
x∗ attains that minimum in the case of y∗, then

g(y) ≤ L(x∗, y) for all y, with g(y∗) = L(x∗, y∗). (3.1)

The geometric meaning of this “subgradient-type” inequality is that the hypograph of the affine
function L(x∗, ·) is a supporting half-space to the hypograph of g at the point (y∗, g(y∗)) on its
boundary. This is the main tool in the following proceedure, where the iterations are indexed by
ν = 1, 2, . . ..

Cutting-plane-type decomposition algorithm (raw form). In iteration ν, having a vector xν

belonging to a current finite subset Xν of X and a vector yν ∈ B ⊂ Y , maximize the concave function

gν(y) = min
xj∈Xν

L(x, y) ≥ g(y) (3.2)

over y ∈ B to get yν+1 and the corresponding maximum value gν(yν+1), Then let

xν+1
j ∈ argmin

xj∈Xj
Lj(xj , y

ν+1) for j = 1, . . . , q (3.3)

and add xν+1 = (xν+1
1 , . . . , xν+1

q ) to Xν to get Xν+1.

What does this algorithm accomplish, in its stated form? The decreasing sequence of max values
gν(yν+1) is known to converge to the common optimal value in the primal and dual problems. Moreover
every cluster point of the bounded sequence of vectors yν must be a solution ȳ to (D). Also, the
values L(xν , yν) provide lower bounds to the common optimal value. But does the bounded sequence
of vectors xν likewise have its cluster points in the set of solutions to (P )? That’s not such a simple
matter. If however the objective f0 in (P ) is strictly convex, that does have to be the case, and then
in fact xν must converge to the unique solution x̄ to (P ).

A refinement can take advantage of the special “polyhedral” structure of the function gν maximized
in (3.2). There will be a subcollection X̄ν of vectors x ∈ Xν such that gν(yν+1) = L(x, yν+1) along
with coefficients λνx ≥ 0, adding to 1, such that∑

x∈X̄ν
λνxL(x, ·) ≡ 0.

Utilizing those coefficients to define
x̄ν =

∑
x∈X̄ν

λνxx
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one does get, even without strict convexity, a sequence having its cluster points in the solution set of
(P ). Furthermore the vectors x̄ν in this sequence are feasible solutions to (P ), which could not be
said for the sequence of vectors xν .

Being able to solve (P ) and (D) only in terms of cluster points, in general, is an obvious drawback
of the cutting-plane approach. Another drawback is that the process can be slow. Still worse, the
sets Xν could in principle grow indefinitely in size. After a while, this could make the subproblems
too large to solve, because most ways of solving them would convert the affine functions L(x, ·) for
x ∈ Xν into linear constraints in the epigraphical space. A potential remedy for that is to “prune”
inessential elements from Xν to keep it small enough. Then, though, the procedure may devolve into
heuristics without solid guarantees.

An alternative approach to solving (D) is to invoke the proximal point algorithm, which ends up
replacing L by an augmented Lagrangian. The proximal point algorithm [11] in this setting amounts
to generating a sequence of vectors yν by

yν+1 = argmax
y∈Y

{
g(y)− 1

2r
||y − yν ||2

}
, (3.4)

as laid out in [12]. Here r > 0 is a parameter, and the “proximal term” it controls furnishes strong
concavity that ensures not only that the maximum is attained at a unique point but also that the
sequence of vectors yν converges to some particular solution ȳ to (D), even though there might be
other solutions. It also makes the maximum value of the espression in question, namely

max
y∈Y

{
inf
x∈X

{
L(x, y)− 1

2r
||y − yν ||2

}}
,

be amenable to a minimax interchange that identifies it with

inf
x∈X

{
max
y∈Y

{
L(x, y)− 1

2r
||y − yν ||2

}}
.

This leads to introducing, as the augmented Lagrangian for (P ), the function

Lr(x, y) = max
y′∈Y

{
L(x, y′)− 1

2r
||y′ − y||2

}
= f0(x) +

∑m

i=1
ψi(fi(x), yi, r)

where ψi(fi(x), yi, r) =

{
− 1

2r |yi|
2 for i ≤ s with yi + rfi(x) ≤ 0,

yifi(x) + r
2 |fi(x)|2 in all other cases,

(3.5)

and, through further analysis (see [12] and its references), to the recognition that the steps in (3.4)
can be executed in a manner which also generates a sequence of vectors xν . This comes out as follows.

Method of multipliers in convex programming. In iteration ν, having current vectors xν ∈ X
and yν ∈ Y determine

xν+1 ∈ argmin
x∈X

Lr(x, y
ν) (3.6)

with respect to the chosen parameter value r > 0. Then update from yν to yν+1 by

yν+1
i = θi(y

ν
i + rfi(x

ν+1)), where θi(t) =

{
max{0, t} for i = 1, . . . , s,

t for i = s+ 1, . . . ,m.
(3.7)

Although the sequence of multiplier vectors yν corresponds to the execution of (3.4) and converges
to some solution to (D) as already indicated, there are again complications that affect the sequence of
vectors xν . If f0(x) is strongly convex in x ∈ X, then the solutions in (3.6) are uniquely determined
and do converge to the unique solution to (P ), but in general there could even be questions about the
attainment of minimum in (3.6). Such issues suggest the modification described next, from [12]
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Proximal method of multipliers in convex programming. In iteration ν, having current vectors
xν ∈ X and yν ∈ Y determine

xν+1 = argmin
x∈X

{
Lr(x, y

ν) +
1

2r
||x− xν ||2

}
(3.8)

with respect to the chosen parameter value r > 0. Then update from yν to yν+1, as previously, by

yν+1
i = θi(y

ν
i + rfi(x

ν+1)), where θi(t) =

{
max{0, t} for i = 1, . . . , s,

t for i = s+ 1, . . . ,m.
(3.9)

In this case the unique solution in (3.8) surely exists because of strong convexity induced by the
proximal term in x, and there is no trouble at all with convergence. The sequence of pairs (xν , yν) is
certain to converge to some saddle point (x̄, ȳ) yielding solutions to both (P ) and (D), even if there
are multiple solutions.

However, this approach to employing the dual problem to solve the given problem (P ) does not
afford a method of decomposition, at least not directly. That’s because the separability of L into
the “sub-Lagrangians” in (2.3) doesn’t carry over to the augmented Lagrangian Lr. Specifically, the
formula for Lr(x, y) in (3.5) yields

Lr(x, y) = f0(x)+
s∑
i=1

[
yi max{fi(x),−yi/r}+

r

2
max2{fi(x),−yi/r}

]
+

m∑
i=s+1

[
yifi(x)+

r

2
fi(x)2

]
, (3.10)

and the separable structure of the constraint functions in (P ) is unable to help in the minimization in
(3.6) or (3.7), even though the proximal term in (3.8) does, along with f0(x) break down into a sum
of expressions for each j.

Confronted with this difficulty but nonetheless wanting to take advantage of the valuable features
of the augmented Lagrangian, researchers have turned to algorithms in which, instead of minimizing
in (3.6) with respect to x = (x1, . . . , xq) over X = X1×· · ·×Xq all at once, they minimize with respect
to one xj at a time, moreover with the update in the multiplier vector being invoked immediately, i.e,.
without waiting for minimization with respect to all the other components. Such approaches are often
said to be versions of the alternating direction method of multipliers, ADMM, but this is something
of a misnomer. ADMM was originally established only for the case of two block components x1 and
x2, not q components as here. The original convergence results, based again on the proximal point
algorithm, made that essential. Nevertheless the method has become popular, despite shortcomings in
theoretical underpinnings, because of its surprising successes and simplicity. Comprehensive discussion
of this along with various recent advances can be found in [2], [4] and [6].

4 A different approach to separability with augmented Lagrangians

By adopting a broader strategy, we will be able to produce, in exstnsion of an approach of Spingarn
in [?], a multiplier method in terms of augmented Lagrangians for separate subproblems j = 1, . . . , q
in place of the separability-destroying augmented Lagrangian for problem (P ) that has been treated
so far. The key is to reformulate (P ) equivalently in terms of additional vector variables wj =
(w1j , . . . , wmj) ∈ IRm besides the xj ’s and then to draw on the general duality of theory in convex
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optimization to get a different Lagrangian. The reformulated problem statement is

(P̄ )

minimize f01(x1) + · · ·+ f0q(xq) subject to xj ∈ Xj and

fij(xj)− wij

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

for j = 1, . . . , q, and furthermore w1 + · · ·+ wq = 0.

It’s easy to confirm that any solution (w̄, x̄) = (w̄1, . . . , w̄q, x̄1, . . . , x̄q) to (P̄ ) yields x̄ as a solution
to (P ), and conversely, that any solution x̄ to (P ) can be augmented by some w̄ to obtain a solution
(w̄, x̄) to (P̄ ). It’s in this sense that the two problems are equivalent.

The introduction of the additional variables can be seen as a primal approach to decomposition
in (P ), in contrast to the methods we have been looking at so far, which operate through the dual
problem (D). The focus in a primal approach is on the subproblems

(P̄j(wj))

minimize f0j(xj) over xj ∈ Xj subject to

fij(xj)− wij

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.

In the economic interpretation, wij correponds to a reallocation of some amount of resource i to agent
j from the total amount present in the holdings of all the agents, which through “conservation of
resources” requires these amounts to add to 0. The fact that if (w̄, x̄) solves (P̄ ), then x̄j solves
(P̄j(w̄j)) for each j, leads to the idea of finding some scheme that in iteration ν has a wν , calculates
corresponding vectors xνj by solving the subproblems (P̄ (wνj )), and then updates to wν+1.

How might that work, at least in principle? It could be based on the “projection” of (P̄ ) onto a
problem in w, namely

(P̄0) minimize ϕ(w) =
∑q

j=1
ϕj(wj) with

∑q

j=1
wj = 0, where ϕj(wj) = min in (P̄j(w̄j)).

The solutions to (P̄0) are the w̄ components of the solutions to (P̄ ). Although (P̄0) would generally
be a nonsmooth problem of convex optimization, hope in solving it could come from generating local
information about ϕ at a point wν through solving the subproblems (P̄j(w

ν
j )).

The new algorithm that will be presented at the end of this section resembles such a scheme but
adds proximal terms to the subproblems with respect to current iterates xνj . Furthermore it utilizes
the augmented Lagrangians for these subproblems. It will actually be derived from a dual approach
to (P̄ ), but with a different dual problem than might be expected.

It would be natural to get a Lagrangian function for (P̄ ) by attaching multipliers to the various
constraints indexed by i and j as well as a multiplier vector for w1 + · · ·+ wq = 0. However, instead
of bringing in a multiplier vector for w1 + · · ·+ wq = 0, we’ll handle that condition by introducing

W = {w = (w1, . . . , wq) |w1 + · · ·+ wq = 0} ⊂ (IRm)q. (4.1)

as a subspace of (IRm)q and imposing the constraint w ∈W “geometrically” alongside of the constraints
xj ∈ Xj .

This departure from traditional patterns will be accompanied by a different approach to duality.
Crucial to that will be subspace W⊥ that’s the orthogonal complement of W , given by

W⊥ = {w = (w1, . . . , wq) |w1 = · · · = wq} ⊂ (IRm)q. (4.2)
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Every w ∈ (IRm)q can of course be expressed uniquely as a sum of an element of W and an element
of W⊥, namely its orthogonal projections on those subspaces. The projection onto W⊥ is given by

PW⊥(w) = (w∗, . . . , w∗) for w∗ =
1

q

∑q

j=1
wj , (4.3)

and the projection onto W is accordingly given by

PW (w) = w − PW⊥(w) = (w1 − w∗, . . . , wq − w∗). (4.4)

In the general duality theory of convex optimization as developed in [7] and [8], there are different
duals for a given primal problem according to how perturbations are introduced. The canonical
perturbations that yield the standard dual for problem (P ) are the additions of increments ui to
the quantities being constrained by the inequalities and equations in (P ). We’ll follow that here by
adding increments uij to the corresponding constraints in (P̄ ), but besides that we’ll add to w ∈ W
a perturbation v ∈ W⊥. We’ll then have an optimization problem in the variables (w, x) ∈ W × IRn
that responds to perturbations (u, v) ∈ (IRm)q ×W⊥, where

u = (u1, . . . , uq) with uj = (u1j , . . . , umj) and v = (v1, . . . , vq) with vj = (v1j , . . . , vmj),

but actually
v1 = · · · = vq = v∗, so that vi1 = · · · = viq = v∗i.

(It may seem pointless to have v1, . . . , vq when just v∗ = (v∗1, . . . , v∗m) would suffice, but the redundant
notation will help to keep things straight in derivations with respect to the subspaces W and W⊥,
and anyway will drop out in the end.)

This optimization framework is encoded by a function f : W × IRn × (IRm)q ×W⊥ → (−∞,∞]
with

f(w, x, u, v) = f01(x1) + · · ·+ f0q(xq) if for each j one has xj ∈ Xj and

fij(xj)− wij − vij + uij

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

but f(w, x, u, v) =∞ for all other (x,w, u, v) ∈ IRn ×W × (IRm)q ×W⊥.

(4.5)

The optimization problem corresponding to a given (u, v) ∈ (IRm)q ×W⊥ is to minimize f(w, x, u, v)
over (w, x) ∈ W × IRn (in which the constraints in (4.5) are enforced by an infinite penalty for their
violation). Problem (P̄ ) itself corresponds to (u, v) = (0, 0).

The Lagrangian function associated with this framework of perturbations is an extended-real-
valued function L̄ on W × IRn× (IRm)q×W⊥ involving a multiplier pair (η, ζ) ∈ (IRm)q×W⊥, where,
much as above,

η = (η1, . . . , ηq) with ηj = (η1j , . . . , ηmj) and ζ = (ζ1, . . . , ζq) with ζj = (ζ1j , . . . , ζmj),

but actually
ζ1 = · · · = ζq = ζ∗, so that ζi1 = · · · = ζiq = ζ∗i.

(We are employing η and ζ here in order to have y and z available for a better use which will come to
light later.) It is defined by

L̄(w, x, η, ζ) = inf
u,v
{ f(w, x, u, v)− η·u+ ζ·v } (4.6)
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and is convex in (w, x) and concave in (η, ζ). This works out in terms of the convex cone

Y q = Y × · · · × Y ⊂ (IRm)q, (4.7)

and the subspace2

S = { (η, ζ) |PW⊥(η) = ζ} ⊂ (IRm)q ×W⊥, (4.8)

and the functions
Lj(xj , ηj) = f0j(xj) +

∑m

i=1
ηijfij(xj) (4.9)

to mean that

L̄(w, x, η, ζ) =


∑q

j=1
[Lj(xj , ηj)− ηj·wj ] if x ∈ X, (η, ζ) ∈ S ∩ [Y q ×W⊥],

−∞ if x ∈ X, (η, ζ) /∈ S ∩ [Y q ×W⊥],
+∞ if x /∈ X.

(4.10)

The corresponding dual problem is

(D̄) maximize ḡ(η, ζ) = inf
(w,x)∈X×W

L̄(w, x, η, ζ) over all (η, ζ) ∈ (IRm)q ×W⊥,

where the objective function ḡ is concave (and upper semicontinuous) and the implicit feasible set is

{ (η, ζ) | g(η, ζ) > −∞} ⊂ S ∩ [Y q ×W⊥]. (4.11)

Just as before with (P ) and (D), the product of the set of solutions (w̄, x̄) to (P̄ ) and the set of
solutions (η̄, ζ̄) to (D̄) is the set of saddle points (w̄, x̄, η̄, ζ̄) of L̄(w, x, η, ζ) with respect to minimizing
in (w, x) and maximizing in (η, ζ).

This saddle point charactization has a consequence for the multiplier vectors, which is important
to record. If (w̄, x̄, η̄, ζ̄) is a saddle point of the Lagrangian in (4.10), then in particular the infimum of
w·η̄ over w ∈W can’t be −∞ and therefore has to be 0. This tells us that η̄ ∈W⊥, so that η̄1 = · = η̄q.
Thus, although the expanded scheme makes way for possibly different multiplier vectors in the Lj ’s,
that flexibility, helpful for developing an algorithm, doesn’t lead to anything different than the single
multiplier vector in (P ).

More details on expressing ḡ(η, ζ) could be worked out in particular circumstances, but in the long
run they don’t really matter. What matters here is that the proximal point algorithm can be applied
for solving (D̄) just as for (D) to produce an associated “method of multipliers,” which moreover can
then also be turned into a “proximal method of multipliers” — because the theory for all of that works
very generally. According to [12], proximal methods of multipliers are obtained by applying a saddle
point procedure to a Lagrangian to which both primal and dual proximal terms have been added.
Here we will focus on the following case, where for now we use ρ > 0 as the parameter instead of r for
reasons like those behind η and ζ but also introduce a second parameter c > 0.

Proximal saddle point algorithm in the decomposition framework. Generate a sequence of
elements (wν , xν) ∈W ×X and (ην , ζν) ∈ S ∩ [Y q ×W⊥] by letting

L̄ν(w, x, η, ζ) = L̄(w, x, η, ζ) +
ρ

2
||w − wν ||2 +

1

2c
||x− xν ||2 − 1

2ρ
||η − ην ||2 − 1

2ρ
||ζ − ζν ||2 (4.12)

2Ordinarily there would be a “−” in front of the ζ term in (4.6) but the sign has harmlessly been switched to avoid
having −ζ in place of ζ in describing this subspace.
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and calculating

(wν+1, xν+1, ην+1, ζν+1) = unique saddle point of L̄ν(w, x, η, ζ) with respect to
minimizing over (w, x) ∈W ×X and maximizing over (η, ζ) ∈ S ∩ [Y q ×W⊥].

(4.13)

The unique saddle point exists because the proximal terms make L̄ν be strongly convex in the
primal variables and strongly concave in the dual variables. On the basis of [12], the sequence of
elements (wν , xν , ην , ζν) generated in this manner from any initial (w1, x1) ∈ W ×X and (η1, ζ1) ∈
S ∩ [Y ×W⊥] is sure to converge to some saddle point (w̄, x̄, η̄, ζ̄) of the Lagrangian L̄. Then (w̄, x̄)
solves (P̄ ) while (η̄, ζ̄) solves (D̄), as noted.

It might be wondered if the application of convergence results in [12] to the procedure just described
is legitimate, because those results correspond to having 1/2ρ instead of ρ/2 for the primal proximal
terms as well as the dual proximal terms. But this version simply corresponds to a rescaling of
variables. That rescaling is critical for our purposes, as will soon be evident.

Validating the convergence of the saddle point iterations in our framework is, of course, only a first
step on the way towards this furnishing a decomposition method for solving (P̄ ). It must be shown
that the calculation of the saddle point in (4.13) can be carried out in a manner that breaks down in
subproblems indexed by j = 1, . . . , q which can be solved in parallel.

Quite remarkably, the proximal saddle point algorithm comes out, in the end, as something that
seems entirely different and utilizes the augmented Lagrangians for the subproblems (P̄j(wj)) at a
level r > 0 different from ρ and with multipliers yij different from ηij , namely

L̄j,r(wj , xj , yj) = f0j(xj) +
∑m
i=1 ψi(fij(xj)− wij , yij , r), where

ψi(fij(xj)− wij , yij , r) =

{
− 1

2r |yij |
2 for i ≤ s with yij + r[fij(xj)− wij ] ≤ 0,

yij [fij(xj)− wij ] + r
2 |fij(xj)− wij |

2 otherwise.
(4.14)

Augmented decomposition algorithm. In iteration ν, having wν ∈ W , xν ∈ X and yν ∈ Y q,
determine the components of xν+1 ∈ X by

xν+1
j = argmin

xj∈Xj

{
L̄j,r(w

ν
j , xj , y

ν
j ) +

1

2c
||xj − xνj ||2

}
. (4.15)

Then, in terms of{
ηij = θi(y

ν
ij + r[fij(x

ν+1
j )− wνij ] ),

ζi = 1
q

∑q
j=1 ηij ,

where θi(t) =

{
max{0, t} for i = 1, . . . , s,

t for i = s+ 1, . . . ,m,
(4.16)

update to wν+1 ∈W and yν+1 ∈ Y q by

wν+1
ij = wνij +

1

2r
[ηij − ζi], yν+1

ij =
1

2
[ηij + ζi]. (4.17)

Convergence theorem. For any r > 0 and c > 0, the sequence {(wν , xν , yν)}∞ν=1 generated in
W ×X × Y q by the augmented decomposition algorithm from any starting point converges to some
(w̄, x̄, ȳ) such that

(a) (w̄, x̄) solves (P̄ ), hence x̄ solves (P ),
(b) ȳ1 = · · · = ȳq ∈ IRm, and this common multiplier vector solves (D).

In the next section we move on to analyzing the calculation of the saddle point in (4.13) and
uncovering how the proximal saddle point algorithm can be executed conveniently. By arriving finally
at the recognition that the steps can be identified with the ones in the augmented decomposition
algorithm, we will have managed then also to prove the convergence theorem.
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5 Justification of the augmented decomposition algorithm

The requirement that (η, ζ) ∈ S on the maximization side of the saddle point problem in (4.13) can
be handled by subtracting the indicator term δS(η, ζ) from L̄ν(x,w, η, ζ) and using the fact that

−δS(η, ζ) = inf
v∈W⊥

v·(ζ − η) for (η, ζ) ∈ Y q ×W⊥.

From this angle, and in bringing in the expression for L̄ in terms of the “sub-Lagrangians” in (4.9), it
is apparent that we are really dealing with a saddle point of∑q

j=1 L̄j(xj , ηj)− w·η + v·(ζ − η)

+ 1
2c ||x− x

ν ||2 + ρ
2 ||w − w

ν ||2 − 1
2ρ ||η − η

ν ||2 − 1
2ρ ||ζ − ζ

ν ||2 (5.1)

with respect to minimizing in x ∈ X, w ∈W and v ∈W⊥ while maximizing in η ∈ Ȳ and ζ ∈W⊥.
In this situation the various maximizations and minimizations can be carried out in any order, due

to the strong convexity and strong concavity induced by the proximal terms (even though there isn’t
one for v). Our tactic now will be to fix x ∈ X and η ∈ Y q temporarily and try to understand how
the saddle point with respect to the other elements in (5.1) will depend on (x, η). We are concerned
then just with saddle points in (w, v) and ζ of

−w·η + v·(ζ − η) +
ρ

2
||w − wν ||2 − 1

2ρ
||ζ − ζν ||2. (5.2)

The maximization in ζ is easy to carry out first, because it separately involves only v·ζ and the
proximal term in ζ. Since both v and ζ are in W⊥, it just amounts to calculating the conjugate of
that proximal term:

max
ζ∈W⊥

{
v·ζ − 1

2ρ
||ζ − ζν ||2

}
= v·ζν +

ρ

2
||v||2 with ζ = ζν + ρv as the argmax. (5.3)

The elimination of ζ in this manner replaces the expression in (5.2) by

−w·η − v·η + v·zν +
ρ

2
||w − wν ||2 +

ρ

2
||v||2, (5.4)

which is to be minimized in w ∈ W and v ∈ W⊥. Because w ⊥ zν we have v·zν = (w + v)·zν ,
and because (w − wν) ⊥ v, we have ||w − wν ||2 + ||v||2 = ||(w + v) − wν ||2. Therefore (5.4) can be
consolidated to

−(w + v)·(η − ζν) +
ρ

2
||(w + v)− wν ||2. (5.5)

An important observation now is that w + v stands here for a general element

ω ∈ (IRm)q with w = PW (ω) and v = PW⊥(ω). (5.6)

Thus in (5.5) we are left with −ω·(η − ζν) + ρ
2 ||ω − w

ν ||2, which is to be minimized with respect to
ω ∈ (IRm)q, where

minω
{
− ω·(η − ζν) + ρ

2 ||ω − w
ν ||2

}
= −(η − ζν)·wν − 1

2ρ ||η − ζ
ν ||ν

with argmax ω = wν + 1
ρ(η − ζν).

(5.7)
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This brings us back to the full saddle point problem in (4.13) with the understanding that, in first
passing to the minimax with respect to w and z for a given x and η, the residual expression will be∑q

j=1
Lj(xj , ηj)− (η − ζν)·wν − 1

2ρ
||η − ζν ||2 +

ρ

2
||x− xν ||2 − 1

2ρ
||η − ην ||2, (5.8)

where the “sub-Lagrangians” of (4.9) in the formula for the Lagrangian in (4.10) appear. The key now
is the fact that this expression is the sum of separate expressions involving only the variable associated
with each j:∑q

j=1

[
Lj(xj , ηj)− (ηj − ζνj )·wνj −

1

2ρ
||ηj − ζνj ||2 +

ρ

2
||xj − xνj ||2 −

1

2ρ
||ηj − ηνj ||2

]
. (5.9)

Finding a saddle point of this with respect to x ∈ X and η ∈ Y q decomposes into finding for each j a
saddle point with respect to xj ∈ Xj and ηj ∈ Y .

Pursuing this in more detail, we can omit the terms ζν·wνj in (5.9) as being constants in the
minimax, hence irrelevant. By defining

yνj =
1

2
[ηνj + ζνj ], δνj =

1

2
[ηνj − ζνj ], (5.10)

we can invoke the identity that

1

2
||ηj − ζνj ||2 +

1

2ρ
||ηj − ηνj ||2 = ||η − yν ||2 + ||δν ||2, (5.11)

where ||δν ||2 likewise behaves for the moment as a constant. Then by introducing

Lνj (xj , ηj) = f0j(xj) +
∑m

i=1
ηijf

ν
ij(xj) for fνij(xj) = fij(xj)− wνij , (5.12)

we can focus our consideration for j = 1, . . . , q on determining a saddle point of

Lνj (xj , ηj)−
1

2r
||ηj − yνj ||2 +

1

2c
||xj − xνj ||2, where r = ρ/2. (5.13)

To get a saddle point we can maximize first in ηj ∈ Y to get the max and argmax as functions of xj ,
and then minimize that max value over xj ∈ Xj .

In fact this returns us to territory we are already familiar with from the earlier discussion of
augmented Lagrangians, since

max
ηj∈Y

{
Lνj (xj , ηj)−

1

2r
||ηj − yνj ||2

}
= Lj,r(w

ν
j , xj , y

ν
j ), (5.14)

where Lj,r(wj , xj , yj) is the r-augmented Lagrangian for the optimization subproblem (P̄ (wj)) already
introduced in (4.14). It confirms that xν+1 is obtained by the minimization step in (4.15). Moreover
the vector ηj furnishing the maximum in (5.14) with respect xνj is given coordinatewise by

ην+1
ij = θi(y

ν
ij + r[fij(x

ν
j )− wνij ]), where θi(t) =

{
max{0, t} for i = 1, . . . , s,

t for i = s+ 1, . . . ,m.
(5.15)

From having determined ην+1 this way we get ζν+1 as its projection on W⊥, namely

ζν+1
ij = ζν+1

i∗ for all j, where ζν+1
i∗ =

1

q

∑q

j=1
ην+1
ij , (5.16)
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and therefore, via (5.10),

yν+1 =
1

2
[ην+1 + ζν+1]. (5.17)

On the other hand, from (5.7) we get ων+1 = ρ−1(ην+1 − ζν), hence, since zν ∈W⊥ and ρ = 2r,

wν+1 = PW (ων+1) =
1

2r
PW (ην+1 − ζν) =

1

2r
PW (ην+1) =

1

2r
[ην+1 − ζν+1]. (5.18)

This validates the updates to wν+1 and yν+1 in (4.17), where the notation has been simplified from
ην+1
ij and ζν+1

ij because there is no need any more to carry those vectors along explicitly in the statement
of the procedure.

We already know from the discussion following the introduction of the Lagrangian in (4.10), that
the limit of η̄ must lie in W⊥, making η̄1 = · · · = η̄q, with this the same as the vector ζ̄1 = · · · = ζ̄1.
Obviously that then entails ȳ1 = · · · = ȳq.
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